

HDMI: High-order Deep Multiplex Infomax

Presenter: Baoyu Jing Contact: baoyuj2@illinois.edu

- Introduction
- Preliminary
- Methodology
- Experiments
- Conclusion

>Introduction

- Preliminary
- Methodology
- Experiments
- Conclusion

Introduction: Ubiquity of Network

- Network in various applications.
 - Nodes are connected by various relations.

Paper Network

https://www.lebow.drexel.edu/news/relational-networking-not-just-collecting-contacts https://atechnologyjobisnoexcuse.com/2006/09/11/network-of-amazon-products/ https://www.cwts.nl/blog?article=n-r2r294

Introduction: Self-supervised Learning

- Self-supervised learning
 - Train models without external training signals.
 - Do not need human labeling.
 - Pre-trained models perform well for down-stream tasks.
 - E.g., classification and clustering etc.
 - Key challenge: how to build the training signal?
- Deep Graph Infomax (DGI) for graphs
 - Mutual Information (MI) based training signal
 - Key idea:
 - Maximize the MI between node embedding h_n and summary vector s.

Introduction: DGI Limitation #1

- 1. It only considers the **extrinsic** (global) information.
 - Intrinsic (node attribute) information is also important.
 - × Existing methods:
 - Use reconstruction error
 - Reconstruction error doesn't imply high quality!
 - \checkmark In our work:
 - Maximize MI between node embedding and attributes
 - We propose to use **High-order Mutual Information** to jointly capture both extrinsic and intrinsic signals.
 - We propose a novel High-order Deep Infomax (HDI) as the training signal

Introduction: DGI Limitation #2

- 2. DGI assumes a single type of relations among nodes.
 - Nodes are connected by multiple relations (Multiplex Graph).
 - Each relation is a layer of the graph.
 - Common strategy:
 - 1) Separately consider each layer.
 - 2) Combine embedding from different layers.
 - × Simplest way to combine embeddings:
 - Average pooling
 - \checkmark In our work:
 - Attention based fusion module.

- Introduction
- ➢ Preliminary
- Methodology
- Experiments
- Conclusion

Preliminary: DGI

- Key steps:
 - 1) Generate a corrupted network via corruption function \mathcal{C}
 - 2) Use the encoder \mathcal{E} to obtain node embeddings h_n and \tilde{h}_n .
 - 3) Use the readout function \mathcal{R} to obtain the summary vector s.
 - 4) Use the discriminator \mathfrak{D}_E to discriminate h_n and \tilde{h}_n .
 - 5) Maximize $I(\mathbf{h}_n; \mathbf{s})$ via: $\mathcal{L} = \sup_{n \to \infty} \mathbb{E}[\log \mathcal{D}(\mathbf{h}_n; \mathbf{s})] + \mathbb{E}[\log(1 \mathcal{D}(\tilde{\mathbf{h}}_n; \mathbf{s}))]$

- Introduction
- Preliminary
- >Methodology
- Experiments
- Conclusion

Methodology: High-order Deep Infomax

- High-order Deep Infomax (HDI):
 - Capture extrinsic and intrinsic signals via high-order mutual information $I(h_n; s; f_n)$.
- High-order mutual information:

 $I(h_n; s; f_n) = I(h_n; s) + I(h_n; f_n) - I(h_n; s, f_n)$ Extrinsic Intrinsic Joint

- If directly maximize *I*(h_n; s; f_n)
 - Must max $I(h_n; s) + I(h_n; f_n)$ and min $I(h_n; s, f_n)$
 - Maximizing $I(h_n; s, f_n)$ improves performance
- Jointly maximize three mutual information:
 - $\mathcal{L} = \lambda_E I(\mathbf{h}_n; \mathbf{s}) + \lambda_I I(\mathbf{h}_n; \mathbf{f}_n) + \lambda_J I(\mathbf{h}_n; \mathbf{s}, \mathbf{f}_n)$
 - Final objective function will be:
 - $\mathcal{L} = \lambda_E \mathcal{L}_E + \lambda_I \mathcal{L}_I + \lambda_J \mathcal{L}_J$

 $\mathcal{L}_E, \mathcal{L}_I$ and \mathcal{L}_J are the BCE losses of the discriminators.

summary

embedding

attribute

Methodology: Fusion Module

- Extend HDI to multiplex graphs.
 - How to combine different layers?
- Fusion module is attention-based.
 - Different layers have different weights.
- Training the fusion module:
 - Apply HDI on top of the fused embedding.

- Full model: High-order Deep Multiplex Infomax (HDMI)
 - Objective: $\mathcal{L} = \lambda_M \mathcal{L}_M + \sum_r \lambda_r \mathcal{L}_r$

fusion module different layers

- Introduction
- Preliminary
- Methodology
- ➢Experiments
- Conclusion

Experiments: Setup

• Datasets

Datasets	# Nodes	Relation Types	# Edges	# Attributes	# Labeled Data	# Classes	
ACM 3,025	2.025	Paper-Subject-Paper (PSP)	2,210,761	1,830	600	2	
ACM	5,025	Paper-Author-Paper (PAP)	29,281	(Paper Abstract)	000	3	
IMDB	3,550	Movie-Actor-Movie (MAM)	66,428	1,007	300	3	
INDB	5,550	Movie-Director-Movie (MDM)	13,788	(Movie plot)	500	5	
		Paper-Author-Paper (PAP)	144,783	2,000			
DBLP	7,907	Paper-Paper-Paper (PPP)	90,145	(Paper Abstract)	80	4	
		Paper-Author-Term-Author-Paper (PATAP)	57,137,515	(1 aper 7 ibstract)			
		Item-AlsoView-Item (IVI)	266,237	2,000			
Amazon	7,621	Item-AlsoBought-Item (IBI)	1,104,257	(Item description)	80	4	
		Item-BoughtTogether-Item (IOI)	16,305	(item description)			

• Questions

- How will HDI and HDMI improve the quality?
- Will fusion module assign appropriate attention scores?
- Tasks & Metrics
 - Node classification: Macro-F1 & Micro-F1
 - Node clustering: NMI, Similarity Search (Sim@5)
- Baselines
 - Network embedding: Deepwalk, DGI etc.
 - Multiplex network embeddings: HAN, DMGI etc.

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." *KDD*. 2014.
Velickovic, Petar, et al. "Deep Graph Infomax." *ICLR* . 2019.
Wang, Xiao, et al. "Heterogeneous graph attention network." *WWW*. 2019.
Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." *AAAI*. 2020.

Experiments: Node Classification

- HDMI performs the best.
- HDI is better than baselines.

Dataset	AC	CM	IM	DB	DB	LP	Amazon		
Metric	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	
DeepWalk	0.739	0.748	0.532	0.550	0.533	0.537	0.663	0.671	
node2vec	0.741	0.749	0.533	0.550	0.543	0.547	0.662	0.669	
GCN/GAT	0.869	0.870	0.603	0.611	0.734	0.717	0.646	0.649	
DGI	0.881	0.881	0.598	0.606	0.723	0.720	0.403	0.418	
ANRL	0.819	0.820	0.573	0.576	0.770	0.699	0.692	0.690	
CAN	0.590	0.636	0.577	0.588	0.702	0.694	0.498	0.499	
DGCN	0.888	0.888	0.582	0.592	0.707	0.698	0.478	0.509	
CMNA	0.782	0.788	0.549	0.566	0.566	0.561	0.657	0.665	
MNE	0.792	0.797	0.552	0.574	0.566	0.562	0.556	0.567	
mGCN	0.858	0.860	0.623	0.630	0.725	0.713	0.660	0.661	
HAN	0.878	0.879	0.599	0.607	0.716	0.708	0.501	0.509	
DMGI	0.898	0.898	0.648	0.648	0.771	0.766	0.746	0.748	
DMGI _{attn}	0.887	0.887	0.602	0.606	0.778	0.770	0.758	0.758	
HDI	0.901	0.900	0.634	0.638	0.814	0.800	0.804	0.806	
HDMI	0.901	0.901	0.650	0.658	0.820	0.811	0.808	0.812	

Experiments: Node Clustering

• HDMI performs the best.

• HDI is better than most of the baselines.

Dataset	A	СМ	IN	1DB	D	BLP	Amazon		
Metric	NMI	Sim@5	NMI	Sim@5	NMI	Sim@5	NMI	Sim@5	
DeepWalk	0.310	0.710	0.117	0.490	0.348	0.629	0.083	0.726	
node2vec	0.309	0.710	0.123	0.487	0.382	0.629	0.074	0.738	
GCN/GAT	0.671	0.867	0.176	0.565	0.465	0.724	0.287	0.624	
DGI	0.640	0.889	0.182	0.578	0.551	0.786	0.007	0.558	
ANRL	0.515	0.814	0.163	0.527	0.332	0.720	0.166	0.763	
CAN	0.504	0.836	0.074	0.544	0.323	0.792	0.001	0.537	
DGCN	0.691	0.690	0.143	0.179	0.462	0.491	0.143	0.194	
CMNA	0.498	0.363	0.152	0.069	0.420	0.511	0.070	0.435	
MNE	0.545	0.791	0.013	0.482	0.136	0.711	0.001	0.395	
mGCN	0.668	0.873	0.183	0.550	0.468	0.726	0.301	0.630	
HAN	0.658	0.872	0.164	0.561	0.472	0.779	0.029	0.495	
DMGI	0.687	0.898	0.196	0.605	0.409	0.766	0.425	0.816	
DMGI _{attn}	0.702	0.901	0.185	0.586	0.554	0.798	0.412	0.825	
HDI	0.650	0.900	0.194	0.605	0.570	0.799	0.487	0.856	
HDMI	0.695	0.898	0.198	0.607	0.582	0.809	0.500	0.857	

Experiments: Ablation Study

- 1. Intrinsic (I.) & Joint (J.) MI significantly improve over Extrinsic (E) MI.
- 2. Fusion (HDMI) improves over simple average pooling.
- 3. Reconstruction Error (R.) does not imply high quality embedding!

Dataset		AC	CM		IMDB		DBLP						Amazon									
Layer	PS	SP	PA	ΔР	MDM		MAM		PAP		PPP		PATAP		IVI		IBI		IOI			
Metric	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1		
E.	0.663	0.668	0.855	0.853	0.573	0.586	0.558	0.564	0.804	0.796	0.728	0.717	0.240	0.272	0.380	0.388	0.386	0.410	0.569	0.574		
E. + R.	0.668	0.673	0.864	0.847	0.590	0.597	0.560	0.570	0.809	0.801	0.737	0.728	0.240	0.280	0.392	0.398	0.410	0.427	0.579	0.589		
E. + I.	0.719	0.732	0.886	0.887	0.617	0.624	0.593	0.600	0.803	0.792	0.742	0.733	0.240	0.276	0.559	0.561	0.517	0.527	0.792	0.799		
E. + I. + J.	0.742	0.744	0.889	0.888	0.626	0.631	0.600	0.606	0.812	0.803	0.751	0.745	0.241	0.284	0.581	0.583	0.524	0.529	0.796	0.799		
Metric	Ma	aF1	MiF1		Ma	aF1	Mi	iF1		MaF1			FiF1			MaF1			MiF1			
HDI	0.9) 01	0.900		0.900		0.6	534	0.6	538		0.814			0.800			0.804			0.806	
HDMI	0.9	901	0.9	01	0.6	550	0.6	58		0.820			0.811			0.808			0.812			
Dataset		AC	CM			IM	DB				DI	BLP					Am	azon				
Dataset Layer	PS	2010/01/2	CM PA	AP	MI	IM DM	2/2010/00	AM	PA	AP		BLP PP	PA	ГАР	IV	Л		azon BI		DI		
	PS NMI	2010/01/2		AP S@5	MI NMI		2/2010/00	AM S@5	PA NMI	AP S@5			PA NMI	TAP S@5	IV NMI	/Л S@5			I I I I I I I I I I I I I I I I I I I	DI S@5		
Layer		SP	PA			DM	M				P	PP					I	BI				
Layer Metric	NMI	SP S@5	PA NMI	S@5	NMI	OM S@5	M/ NMI	S@5	NMI	S@5	PI NMI	PP S@5	NMI	S@5	NMI	S@5	I NMI	BI S@5	NMI	S@5		
Layer Metric E.	NMI 0.526	SP S@5 0.698	PA NMI 0.651	S@5 0.872	NMI 0.145	OM S@5 0.549	M/ NMI 0.089	S@5 0.495	NMI 0.547	S@5 0.800	PI NMI 0.404	PP S@5 0.741	NMI 0.054	S@5 0.583	NMI 0.002	S@5 0.395	I NMI 0.003	BI S@5 0.414	NMI 0.038	S@5 0.701		
Layer Metric E. E. + R.	NMI 0.526 0.525	SP S@5 0.698 0.728	PA NMI 0.651 0.659	S@5 0.872 0.874	NMI 0.145 0.150	DM S@5 0.549 0.552	M/ NMI 0.089 0.079	S@5 0.495 0.490	NMI 0.547 0.564	S@5 0.800 0.804	PI NMI 0.404 0.421	PP S@5 0.741 0.741	NMI 0.054 0.051	S@5 0.583 0.568	NMI 0.002 0.002	S@5 0.395 0.399	I NMI 0.003 0.003	BI S@5 0.414 0.426	NMI 0.038 0.020	S@5 0.701 0.660		
Layer Metric E. E. + R. E. + I.	NMI 0.526 0.525 0.527 0.528	SP S@5 0.698 0.728 0.708	PA NMI 0.651 0.659 0.656	S@5 0.872 0.874 0.882 0.886	NMI 0.145 0.150 0.193 0.194	DM S@5 0.549 0.552 0.595	M/ NMI 0.089 0.079 0.143 0.143	S@5 0.495 0.490 0.527	NMI 0.547 0.564 0.569	S@5 0.800 0.804 0.802	P NMI 0.404 0.421 0.405	PP S@5 0.741 0.741 0.741	NMI 0.054 0.051 0.053	S@5 0.583 0.568 0.569	NMI 0.002 0.002 0.152	S@5 0.395 0.399 0.512	I NMI 0.003 0.003 0.143	BI S@5 0.414 0.426 0.517	NMI 0.038 0.020 0.401	S@5 0.701 0.660 0.824		
Layer Metric E. E. + R. E. + I. E. + I. + J.	NMI 0.526 0.525 0.527 0.528	SP S@5 0.698 0.728 0.708 0.716	PA NMI 0.651 0.659 0.656 0.662	S@5 0.872 0.874 0.882 0.886 0.886	NMI 0.145 0.150 0.193 0.194	DM S@5 0.549 0.552 0.595 0.592	M/ NMI 0.089 0.079 0.143 0.143 Sim	S@5 0.495 0.490 0.527 0.527	NMI 0.547 0.564 0.569	S@5 0.800 0.804 0.802 0.805	P NMI 0.404 0.421 0.405	PP S@5 0.741 0.741 0.741	NMI 0.054 0.051 0.053 0.054	S@5 0.583 0.568 0.569	NMI 0.002 0.002 0.152	S@5 0.395 0.399 0.512 0.544	I NMI 0.003 0.003 0.143	BI S@5 0.414 0.426 0.517	NMI 0.038 0.020 0.401 0.407	S@5 0.701 0.660 0.824		

Experiments: T-SNE Visualization

- Comparison of different signals: IOI layer of the Amazon network
 - Intrinsic (I.) and Joint (J.) MI improve the quality.
 - Reconstruction error (R.) does not significantly improve the quality.

- Comparison of fusion mechanism: ACM network
 - Proposed fusion module is better than average pooling.

Experiments: Attention Scores

- Appropriate attention scores are assigned to different layers.
 - Higher F1 scores -> Higher attention scores.

- Introduction
- Preliminary
- Methodology
- Experiments
- **Conclusion**

Conclusion

Embedding Attributes

- MI based self-supervised learning for graphs
 - Challenge 1: Jointly capture extrinsic and intrinsic information for graphs.
 - ✓ Solution 1: High-order Deep Infomax (HDI)
 - Challenge 2: Extend HDI to multiplex graphs.
 - ✓ Solution 2: Attention based fusion

- -> High-order Deep Multiplex Infomax (HDMI)
- Results:
 - HDI significantly improves the quality of embeddings.
 - HDMI further improves HDI.

Thank you!