

Network of Tensor Time Series

Presenter: Baoyu Jing Contact: baoyuj2@Illinois.edu

- Introduction
- Preliminaries
- Methodology
- Experiments
- Conclusion

>Introduction

- Preliminaries
- Methodology
- Experiments
- Conclusion

Ubiquity of Co-evolving Time Series

- Co-evolving time series is ubiquitous.
 - Each time series is related to each other.

Environmental Monitoring

Financial Analysis

Smart Transportation

https://www.researchgate.net/publication/281550777_Upscaling_In_Situ_Soil_Moisture_Observations_To_Pixel_Averages_With_Spatio-Temporal_Geostatistics/figures?lo=1&utm_source=google&utm_medium=organic https://medium.com/technicity/worlds-100-largest-companies-by-revenue-in-2019-d6d53dd1851d

Properties of Co-evolving Time Series

- Take environmental monitoring as an example. (Left Figure)
- It is a tensor. (Middle Figure)
- Each temporal snapshot is a tensor. (The green slice)
- Network constraint for each dimension.
- 1. We have some monitoring sites/locations.
- 2. Each site has multiple types of sensors.

0.7

1.0

0.5

1.0

0.7

0.9

Temperature Humidity

Pressure

0.9

0.5

1.0

Challenge #1: Model Explicit Relations

- Network constraints.
 - Distance between the sensors.
 - Correlation between temperature, humidity, pressure etc.
- ×Existing methods are designed for **flat** graphs (e.g., GCN).
 - Either location network or type network, but not all.
- ✓ We introduce
 - Spectral Convolution for Tensor Graphs
 - Tensor Graph Convolutional Network (TGCN)

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

Challenge #2: Model Implicit Relations

- Different time series might have similar patterns.
 - E.g., air temperatures of Toronto and Mosco.
 - Explicit distance network constraint cannot capture this relation.
- ×Existing methods use
 - the same model for all time series
 - an **individual** model for each time series
- ✓ We introduce:
 - Tensor Recurrent Neural Network (TRNN)
 - Implement RNN with LSTM: TLSTM

- Introduction
- ➢ Preliminaries
- Methodology
- Experiments
- Conclusion

Preliminaries

• Tensor Graph *G*:

- A tensor graph is comprised of (1) a M-dimensional tensor $\mathcal{X} \in \mathbb{R}^{N_1 \times \cdots \times N_M}$ and (2) adjacency matrices $A_m \in \mathbb{R}^{N_m \times N_m}$.
- Network of Tensor Time Series:
 - It is comprised of a (1) tensor time series $S \in \mathbb{R}^{N_1 \times \cdots \times N_M \times T}$, and (2) adjacency matrices $A_m \in \mathbb{R}^{N_m \times N_m}$.
- Mode-m product between tensor X and matrix $U: X \times_m U$
 - Generalization of the product between matrices.

- Introduction
- Preliminaries
- >Methodology
- Experiments
- Conclusion

Overview

- Problem: given the ω historical snapshots, predict the next τ snapshots.
- Challenge 1: Explicit Relations TGCN
- Challenge 2: Implicit Relations TRNN

TGCN: Detailed Analysis

• Let m = 2:

 $\mathcal{G}_{\theta} \star \mathcal{X} = \begin{bmatrix} \theta_{1,1} \mathcal{X} \times_1 \tilde{A}_1 \times_2 \tilde{A}_2 \\ \text{Synergy of } A_1 \text{ and } A_2 \end{bmatrix} + \begin{bmatrix} \theta_{1,0} \mathcal{X} \times_1 \tilde{A}_1 \\ \theta_{0,1} \mathcal{X} \times_2 \tilde{A}_2 \\ \text{Only } A_2 \end{bmatrix} + \begin{bmatrix} \theta_{0,0} \mathcal{X} \\ \theta_{0,0} \mathcal{X} \\ \text{Only } A_2 \end{bmatrix}$ Self-convolution or Residue connection

- Capture the synergy.
- Capture each network separately.
- Have a self-convolution/residue connection.
- Illustration of synergy:
 - node v could gather information from w'.

Tensor Recurrent Neural Network

Tucker decomposition U_m is **orthonormal**

$$\mathcal{Z}_t = \mathcal{H}_t \prod_{m=1}^M \times_m \mathbf{U}_m^T$$

Replace **linear** operations in RNN by **multi-linear** operations

M+1

$$Linear(x) = xw + b$$

Reuse U_m since it is **orthonormal**.

$$\mathcal{R}_t = \mathcal{Y}_t \prod_{m=1}^M \times_m \mathbf{U}_m$$

TLL(X) = $X \prod_{m=1} \times_m W_m + b$ We use LSTM to implement RNN.

The Implicit Relationship

- The Tucker decomposition is a high-order PCA or SVD.
 - U_m extracts the eigenvectors of the *m*-th dimension.
 - Each element in Z indicates the interaction of the eigenvectors.
 - The degree of implicit relation.
- Let ρ be the interaction degree: $N'_m = \rho N_m (\forall m \in [1, \dots, M])$
 - $\rho \in (0, 1)$: ideal range
 - $\rho > 1$: U_m is over-complete and have redundant information
 - $\rho = 0$: no interaction

Parameter Reduction

- Parameter Comparison: We use LSTM to implement TRNN -> TLSTM
 - TLSTM cell < multiple LSTM cells
 - Tucker decomposition introduces new parameters U_m
- TLSTM uses less parameters than multiple LSTM if:

LEMMA 3.5 (UPPER-BOUND FOR ρ). Let N_m and N'_m be the dimensions of U_m in Equation (24), and let $d \in \mathbb{R}$ and $d' \in \mathbb{R}$ be the hidden dimensions of the inputs and outputs of TLSTM. TLSTM uses less parameters than multiple separate LSTMs, as long as the following condition holds:

$$\rho \le \sqrt{\frac{(\prod_{m=1}^{M} N_m - 1)d'(d + d' + 1)}{2\sum_{m=1}^{M} N_m^2}} + \frac{1}{256} - \sqrt{\frac{1}{256}} \qquad (33)$$

 ρ be the interaction degree: $N'_m = \rho N_m (\forall m \in [1, \dots, M])$ d': the hidden dimension of LSTM/TLTSM *d*: the hidden dimension of \mathcal{H}

 N_m : the dimension of the *m*-th mode of \mathcal{H}_t

- Introduction
- Preliminaries
- Methodology
- ➢Experiments
- Conclusion

Experimental Setup

Datasets:	Dataset	Shape	# Nodes	Modes with A	
	Motes	$54 \times 4 \times 2880$	216	1, 2	
	Soil	$42 \times 5 \times 2 \times 365$	420	1, 2, 3	
	Revenue	$410 \times 3 \times 62$	1,230	1, 2	
	Traffic	$1000 \times 2 \times 1440$	2,000	1	
т 1	20CR	$30 \times 30 \times 20 \times 6 \times 180$	108,000	1, 2, 3, 4	

- Tasks:
 - Missing Value Recovery
 - Future Value Prediction
- Metric: RMSE (the lower the better)
- Preprocessing:
 - Normalize each time series by z-scores.
 - Missing value recovery: use [0.1, 0.2, 0.3, 0.4, 0.5] for test
 - Future value prediction: use [0.02, 0.04, 0.06, 0.08, 0.1] for test
- Questions:
 - How accurate is NET³ for missing value recovery and future value prediction?
 - How will synergy improve the performance?
 - How does the interaction degree ρ impact the performance?
 - How efficient and scalable is NET³?

Missing value recovery & Future value prediction

- The red arrows point (or the left-most bars) to NET³.
- NET³ performs the best: lowest RMSE.

Synergy Analysis

- Comparison methods:
 - (1) GCN with one network, (2) iTGCN: ~multiple GCNs, (3) TGCN: Full model
- TGCN (red arrows) performs the best.

Experiments: 20CR dataset

- The red arrows point (or the left-most bars) to the full model NET³.
- NET³ performs the best: lowest RMSE.

Visualization on the Traffic Dataset

- NET³ (red), Ground truth (black), Baselines (green, blue)
- NET³ performs the best: closest to the ground truth (see yellow circles).

Sensitivity

- As ρ increases, the model performs better in general.
 - U_m contains more eigenvectors: more information.
- # parameters of TLSTM grows linearly with ρ .

Memory Efficiency

- TLSTM can significantly reduce # parameters.
- TLSTM achieves lower RMSE than mLSTM.

	2	Motes	Soil	Revenue	Traffic	20CR
Upper bound	ρ _{max}	2.17	2.43	0.64	0.31	57.25
Values in experiments	ρ_{exp}	0.80	0.80	0.20	0.10	0.90
I	TLSTM	18,552	10,996	87,967	180,554	16,696
# parameters	mLSTM	117,504	57,120	669,120	1,088,000	58,752,000
Reduction ratio	Reduce	84.21%	80.75%	86.85%	83.40%	99.97%

Scalability

- The training time V.S. size of input tensor: almost linear
- # parameters V.S. size of input tensor: almost linear.

- Introduction
- Preliminaries
- Methodology
- Experiments
- **Conclusion**

Conclusion

- Model Co-evolving time series
 - Challenge 1: Explicit Relationship
 - Solution 1: Tensor Graph Convolutional Network (TGCN)
 - Challenge 2: Implicit Relationship
 - Solution 2: Tensor Recurrent Neural Network (TRNN)

- Results:
 - NET³ performs the best for missing value recovery and future value prediction.

Time

17Pe

Location

- TGCN captures the synergy among networks.
- TRNN reduces # parameters and performs better.

Thank you!