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• Co-evolving time series is ubiquitous.
• Each time series is related to each other.
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Ubiquity of Co-evolving Time Series

Smart TransportationFinancial Analysis

https://www.researchgate.net/publication/281550777_Upscaling_In_Situ_Soil_Moisture_Observations_To_Pixel_Averages_With_Spatio-
Temporal_Geostatistics/figures?lo=1&utm_source=google&utm_medium=organic
https://medium.com/technicity/worlds-100-largest-companies-by-revenue-in-2019-d6d53dd1851d

Environmental Monitoring



Properties of Co-evolving Time Series

• Take environmental monitoring as an example. (Left Figure)
• It is a tensor. (Middle Figure)
• Each temporal snapshot is a tensor. (The green slice)
• Network constraint for each dimension.
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1. We have some monitoring sites/locations.
2. Each site has multiple types of sensors.



Challenge #1: Model Explicit Relations

• Network constraints.
• Distance between the sensors.
• Correlation between temperature, humidity, pressure etc.

✕Existing methods are designed for flat graphs (e.g., GCN).
• Either location network or type network, but not all.

üWe introduce 
• Spectral Convolution for Tensor Graphs
• Tensor Graph Convolutional Network (TGCN)
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Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).



Challenge #2: Model Implicit Relations

• Different time series might have similar patterns.
• E.g., air temperatures of Toronto and Mosco.
• Explicit distance network constraint cannot capture this relation.

✕Existing methods use 
• the same model for all time series
• an individual model for each time series 

üWe introduce:
• Tensor Recurrent Neural Network (TRNN)
• Implement RNN with LSTM: TLSTM
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https://weatherspark.com/compare/y/100524~19863/Comparison-of-the-Average-Weather-in-Moscow-and-Toronto
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Preliminaries
• Tensor Graph 𝒢:
• A tensor graph is comprised of (1) a M-dimensional tensor 𝒳 ∈
ℝ!!×⋯×!"and (2) adjacency matrices A$ ∈ ℝ!#×!# . 

• Network of Tensor Time Series:
• It is comprised of a (1) tensor time series 𝒮 ∈ ℝ!!×⋯×!"×%, and 

(2) adjacency matrices A$ ∈ ℝ!#×!# .

• Mode-m product between tensor 𝒳 and matrix U:𝒳×!U
• Generalization of the product between matrices.
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Overview

• Problem: given the 𝜔 historical snapshots, predict the next 𝜏 snapshots.
• Challenge 1: Explicit Relations - TGCN
• Challenge 2: Implicit Relations - TRNN

11



Tensor Graph Convolutional Network
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1. Graph Fourier Transformation -> Tensor Graph Fourier Transformation

3. Approximation via Chebyshev Polynomials

4. Simplification

5. Updating function 
for each layer

2. Spectral Convolution

Φ: Eigenvector matrix of the graph Laplacian L = I − D!/#AD!/# = Φ$ΛΦ

×%: mode-m product

𝒢: parameter tensor★: convolution operation

𝑇&: Chebyshev Polynomial with degree 𝑝

𝜃: parameters

.𝐿% normalized Laplacian matrix

0𝐴%: normalized adjacency matrix 𝜎: activation function

= =𝜙% 𝑥*𝑥 +𝒳 𝒳𝜙"%

= 𝜙"

𝜙#%

𝜙#% 𝜙#*𝑔#

𝒳𝜙"% *𝑔"𝒢 ★𝒳

=

!
!

𝜃!𝑇!(%𝐿")

𝒳𝒢& ★𝒳 !
!

𝜃!𝑇!(%𝐿#)=

1

2
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TGCN: Detailed Analysis

• Let 𝑚 = 2:

• Capture the synergy.
• Capture each network separately.
• Have a self-convolution/residue connection.
• Illustration of synergy: 

• node 𝑣 could gather information from 𝑤′.
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Synergy of 𝐴" and 𝐴# Only 𝐴" Only 𝐴# Self-convolution or 
Residue connection



Tensor Recurrent Neural Network
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Tucker decomposition
U' is orthonormal

Reuse U' since it is orthonormal.Replace linear
operations in RNN by 
multi-linear operations

Linear(𝑥) = 𝑥𝑤 + 𝑏

We use LSTM to implement RNN.



The Implicit Relationship
• The Tucker decomposition is a high-order PCA or SVD.
• U$ extracts the eigenvectors of the 𝑚-th dimension.
• Each element in 𝒵 indicates the interaction of the eigenvectors.

• The degree of implicit relation.

• Let 𝜌 be the interaction degree:
• 𝜌 ∈ (0, 1): ideal range
• 𝜌 > 1: U! is over-complete and have redundant information
• 𝜌 = 0: no interaction
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Parameter Reduction
• Parameter Comparison:
• TLSTM cell < multiple LSTM cells
• Tucker decomposition introduces new parameters U$

• TLSTM uses less parameters than multiple LSTM if:
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𝑁!: the dimension of the 𝑚-th mode ofℋ(

𝑑: the hidden dimension of ℋ

𝑑′: the hidden dimension of LSTM/TLTSM
𝜌 be the interaction degree:

We use LSTM to implement TRNN -> TLSTM
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Experimental Setup
• Datasets:

• Tasks: 
• Missing Value Recovery 
• Future Value Prediction

• Metric: RMSE (the lower the better)
• Preprocessing: 

• Normalize each time series by z-scores.
• Missing value recovery: use [0.1, 0.2, 0.3, 0.4, 0.5] for test
• Future value prediction: use [0.02, 0.04, 0.06, 0.08, 0.1] for test

• Questions:
• How accurate is NET3 for missing value recovery and future value prediction?
• How will synergy improve the performance?
• How does the interaction degree 𝜌 impact the performance?
• How efficient and scalable is NET3?
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Missing value recovery & Future value prediction

• The red arrows point (or the left-most bars) to NET3.
• NET3 performs the best: lowest RMSE.
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Synergy Analysis 
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• Comparison methods: 
• (1) GCN with one network, (2) iTGCN: ~multiple GCNs, (3) TGCN: Full model

• TGCN (red arrows) performs the best.



Experiments: 20CR dataset
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• The red arrows point (or the left-most bars) to the full model NET3.
• NET3 performs the best: lowest RMSE.



Visualization on the Traffic Dataset
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• NET3 (red), Ground truth (black), Baselines (green, blue)
• NET3 performs the best: closest to the ground truth (see yellow circles).



Sensitivity 
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• As 𝜌 increases, the model performs better in general.
• U$ contains more eigenvectors: more information.

• # parameters of TLSTM grows linearly with 𝜌.
Larger 𝜌 Larger 𝜌



Memory Efficiency
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• TLSTM can significantly reduce # parameters.
• TLSTM achieves lower RMSE than mLSTM.

Upper bound
Values in experiments

# parameters
Reduction ratio



Scalability

• The training time V.S. size of input tensor: almost linear
• # parameters V.S. size of input tensor: almost linear. 
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Conclusion
• Model Co-evolving time series

• Challenge 1: Explicit Relationship
• Solution 1: Tensor Graph Convolutional Network (TGCN)
• Challenge 2: Implicit Relationship
• Solution 2: Tensor Recurrent Neural Network (TRNN)

• Results:
• NET3 performs the best for missing value recovery and future value prediction.
• TGCN captures the synergy among networks.
• TRNN reduces # parameters and performs better.
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Thank you!
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