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ABSTRACT

Trust inference, which is the mechanism to build new pair-wise

trustworthiness relationship based on the existing ones, is a funda-

mental integral part in many real applications, e.g., e-commerce,

social networks, peer-to-peer networks, etc. State-of-the-art trust

inference approaches mainly employ the transitivity property of

trust by propagating trust along connected users (a.k.a. trust prop-

agation), but largely ignore other important properties, e.g., prior

knowledge, multi-aspect, etc.

In this paper, we propose a multi-aspect trust inference model

by exploring an equally important property of trust, i.e., the multi-

aspect property. The heart of our method is to view the problem

as a recommendation problem, and hence opens the door to the

rich methodologies in the field of collaborative filtering. The pro-

posed multi-aspect model directly characterizes multiple latent fac-

tors for each trustor and trustee from the locally-generated trust

relationships. Moreover, we extend this model to incorporate the

prior knowledge as well as trust propagation to further improve in-

ference accuracy. We conduct extensive experimental evaluations

on real data sets, which demonstrate that our method achieves sig-

nificant improvement over several existing benchmark approaches.

Overall, the proposed method (MATRI) leads to 26.7% - 40.7% im-

provement over its best known competitors in prediction accuracy;

and up to 7 orders of magnitude speedup with linear scalability.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database applications—Data min-

ing

Keywords

Trust inference; transitivity property; multi-aspect property; latent

factors; prior knowledge

1. INTRODUCTION
Trust is essential to reduce uncertainty and boost collaborations

in many real-world applications including social networks [39], e-

commerce [11], peer-to-peer networks [12], semantic Web [25],

etc. In these applications, trust inference is widely used as the

mechanism to build trust among unknown users. Typically, trust
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inference takes as its input the existing trust ratings that are locally-

generated through direct interactions, and outputs an estimated trust-

worthiness score from a trustor to an unknown trustee. This es-

timated trustworthiness score indicates to what extent the trustor

could expect the trustee to perform a given action.

The basic assumption behind most of the existing trust inference

methods is the transitivity property of trust [19], which is rooted in

the social structural balance theory [4]. This property essentially

means that if Alice trusts Bob and Bob trusts Carol, Alice might

also trust Carol to some extent. These methods (see Section 6 for

a review), referred to as trust propagation models as a whole, have

been widely studied and successfully applied in many real-world

settings [8, 39, 19, 15, 9, 22].

In addition to transitivity, a few trust inference models explore

another equally important property, that is, the multi-aspect of trust [6,

27]. The basic assumption behind the multi-aspect methods is that

trust is the composition of multiple factors, and different users may

have different preferences for these factors. For example, in e-

commerce, some users might care more about the factor of deliv-

ering time, whereas others give a higher weight to the factor of

product price. However, the existing multi-aspect trust inference

methods [26, 36, 31, 28] require as its input some side information

(e.g., the delivering time as well as user’s preference for it, etc) in

addition to the locally-generated trust ratings, and therefore become

infeasible in many trust networks where such side information may

not be available.

Another limitation in existing trust inference models is that they

tend to ignore some important prior knowledge (e.g., trust bias)

during the inference procedure. It was discovered in sociology a

long time ago that trust bias is an integral part in the final trust

decision [30]. Nonetheless, it was not until the very recent years

did the computer science community begin to incorporate the trust

bias into the inference process. For example, a recent work [23]

models trustor bias as the propensity of a trustor to trust others.

In this paper, we aim to integrate all these important properties,

including transitivity, multi-aspect and prior knowledge, to maxi-

mally boost the inference accuracy. We start by proposing a multi-

aspect trust inference model. The heart of our method is to view the

problem as a recommendation problem, and hence opens the door

to the rich methodologies in the field of collaborative filtering. The

proposed multi-aspect model directly characterizes multiple latent

factors for each trustor and trustee from the locally-generated trust

relationships. Based on that, we propose to incorporate the prior

knowledge as specified aspects and automatically learn the relative

weights between latent and specified factors. Finally, we extend



this model to incorporate trust propagation to further improve in-

ference accuracy.

To summarize, the main contributions of this paper are as fol-

lows:

(1) Trust Models. To the best of our knowledge, this is the first

work to (a) integrate transitivity, multi-aspect and prior knowl-

edge into one single trust inference model; and (b) directly

characterize the multi-aspect trustworthiness relationship solely

based on locally-generated trust ratings. It can admit the rich

methodologies from collaborative filtering. It is flexible to

model the prior knowledge as specified factors and further

learn their relative weights.

(2) Performance Improvements. We conducted extensive experi-

mental evaluations on two widely used benchmark data sets,

and empirically observed significant performance improve-

ments in both effectiveness and efficiency. In terms of pre-

diction accuracy, our MATRI outperforms the best known ex-

isting methods by 26.7% - 40.7%. By pre-computation, our

MATRI is much faster in terms of on-line response, achiev-

ing up to 7 orders of magnitude speedup. Finally, the pre-

computation stage itself of the proposed MATRI scales lin-

early wrt the size of the input data set, indicating that it is

suitable for large data sets.

The rest of the paper is organized as follows. Section 2 presents

the definition of the trust inference problem. Section 3 describes

our optimization formulation for the problem defined in the previ-

ous section and shows how to incorporate prior knowledge and trust

propagation. Section 4 presents the inference algorithm to solve the

formulation. Section 5 presents experimental results. Section 6 re-

views related work. Section 7 concludes the paper.

2. PROBLEM DEFINITION
In this section, we formally define our trust inference problem.

Table 1 lists the main symbols we use throughout the paper.

Table 1: Symbols.

Symbol Definition and Description

T the partially observed trust matrix

F,G the characterized trustor and trustee matrices

F0,G0 the sub-matrix of F and G

T′ the transpose of matrix T

T(i, j) the element at the ith row and jth column of T

T(i, :) the ith row of matrix T

K the set of observed trustor-trustee pairs in T

µ the global bias

x the vector of trustor bias

y the vector of trustee bias

x(i) the ith element of vector x

zi j the vector of propagation elements for trustor-

trustee pair (i, j)

n the number of users

p, r the number of bias and latent factors

s total number of factors, s = p + r

t the maximum propagation step

αi the weights/coefficients for bias factors

β j the weights/coefficients for propagation elements

u, v the trustor and the trustee

m the maximum iteration number

ξ the threshold to terminate the iteration

Following conventions, we use bold capital letters for matrices,

and bold lower case letters for vectors. For example, we use a par-

tially observed matrix T to model the locally-generated trust rela-

tionships, where the existing/observed trust relationships are repre-

sented as non-zero trust ratings and non-existing/unobserved rela-

tionships are represented as ‘?’. As for the observed trust rating,

we represent it as a real number between 0 and 1 (a higher rating

means more trustworthiness). We use calligraphic fontK to denote

the set of observed trustor-trustee indices in T. Similar to Matlab,

we also denote the ith row of matrix T as T(i, :), and the transpose

of a matrix with a prime. In addition, we denote the number of

users as n and the number of characterized factors as s. Without

loss of generality, we assume that the goal of our trust model is to

infer the unseen trust relationship from the user u to another user v,

where u is the trustor and v is the unknown trustee to u.

Based on these notations, we first define the basic trust inference

problem as follows:

PROBLEM 1. The Basic Trust Inference Problem

Given: an n × n partially observed trust matrix T, a trustor u, and

a trustee v, where 1 6 u, v 6 n (u , v) and T(u, v) = ‘?’;

Find: the estimated trustworthiness score T̂(u, v).

In the above problem definition, given a trustor-trustee pair, the

only information we need as input is the locally-generated trust rat-

ings (i.e., the partially observed matrix T). The goal of trust infer-

ence is to infer the new trust ratings (i.e., unseen/unobserved trust-

worthiness scores in the partially observed matrix T) by collecting

the knowledge from existing trust relationships. In this paper, we

assume that we can access such existing trust relationships. For

instance, these relationships could be collected by central servers

in a centralized environment like eBay, or by individuals in a dis-

tributed environment like EigenTrust [12]. How to collect these

trust relationships is out of the scope of this work.

As mentioned before, one of our goals is to capture the multi-

aspect property of trust. In this paper, we propose a multi-aspect

model for such trust inference in Problem 1. That is, we want to in-

fer an n× s trustor matrix F whose element indicates to what extent

the corresponding person trusts others wrt a specific aspect/factor.

Similarly, we want to infer another n× s trustee matrix G whose el-

ement indicates to what extent the corresponding person is trusted

by others wrt a specific aspect/factor. Such trustor and trustee ma-

trices are in turn used to infer the unseen trustworthiness scores.

Based on the basic trust inference problem, we define the multi-

aspect trust inference problem as follows:

PROBLEM 2. The Multi-Aspect Trust Inference Problem

Given: an n × n partially observed trust matrix T, the number of

factors s, a trustor u, and a trustee v, where 1 6 u, v 6 n

(u , v) and T(u, v) = ‘?’;

Find: (1) an n × s trustor matrix F and an n × s trustee matrix G;

(2) the estimated trustworthiness score T̂(u, v).

2.1 An Illustrative Example
To further illustrate our multi-aspect trust inference problem (Prob-

lem 2), we give an intuitive example as shown in Fig. 1.

In this example, we observe several locally-generated pair-wise

trust relationships between five users (e.g., ‘Alice’, ‘Bob’, ‘Carol’,

‘David’, and ‘Elva’) as shown in Fig. 1(a). Each observation con-

tains a trustor, a trustee, and a numerical trust rating from the trustor

to the trustee. We then model these observations as a 5× 5 partially

observed matrix T (see Fig. 1(b)) where T(i, j) is the trust rating



Trustor Trustee Rating 

Alice Bob 1 

Alice Carol 1 

Alice David 1 

Alice Elva 1 

Bob Alice 0.5 

Bob Carol 1 

Carol Bob 1 

David Alice 0.5 

Elva Alice 0.5 

Elva David 1 

 

(a) The observed locally-
generated pair-wise trust
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(c) The inferred trustor matrix F and trustee matrix G

Figure 1: An illustrative example for multi-aspect trust inference problem.

from the ith user to the jth user if the rating is observed and T(i, j) =

‘?’ otherwise. Notice that we do not consider self-ratings and thus

represent the diagonal elements of T as ‘/’. By setting the number

of factors s = 2, our goal is to infer two 5 × 2 matrices F and G

(see Fig. 1(c)) from the input matrix T. Each row of the two matri-

ces is for the corresponding user, and each column of the matrices

represents a certain aspect/factor in trust inference (e.g., ‘deliver-

ing time’, ‘product price’, etc). For example, we can see that Alice

trusts others strongly wrt both ‘delivering time’ and ‘product price’

(based on F), and she is in turn moderately trusted by others wrt

these two factors (based on G). On the other hand, both Bob and

Carol put more emphasis on the delivering time, while David and

Elva care more about the product price.

Once F and G are inferred, we can use these two matrices to

estimate the unseen trustworthiness scores (i.e., the ‘?’ elements

in T). For instance, the trustworthiness from Carol to Alice can

be estimated as T̂(3, 1) = F(3, :)G(1, :)′ = 0.5. This estimation is

reasonable because Carol has the same preference as Bob and the

trustworthiness score from Bob to Alice is also 0.5.

In the next two sections, we will mainly focus on (1) how to

infer F and G; and (2) how to incorporate prior knowledge (i.e.,

trust bias) and trust transitivity (i.e., trust propagation) based on the

partially observed input matrix T.

3. THE OPTIMIZATION FORMULATION
In this section, we present our optimization formulation to inte-

grate all the three important properties in trust inference, including

multi-aspect, prior knowledge (i.e., trust bias) and trust transitivity

(i.e., trust propagation). We start with the basic form to capture

the multi-aspect of trust; and then show how to incorporate trust

bias and four groups of trust propagation. Finally, we discuss some

generalizations of our formulation.

3.1 The Basic Formulation
In this work, we adopt optimization method to solve the trust

inference problem defined in the previous section. Formally, Prob-

lem 2 can be formulated as the following optimization problem:

min
F,G

∑

(i, j)∈K
(T(i, j) − F(i, :)G( j, :)′)2

+ λ||F||2f ro + λ||G||2f ro (1)

where λ is a regularization parameter; ||F|| f ro and ||G|| f ro are the

Frobenius norm of the trustor and trustee matrices, respectively.

By this formulation, it aims to minimize the squared error on the

set of observed trust ratings. Notice that in Eq. (1), we have two

additional regularization terms (||F||2
f ro

and ||G||2
f ro

) to improve the

solution stability. The parameter λ ≥ 0 controls the amount of such

regularization. Based on the resulting F and G of the above equa-

tion, the unseen trustworthiness score T̂(u, v) can then be estimated

by F(u, :) and G(v, :) as:

T̂(u, v) = F(u, :)G(v, :)′ (2)

A Collaborative Filtering Metaphor. As mentioned in introduc-

tion, we view the trust inference problem as a recommendation

problem. To be specific, in the trust matrix T, if we treat its rows

(i.e., trustors) as ‘users’; its columns (i.e., trustees) as ‘items’; and

its entries (i.e., trustworthiness scores) as ‘ratings’, the optimiza-

tion problem in Eq. (1) resembles the same form as that of so-

called factorization-based collaborative filtering [13]. This view-

point opens the door to the rich methodologies in collaborative fil-

tering to capture the multi-aspect of trust.

3.2 Incorporating Trust Bias
The formulation in Eq. (1) can naturally incorporate some prior

knowledge such as trust bias into the inference procedure. In this

paper, we explicitly consider the following three types of trust bias

(i.e., p = 3 where p is the number of bias factors): global bias,

trustor bias, and trustee bias, although other types of bias can be

incorporated in a similar way.

Global bias: The global bias represents the average level of trust

in the community. The intuition behind this is that users tend to rate

optimistically in some reciprocal environments (e.g., e-commerce)

while they are more conservative in others (e.g., security-related

applications). As a result, it might be useful to take such global

bias into account and we model it as a scalar µ.

Trustor bias: The trustor bias is based on the observation that

some trustors tend to generously give higher trust ratings than oth-

ers. This bias reflects the propensity of a given trustor to trust oth-

ers, and it may vary a lot among different trustors. Accordingly, we

can model the trustor bias as vector x with x(i) indicating the trust

propensity of the ith trustor.

Trustee bias: The third type of bias aims to characterize the fact

that some trustees might have relatively higher capability in terms

of being trusted than others. Similar to the second type of bias, we

model this type of bias as vector y, where y( j) indicates the overall

capability of the jth trustee compared to the average.

Each of these three types of bias can be represented as a specified

factor for our model, respectively. By incorporating such bias into



Eq. (1), we have the following formulation:

min
F,G

∑

(i, j)∈K
(T(i, j) − F(i, :)G( j, :)′)2

+ λ||F||2f ro + λ||G||2f ro

Subject to: F(:, 1) = µ1, G(:, 1) = α11/
√

n (global bias)

F(:, 2) = x, G(:, 2) = α21/
√

n (trustor bias)

F(:, 3) = α31/
√

n, G(:, 3) = y (trustee bias)(3)

where α1, α2, and α3 are the weights of bias that we need to estimate

based on the existing trust ratings.

In addition to these three specified factors, we refer to the re-

maining factors in the trustor and trustee matrices as latent factors.

Let us define two n×r sub-matrices of F and G for the latent factors.

That is, we define F0 = F(:, 4 : s) and G0 = G(:, 4 : s), where each

column of F0 and G0 corresponds to one latent factor and r is the

number of latent factors. With this notation, we have the following

equivalent form of Eq. (3):

min
F0 ,G0 ,α

∑

(i, j)∈K
(T(i, j) − (α′[µ, x(i), y( j)]′ + F0(i, :)G0( j, :)′))2

+λ‖F0‖2f ro + λ‖G0‖2f ro + λ‖α‖2 (4)

where α = [α1, α2, α3]′.

Recall that in this paper, we aim to perform trust inference only

using the partially observed trust matrix T. Therefore, we estimate

the parameters (µ, x and y) of the trust bias as follows:


























































µ =
∑

(i, j)∈K
T(i, j)/|K|

x(i) =
∑

j,(i, j)∈K
T(i, j)/|rowi| − µ

y( j) =
∑

i,(i, j)∈K
T(i, j)/|col j| − µ

(5)

where |rowi| is the number of the observed elements in the ith row

of T, and |col j | is the number of the observed elements in the jth

column of T.

3.3 Incorporating Trust Propagation
We next describe how to incorporate trust propagation into the

model. We consider the following four groups of trust propagation

operators defined in [8]: direct propagation, transpose trust, co-

citation, and trust coupling.

Direct propagation: Direct propagation is probably the most

intuitive way to propagate trust as shown in Fig. 2(a). The basic

operator in the figure presents the two-step propagation and it can

be generalized to multiple steps. We define the first group of (t− 1)

propagation elements in the matrix form as T2,T3, ...,Tt, where t is

the largest propagation step.

Transpose trust: The second operator is the transpose trust as

shown in Fig. 2(b). This operator indicates that user v’s trust on

user u can cause some level of trust in the opposite direction. This

group of t propagation elements can be represented in the matrix

form as T′, (T′)2, (T′)3, ..., (T′)t.

Co-citation: Co-citation is found to be very powerful to predict

trust and distrust in the Epinions website. As shown in Fig. 2(c),

co-citation means that if two users u and v are both trusted by an-

other user w, then u might also trust v to some extent. Based on

the transitive closure computation, we can represent this group of

propagation elements as: (T′T), (T′T)2, (T′T)3, ..., (T′T)t.

Trust coupling: Fig. 2(d) shows the trust coupling operator,

which means that if two users both trust another user, they might

also trust each other. Similar to co-citation, we represent the fourth

group of propagation elements as (TT′), (TT′)2, (TT′)3, ..., (TT′)t.

u w v

(a) Direct propaga-
tion

u v

(b) Transpose trust

u

w

v

(c) Co-citation

u

w

v

(d) Trust coupling

Figure 2: The four propagation operators. The solid lines in-

dicate existing trust relationships, and the dotted lines indicate

propagated trust.

Altogether, we have generated (4t−1) trust propagation matrices,

with each corresponding entry measuring one specific trust propa-

gation between the two corresponding users, respectively. For ex-

ample, Tt(i, j) measures direct propagation from user i to user j

after t steps, and (TT′)(i, j) quantifies the one-step trust coupling

effect between user i and user j, etc. If we further stack all these

(4t − 1) entries into a propagation vector zi j for the given user pair

(i, j), we have the following form when we incorporate both trust

bias and trust propagation into Eq. (1):

min
F0 ,G0,α,β

∑

(i, j)∈K
(T(i, j) − (α′[µ, x(i), y( j)]′ + β′zi j

+F0(i, :)G0( j, :)′))2
+ λ‖F0‖2f ro + λ‖G0‖2f ro

+λ‖α‖2 + λ‖β‖2 (6)

where zi j is the vector of propagation elements for the trustor-trustee

pair (i, j), α = [α1, α2, α3]′ is the weight vector for bias, and β =

[β1, β2, ..., β4t−1]′ is the weight vector for trust propagation.

Notice that there is no coefficient before F0(i, :)G0( j, :)′ as it will

be automatically absorbed into F0 and G0 in our iterative algorithm.

Once we have inferred all the parameters (i.e., F0, G0, α, and β) of

Eq. (6), the unseen trustworthiness score T̂(u, v) can be immedi-

ately estimated as:

T̂(u, v) = F0(u, :)G0(v, :)′ + α′[µ, x(u), y(v)]′ + β′zuv (7)

3.4 Discussions and Generalizations
We further present some discussions and generalizations of our

optimization formulation.

First, it is worth pointing out that our formulation in Eq. (1) dif-

fers from the standard matrix factorization (e.g., SVD) as in the ob-

jective function, we try to minimize the square loss only on those

observed trust pairs. This is because the majority of trust pairs are

missing from the input trust matrix T. As mentioned before, our ba-

sic problem setting in Eq. (1) is conceptually similar to the standard

collaborative filtering, as in both cases, we aim to fill in missing val-

ues in a partially observed matrix (trustor-trustee matrix vs. user-

item matrix). Indeed, if we fix the coefficients α1 = α2 = α3 = 1

and β1 = β2 = ... = β4t−1 = 0 in Eq. (6), it is reduced to the col-

laborative filtering algorithm in [14]. Our formulation in Eq. (6)

goes beyond the standard collaborative filtering by (1) incorporat-

ing two other important properties in trust inference (i.e., bias and

transitivity); and (2) learning their relative weights (α and β). Our

experimental evaluations show that such subtle treatments are cru-



cial and they lead to further performance improvement over these

existing techniques.

Second, although our model is a subjective trust inference metric

where different trustors may form different opinions on the same

trustee [22], as a side product, the proposed model can also be used

to infer an objective, unique trustworthiness score for each trustee.

For example, this objective trustworthiness score can be computed

based on the trustee matrix G. We will compare this feature of the

proposed model with a well studied objective trust inference metric

EigenTrust [12] in the experimental evaluation section.

Finally, we would like to point out that our formulation is flexible

and can be generalized to other settings. For instance, our current

formulation adopts the square loss function in the objective func-

tion. In other words, we implicitly assume that the residuals of the

pair-wise trustworthiness scores follow a Gaussian distribution, and

in our experimental evaluations, we found it works well. Nonethe-

less, our upcoming proposed algorithm can be generalized to any

Bregman divergence in the objective function. Also, we can natu-

rally incorporate some additional constraints (e.g., non-negativity,

sparseness, etc) in the trustor and trustee matrices. After we infer

all the parameters (e.g., the coefficients for the bias and propaga-

tion, and the trustor and trustee matrices, etc), we use a linear com-

bination to compute the trustworthiness score T̂(u, v). We can also

generalize this linear form to other non-linear combinations, such

as the logistic function. For the sake of clarity, we skip the details

of such generalizations in the paper.

4. THE PROPOSED MATRI ALGORITHM
In this section, we present the proposed algorithm (MATRI) to

solve the trust inference problem in Eq. (6), followed by some ef-

fectiveness and efficiency analysis.

4.1 The MATRI Algorithm
Unfortunately, the optimization problem in Eq. (6) is not jointly

convex wrt the coefficients (α and β) and the trustor/trustee ma-

trices (F0 and G0) due to the coupling between them. Therefore,

instead of seeking for a global optimal solution, we try to find

a local minima by alternatively updating the coefficients and the

trustor/trustee matrices while fixing the other.

4.1.1 Sub-routine 1: updating the trustor/trustee ma-
trices

First, let us consider how to update the trustor/trustee matrices

(F0 and G0) when we fix the coefficients (α and β). For clarity, we

define an n × n matrix P as follows:

P(i, j) =

{

T(i, j) − (α′[µ, x(i), y( j)]′ + β′zi j) if (i, j) ∈ K
‘?’ otherwise

(8)

where α and β are some fixed constants, and ‘?’ means the rating

is unknown.

Based on the above definition, Eq. (6) can be simplified (by ig-

noring some constant terms) as:

min
F0 ,G0

∑

(i, j)∈K
(P(i, j) − F0(i, :)G0( j, :)′)2

+ λ||F0||2f ro + λ||G0||2f ro (9)

Therefore, updating the trustor/trustee matrices when we fix the

coefficients unchanged becomes a standard matrix factorization prob-

lem for missing values. Many existing algorithms (e.g., [14, 21, 2])

can be plugged in to solve Eq. (9). In our experiment, we found

the so-called alternating strategy, where we recursively update one

of the two trustee/trustor matrices while keeping the other matrix

fixed, works best and thus recommend it in practice. A brief skele-

Algorithm 1 updateMatrix(P, r).

Input: The n × n matrix P, and the latent factor size r

Output: The n × r trustor matrix F0, and the n × r trustee matrix

G0

1: [F0, G0] = alternatingFactorization(P, r);

2: return [F0, G0];

Algorithm 2 computePropagation(T, l, t).

Input: The n × n matrix trust T, the latent factor size l, and the

maximum propagation step t

Output: The propagation vector zi j for all (i, j) ∈ K
1: [L, R] = updateMatrix(T, l);

2: for each (i, j) ∈ K do

3: compute zi j by Eq. (10);

4: end for

5: return [zi j] (i, j) ∈ K ;

ton of the algorithm is shown in Alg. 1, and the detailed algorithm

are presented in our technical report [38].

4.1.2 Sub-routine 2: computing trust propagation

Directly computing the propagation vector zi j(i, j) ∈ K is com-

putationally inefficient as it involves the multiplications of matrices

of n× n. To address this issue, we propose the following procedure

(Alg. 2) to compute the trust propagation vectors. In Alg. 2, we

first factorize the input trust matrix into two low rank matrices L,R

(step 1); and use them as the base to compute the trust propagation

vectors. By doing so, we only need to compute the matrix power

or multiplications of l × l, where l ≪ n.

Notice that in step 1, instead of the standard SVD, we call Alg. 1

to get the two low rank matrices. In this way, we implicitly fill in the

missing values in the partially observed matrix T before performing

the propagation. This has the additional advantage to mitigate the

sparsity or coverage problem in trust inference [20] where some

trustor and trustee might not be connected with each other.







































Tt(i, j) = L(i, :)(R′L)t−1R( j, :)′

(T′)t(i, j) = R(i, :)(L′R)t−1L( j, :)′

(T′T)t(i, j) = R(i, :)((L′L)(R′R))t−1(L′L)R( j, :)′

(TT′)t(i, j) = L(i, :)((R′R)(L′L))t−1(R′R)L( j, :)′

(10)

4.1.3 Sub-routine 3: updating the coefficients

Here, we consider how to update the coefficients (α and β) when

we fix the trustor/trustee matrices.

If we fix the trustor and trustee matrices (F0 and G0) and let:

P(i, j) =

{

T(i, j) − F0(i, :)G0( j, :)′ if (i, j) ∈ K
‘?’ otherwise

(11)

Eq. (6) can then be simplified (by dropping constant terms) as:

min
α,β

∑

(i, j)∈K
(P(i, j) − (α′[µ, x(i), y( j)]′ + β′zi j))

2
+ λ‖α‖2 + λ‖β‖2 (12)

To simplify the description, let us introduce another scalar k to

index each pair (i, j) in the observed trustor-trustee pairs K , that is,

(i, j) ∈ K → k = {1, 2, ..., |K|}. Let b denote a vector of length |K|
with b(k) = P(i, j). We also define a |K| × (4t + 2) matrix A as:

A(k, 1) = µ, A(k, 2) = x(i), A(k, 3) = y( j), A(k, 4 : 4t + 2) = z′
i j

,

(k = 1, 2, ..., |K|).



Algorithm 3 MATRI(T, K , r, l, t, u, v).

Input: The n × n partially observed trust matrix T, the set of ob-

served trustor-trustee pairs K , the latent factor size r, the low

rank l for trust propagation, the maximum propagation step t,

trustor u, and trustee v

Output: The estimated trustworthiness score T̂(u, v)

Pre-computation stage:

1: compute bias: [µ, x, y] = computeBias(T) by Eq. (5);

2: compute propagation: zi j = computePropagation(T, l, t),

(i, j) ∈ K ;

3: initialize α1 = α2 = α3 = 1, β1 = β2 = ... = β4t−1 = 0;

4: while not convergent do

5: for each (i, j) ∈ K do

6: P(i, j) = T(i, j) − (α′[µ, x(i), y( j)]′ + β′zi j);

7: end for

8: [F0, G0] = updateMatrix(P, r);

9: for each (i, j) ∈ K do

10: P(i, j) = T(i, j) − F0(i, :)G0( j :, )′;

11: end for

12: [α, β] = updateCoefficient(P, µ, x, y, zi j) by

Eq. (13);

13: end while

On-line query response stage:

14: return T̂(u, v) = F0(u, :)G0(v, :)′ + α′[µ, x(u), y(v)]′ + β′zuv;

Then, the coefficients (α and β) can be updated by solving the

following ridge regression problem, which is equivalent to Eq. (12):

γ = [α; β] = argminγ ||b − Aγ||2 + λ‖γ‖2 (13)

4.1.4 Putting everything together: MATRI

Putting everything together, we propose Alg. 3 for the trust in-

ference problem in Eq. (6). The algorithm first computes trust bias

(step 1) and trust propagation (step 2). Next, after an initializa-

tion step (step 3), the algorithm begins the alternating procedure

(Step 4-13). At each iteration, it first fixes the coefficients (α and

β), and updates the trustor matrix F0 and trustee matrix G0 (step 5-

8). Next, the algorithm fixes F0 and G0, and uses ridge regression

in Eq. (13) to update the coefficients α and β (step 9-12). We use

the following criteria to terminate the alternating procedure: either

the L2 norm between successive estimates of both F0 and G0 is be-

low our threshold ξ or the maximum iteration step m is reached.

Finally, the algorithm outputs the estimated trustworthiness score

from the given trustor u to the trustee v using Eq. (7).

It is worth pointing out that Step 1-13 in the algorithm can be

pre-computed and their results (including F0, G0, α, β, µ, x, y,

L,R,L′R,R′L,L′L and R′R) can be stored in the pre-computational

or off-line stage. When an on-line trust inference request arrives,

the proposed MATRI only needs to apply Step 14 to return the in-

ference result, which only requires a constant time.

4.2 Algorithm Analysis
Here, we briefly analyze the effectiveness and efficiency of our

algorithm.

The effectiveness of the proposed MATRI algorithm can be sum-

marized in Lemma 1, which says that overall, it finds a local min-

ima solution. Given that the original optimization problem in Eq. (6)

is not jointly convex wrt the coefficients (α, β) and the trustor/trustee

matrices (F0 and G0), such a local minima is acceptable in practice.

LEMMA 1. Effectiveness of MATRI. Fixing the propagation

vector zi j, Alg. 3 finds a local minima for the optimization problem

in Eq. (6).

PROOF. Omitted for brevity. �

The time complexity of the proposed MATRI is summarized in

Lemma 2, which says that MATRI (1) requires constant time for

on-line query response (step 14) and (2) scales linearly wrt the

number of users and the number of the observed trustor-trustee

pairs in the pre-computational stage (step 1-13).

LEMMA 2. Time Complexity of MATRI. Fixing r, l and t as

constants, (P1) Alg. 3 requires O(nm+|K|m) time for pre-computation,

where m is the maximum iteration number in Alg. 3; and (P2) Alg. 3

requires O(1) for on-line query response.

PROOF. Omitted for brevity. �

The space complexity of MATRI is summarized in Lemma 3,

which says that MATRI requires linear space wrt the number of

users and the number of the observed trustor-trustee pairs.

LEMMA 3. Space Complexity of MATRI. Fixing r, l and t as

constants, Alg. 3 requires O(|K| + n) space.

PROOF. Omitted for brevity. �

5. EXPERIMENTAL EVALUATION
In this section, we present experimental evaluations, after we in-

troduce the data sets. All the experiments are designed to answer

the following questions:

• Effectiveness: How accurate is the proposed MATRI for trust

inference?

• Efficiency: How fast is the proposed MATRI? How does it

scale?

5.1 Data Sets Description
Many existing trust inference models design specific simulation

studies to verify the underlying assumptions of the corresponding

inference models. Here, we focus on two widely used real, bench-

mark data sets in order to compare the performance of different

trust inference models.

The first data set is advogato1 . It is a trust-based social network

for open source developers. To allow users to certify each other,

the network provides 4 levels of trust assertions, i.e., ‘Observer’,

‘Apprentice’, ‘Journeyer’, and ‘Master’. These assertions can be

mapped into real numbers which represent the degree of trust. To

be specific, we map ‘Observer’, ‘Apprentice’, ‘Journeyer’, and ‘Mas-

ter’ to 0.1, 0.4, 0.7, and 0.9, respectively (a higher value means

more trustworthiness).

The second data set is PGP (short for Pretty Good Privacy) [9].

PGP adopts the concept of ‘web of trust’ to establish a decen-

tralized model for data encryption and decryption. Similar to ad-

vogato, the web of trust in PGP data set contains 4 levels of trust

as well. In our experiments, we also map them to 0.1, 0.4, 0.7, and

0.9, respectively.

Table 2 summarizes the basic statistics of the two resulting par-

tially observed trust matrices T. Notice that for the advogato data

set, it contains six different snapshots, i.e., advogato-1, advogato-

2,..., advogato-6, etc. We use the largest snapshot (i.e., advogato-6)

in the following unless otherwise stated.

Fig. 3 summarizes the distributions of trustor bias and trustee

bias. As we can see, many users in adovogato perform averagely

1http://www.trustlet.org/wiki/Advogato_dataset.



Table 2: High level statistics of advogato and PGP data sets.

Data set Nodes Edges Avg. degree Avg. clustering [34] Avg. diameter [17] Date

advogato-1 279 2,109 15.1 0.45 4.62 2000-02-05

advogato-2 1,261 12,176 19.3 0.36 4.71 2000-07-18

advogato-3 2,443 22,486 18.4 0.31 4.67 2001-03-06

advogato-4 3,279 32,743 20.0 0.33 4.74 2002-01-14

advogato-5 4,158 41,308 19.9 0.33 4.83 2003-03-04

advogato-6 5,428 51,493 19.0 0.31 4.82 2011-06-23

PGP 38,546 317,979 16.5 0.45 7.70 2008-06-05
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Figure 3: The distributions of trustor bias and trustee bias.

on trusting others and being trusted by others. On the other hand,

a considerable part of PGP users are cautiously trusted by others,

and even more users tend to rate others conservatively. The global

bias for advogato (0.668) is much higher than that for PGP (0.384).

This also suggests that the security-related PGP network is a more

conservative environment than the developer-based advogato net-

work.

5.2 Effectiveness Results
We use both advogato (i.e., advogato-6) and PGP for effective-

ness evaluations. For both data sets, we hide a randomly selected

sample of 500 observed trustor-trustee pairs as the test set, and ap-

ply the proposed MATRI as well as other existing methods on the

remaining data set to infer the trustworthiness scores for those hid-

den pairs. To evaluate and compare the accuracy, we report both

the root mean squared error (RMSE) and the mean absolute error

(MAE) between the estimated and the true trustworthiness scores.

Both RMSE and MAE are measured on the 500 hidden pairs in the

test set. We set r = l = 10, m = 10, and ξ = 10−6 in our experi-

ments unless otherwise stated. For the maximum propagation step

t, we fix it to 6 due to the “six-degree separation”.

(A) Comparisons with Existing Subjective Trust Inference Meth-

ods. We first compare the effectiveness of MATRI with several

benchmark trust propagation models, including CertProp [9], Mo-

leTrust [22], Wang&Singh [32, 33], and Guha [8]. For all these

subjective methods, the goal is to infer a pair-wise trustworthiness

score (i.e., to what extent the user u trusts another user v).

The result is shown in Fig. 4. We can see that the proposed

MATRI significantly outperforms all the other trust inference mod-
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Figure 4: Comparisons with subjective trust inference mod-

els. Lower is better. The proposed MATRI significantly outper-

forms all the other existing models wrt both RMSE and MAE

on both data sets.

Table 3: Performance gain analysis of MATRI. Smaller is bet-

ter. Both trust propagation and trust bias further improve trust

inference accuracy.

RMSE/MAE advogato PGP

Best known competitor 0.269 / 0.155 0.257 / 0.169

Basic form 0.256 / 0.194 0.265 / 0.155

Basic form + propagation 0.174 / 0.124 0.214 / 0.124

Basic form + bias 0.168 / 0.119 0.189 / 0.116

MATRI 0.159 / 0.113 0.181 / 0.105

els wrt both RMSE and MAE on both data sets. For example, on

advogato data set, our MATRI improves the best existing method

(CertProp) by 40.7% in RMSE and by 26.7% in MAE. As for PGP

data set, the proposed MATRI improves the best existing method

(Wang&Singh) by 29.6% in RMSE and by 37.8% in MAE. Over-

all, the proposed MATRI leads to 26.7% - 40.7% improvement over

these best known competitors in prediction accuracy. The results

suggest that multi-aspect of trust indeed plays a very important role

in the inference process.

(B) Performance Gain Analysis of MATRI. Let us take a close

look at where the performance gain of the proposed MATRI comes

from. Recall that in the proposed MATRI, we aim to integrate the

three important properties of trust, that is, multi-aspect, trust bias

and trust propagation. We next analyze how each of these proper-

ties improves the trust inference accuracy. The result is shown in

Table 3. In Table 3, ‘Basic form’ only considers multi-aspect of

trust by setting the coefficients for trust bias as well as those for

trust propagation as 0; ‘Basic form + propagation’ ignores the trust

bias; ‘Basic form + bias’ ignores the trust propagation; and MATRI

is the proposed method that integrates all three properties. We also

show the result of the best known competitors, i.e., CertProp for

advogato and Wang&Singh for PGP, in the table for comparison.

As we can see from Table 3, the performance of ‘Basic form’

which only considers the multi-aspect property is already close to

the best known competitors. When trust propagation and trust bias



Table 4: Comparisons with SVD, HCD [10], and KBV [14].

Smaller is better. MATRI performs best.

RMSE/MAE advogato PGP

SVD 0.629 / 0.579 0.447 / 0.306

HCD 0.269 / 0.219 0.314 / 0.216

KBV 0.179 / 0.125 0.217 / 0.133

MATRI 0.159 / 0.113 0.181 / 0.105
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Figure 5: The sensitivity evaluations. MATRI is robust wrt

both parameters.

are incorporated, both of them significantly improve trust infer-

ence accuracy. For example, on advogato data set, trust propaga-

tion helps to obtain 32.0% and 36.1% improvements in RMSE and

MAE, respectively. Further, trust bias improves RMSE and MAE

by 8.6% and 8.9%, respectively. This result confirms our hypothe-

sis that in addition to multi-aspect, both trust propagation and trust

bias also play important roles in trust inference.

(C) Comparisons with Existing Matrix Factorization Methods.

We also compare MATRI with some existing matrix factorization

methods: SVD, the low rank approximation algorithm [10] for link

sign prediction (referred to as HCD), and the collaborative filtering

algorithm [14] for recommender systems (referred to as KBV).

The result is shown in Table 4. As we can see from the ta-

ble, MATRI again performs best on both data sets. SVD performs

poorly as it treats all the unobserved trustor-trustee pairs as zero

elements in the trust matrix T. MATRI outperforms HCD as HCD

was essentially tailored to predict the binary trust/distrust relation-

ship and it ignored the other two important properties (i.e., trust

bias and trust propagation). MATRI also outperforms KBV. For ex-

ample, MATRI improves KBV by 11.5% in RMSE and by 16.5% in

MAE on PGP data set. As mentioned before, KBV can be viewed

as a special case of the proposed MATRI if we (1) fix all the bias

coefficients as 1s and (2) ignore the trust propagation. This result

indicates that by (1) incorporating the trust propagation and (2) si-

multaneously learning the relative weights of propagation and trust

bias, MATRI leads to further performance improvement.

(D) Sensitivity Evaluations. We also conduct a parametric study

for MATRI. The first parameter is the latent factor size r. We can

observe from Fig. 5(a) that, in general, both RMSE and MAE stay

stable wrt r. The second parameter in MATRI is the regularization

coefficient λ. As we can see from Fig. 5(b), both RMSE and MAE

stay stable on advogato, while they decrease when λ increases up

to 1.0 and stay stable after λ > 1.0 on PGP. Based on these results,

we conclude that MATRI is robust wrt its parameters. For all the

other results we report in the paper, we simply fix r = 10, λ = 0.1

for advogato, and λ = 1.0 for PGP.

(E) Comparisons with Existing Objective Trust Inference Meth-

ods. Although our MATRI is a subjective trust inference metric, as

a side product, it can also be used to infer an objective trustworthi-

Table 5: Comparisons with EigenTrust. Smaller is better. MA-

TRI is better than EigenTrust wrt both RMSE and MAE on

both data sets.
RMSE/MAE advogato PGP

EigenTrust 0.700 / 0.653 0.519 / 0.371

MATRI 0.290 / 0.203 0.349 / 0.280
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Figure 6: Speed comparison. MATRI is much faster than all

the other methods.

ness score for each trustee. To this end, we set r = 1 in MATRI

algorithm, ignore the trust propagation vectors zi j, and aggregate

the resulting trustee matrix/vector G0 with the bias (the global bias

µ and the trustee bias y). We compare the result with a widely-cited

objective trust inference model EigenTrust [12] in Table 5. As we

can see, MATRI outperforms EigenTrust in terms of both RMSE

and MAE on both data sets. For example, on advogato data set,

MATRI is 58.6% and 68.9% better than EigenTrust wrt RMSE and

MAE, respectively.

5.3 Efficiency Results
For efficiency experiments, we report the average wall-clock time.

All the experiments were run on a machine with two 2.4GHz Intel

Cores and 4GB memory.

(A) Speed Comparison. We first compare the on-line response

of MATRI with CertProp, MoleTrust, Wang&Singh, and Guha.

Again, we use the advogato-6 snapshot and PGP in this experi-

ment, and the result is shown in Fig. 6. Notice that the y-axis is in

the logarithmic scale.

We can see from the figure that the proposed MATRI is much

faster than all the alternative methods on both data sets. For ex-

ample, MATRI is up to 32,000,000x faster than CertProp. This is

because once we have inferred the trustor/truestee matrices as well

as the coefficients for the bias and propagation, it only takes con-

stant time for MATRI to output the trustworthiness score. Among

all the alternative methods, Guha is the most efficient. This is be-

cause its main workload can also be completed in advance. How-

ever, the pre-computation of Guha needs additional O(n2) space as

the model fills nearly all the missing elements in the trust matrix,

making it unsuitable for large data sets. In contrast, our MATRI

only requires O(|K| + n) space.

(B) Scalability. Finally, we present the scalability result of MA-

TRI by reporting the wall-clock time of the pre-computational stage

(i.e., Step 1-13 in Alg. 3). For advogato data set, we directly report

the results on all the six snapshots (i.e., advogato-1, ..., advogato-

6). For PGP, we use its subsets to study the scalability. The result is

shown in Fig. 7, which is consistent with the complexity analysis in

Section 4.2. As we can see from the figure, MATRI scales linearly

wrt to both n and |K|, indicating that it is suitable for large-scale

applications.
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Figure 7: Scalability of the proposed MATRI. MATRI scales

linearly wrt the data size (n and |K|).

6. RELATED WORK
In this section, we briefly review related work, including trust

propagation models, multi-aspect trust inference models, etc.

Trust Propagation Models. To date, a large body of trust in-

ference models are based on trust propagation where trust is prop-

agated along connected users in the trust network, i.e., the web of

locally-generated trust ratings. Based on the interpretation of trust

propagation, we further categorize these models into two classes:

path interpretation and component interpretation.

In the first category of path interpretation, trust is propagated

along a path from the trustor to the trustee, and the propagated trust

from multiple paths can be combined to form a final trustworthi-

ness score. For example, Wang et al. [32, 33] as well as Hang et

al. [9] propose operators to concatenate trust along a path and ag-

gregate trust from multiple paths. Liu et al. [18] argue that not only

trust values but social relationships and recommendation role are

important for trust inference. In contrast, there is no explicit con-

cept of paths in the second category of component interpretation.

Instead, trust is treated as random walks on a graph or on a Markov

chain [25]. Examples of this category include [8, 22, 39, 15].

The proposed MATRI integrates the trust propagation with two

other important properties, i.e., the multi-aspect of trust and trust

bias. In addition, our multi-aspect model offers a natural way to

speed up on-line query response; as well as to mitigate the spar-

sity or coverage problem in trust inference where some trustor and

trustee might not be connected with each other - both are known

limitations with the current trust propagation models [37, 20].

Multi-Aspect Trust Inference Models. Social scientists have

explored the multi-aspect property of trust for several years [27].

In computer science, there also exist a few trust inference models

that explicitly explore the multi-aspect property of trust. For exam-

ple, Xiong and Liu [36] model the value of the transaction in trust

inference; Wang and Wu [31] take competence and honesty into

consideration; Tang et al. [28] model aspect as a set of products

that are similar to each other under product review sites; Sabater

and Sierra [26] divide trust in e-commerce environment into three

aspects: price, delivering time, and quality.

However, all these existing multi-aspect trust inference methods

require some additional side information other than the locally-

generated trust ratings, such as the value of transaction, user’s pref-

erence, product categories, etc. These methods become infeasible

when such side information is not available. In contrast, MATRI

directly characterizes the multi-aspect of trust solely based on the

locally-generated trust ratings; and therefore it has a broader appli-

cability.

Prior Knowledge in Trust Inference. In sociology, it was dis-

covered a long time ago that certain prior knowledge, e.g., trust

bias, is an integral part in the final trust decision [30]. Nonetheless,

this important aspect has been largely ignored in most of the exist-

ing trust inference models. One exception is the work by Nguyen

et al. [24], which learns the importance of several trust bias related

features derived from a social trust framework. Recently, Mishra et

al. [23] propose an iterative algorithm to compute trust bias. Differ-

ent from these existing works, our focus is to incorporate various

types of trust bias as specified factors/aspects to increase the accu-

racy of trust inference.

Collaborative Filtering vs. Trust Inference. Multi-aspect or

low rank approximation methods have been extensively studied

in collaborative filtering [1, 14, 21]. These work provides rich

methodologies to capture the multi-aspect of trust by viewing the

trust inference as a collaborative filtering problem. The proposed

MATRI takes one step further by (1) incorporating trust bias and

trust propagation; and (2) learning their relative weights.

On the application side, the goal of collaborative filtering is to

predict users’ flavors of items. It is interesting to point out that (1)

on one hand, trust between users could help to predict the flavors

as we may give a higher weight to the recommendations provided

by trusted users; (2) on the other hand, trust itself might be affected

by the similarity of flavors since users usually trust others with a

similar taste [7]. Although out of the scope of this paper, using

recommendation to further improve trust inference accuracy might

be an interesting topic for future work.

Other Related Work. The concept of stereotype for trust in-

ference is studied by Liu et al. [20] and Burnett et al. [3]. These

methods learn the stereotypes from the user profiles of the trustees

that the trustor has interacted with, and then use these stereotypes to

reflect the trustor’s first impression about unknown trustees. Sev-

eral other work focuses on trust dynamics [29] and the relation-

ship between trust and similarity [7, 35]. There are also some re-

cent work on using link prediction approaches to predict the binary

trust/distrust relationship [16, 5, 10].

7. CONCLUSION
In this paper, we have proposed an effective trust inference model

(MATRI). The basic idea is to leverage the multi-aspect property of

trust by characterizing several aspects/factors for each trustor and

trustee based on the existing trust relationships. The proposed MA-

TRI incorporates the trust propagation and prior knowledge (i.e.,

trust bias); and further learns their relative weights. By integrat-

ing all these important properties, our experimental evaluations on

real benchmark data sets show that it leads to significant improve-

ment in prediction accuracy. The proposed MATRI is also nimble

- it is up to 7 orders of magnitude faster than the existing methods

in the on-line query response, and in the meanwhile it enjoys the

linear scalability for the pre-computational stage in both time and

space. Future work includes investigating the capability of MATRI

to address the distrust as well as the trust dynamics.
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