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Mining on Multiple Networks ﬁ
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Multiple Networks Are Prevalent
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Multiple Networks: Examples ﬁ

* Multiple social networks are inter-linked
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Multiple Networks: Examples ﬁ

* Multiple transaction networks are inter-linked
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What Is Network Alignment?

* Find node correspondence across multiple networks
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Network Alignment: Prob. Def. ﬁ

* Given:
* a set of networks {G;} (I = 2) where G; = {V}, &, A;};

* V), &, A; are the nodes, edges and adjacency matrix of G;;
* prior alignment matrices {H;_ ; } between G; and G, .

* Find: the alighment matrices {Sll,lz} between §;. and G, .

. N (a0
\_G: G: \Exy




Why Do We Care?

Identify Species-Specific Pathways

Protein-Protein Interaction (PPI) networks

PPl network 1

PPl network 2
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Cross Network Information Diffusion
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Related Setting: Graph Matching ﬁ
* It solves for the permutation matrix P that minimizes

1A, — PTA1P||12: + Tr(H" P)

* Can be interpreted as a quadratic assignment problem
«Pe{0,1}*, P1=1,1"TP=1"T

* Need relaxations on the constraints
* Doubly stochastic relaxation
e Spectral relaxation

* Optional external information H



Related Setting: Entity Alignment

* To align entities across knowledge graphs
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Xu, Kun, et al. "Cross-lingual knowledge graph alignment via graph matching neural
E network." arXiv preprint arXiv:1905.11605 (2019).
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* Graph matching-based methods [Koutra’13, Zhang’15]

Traditional Methods

min |14, - S74, SII?

* Assumption: networks are noisy permutations of each other

* Sparse probabilistic relaxation, i.e, 0 < §;; <1, [|S]lp <t

* For bipartite graphs, 1}1151 |B, — PB{Q||% [Koutra’13]

Koutra, Danai, Hanghang Tong, and David Lubensky. "Big-align: Fast bipartite graph alignment." 2013 IEEE 13th
International Conference on Data Mining. IEEE, 2013.

Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE International Conference 11
on Data Mining. |IEEE, 2015.
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Traditional Methods

 Random walk-based methods (e.g., IsoRank)
[Singh’08, Liao’09]

* Intuition: random walks on Kronecker product graph

s=a(4;® A,)s+ (1 —a)h
« s = vec(S),h = vec(H)

Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Pairwise global alignment of protein interaction networks by matching neighborhood
topology." Annual International Conference on Research in Computational Molecular Biology. Springer, Berlin, Heidelberg, 2007.

Liao, Chung-Shou, et al. "IsoRankN: spectral methods for global alighment of multiple protein networks." Bioinformatics 25.12 (2009): i253- 12
i258.
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Key Challenge #1: Complexity ﬁ

* Time complexity:
 Most of existing works have an at least 0(n?) time complexity
* |nefficient computations for large-scale networks

e Space complexity:
* At least 0(n?) to store the alignment matrix
 Costly memory consumptions

* Q: How to efficiently solve network alignment?
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Key Challenge #2: Variety ﬁ

 Networks have rich contextual information
* Node attributes, e.g., gender, age, etc.
e Edge attributes, e.g., relation types, etc.

Node Attribute: different shapes
Edge Attribute: straight vs. curved lines

* Q: How to encode contextual information to enhance
the alignment performance?

I




Key Challenge #3: Heterogeneity @

* Networks appear in various sources
* Networks may capture distinct information
* Facebook: to connect friend, family, etc.

* Same nodes have different behavior patterns
* E.g., a useris very active in Facebook but quiet in Twitter

* Q: How to handle the heterogeneity behind multi-
sourced networks?




RoadMap @

* Motivations and Background v’
* Part I: Recent Network Alignment Algorithms
* Part Il: Network Alignment Applications

e Part Ill: Future Research Directions




Overview of Part 1

Pairwise NA

Collective NA

Dch

Higher-Order NA Related Tasks

= Consistency-based
= w/o attributes
= w/ attributes
= Embedding-based
= w/o attributes
= w/ attributes
= Optimal transport-
based
= w/o attributes

Consistency-based
= w/o attributes
= w/ attributes

Embedding-based
= w/o attributes

Consistency-based
= Single-level
=  Multilevel

Entity alignment
= Non-GNN based
= GNN-based
Cross-layer inference
Cross-network
transformation
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Pairwise Network Alignment ﬁ

* Given: two networks G, G, with/without attributes
* Find: the node correspondence across networks

‘ fg____g\
7 K <
O -0
= — O -0
- 4
G, G, Ko——s——e)

lllustrative example of pairwise network alignment w/o attributes
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Consistency-Based Methods ﬁ

* Intuition:
* If two nodes are aligned, e.g., node-a in G; and node-x in G,
* Then their neighbors are likely to be aligned
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NetAlign: A Message Passing Method

* Key idea: to maximize the number of overlaps

Bayati, Mohsen, et al. "Algorithms for large, sparse network alignment problems." 2009 Ninth
IEEE International Conference on Data Mining. |IEEE, 2009.
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NetAlign — Formulation #1 ﬁ

* To maximize the # of overlaps
* Equivalent to maximizing the # of nonzerosin A

- A(ii',jj) = 1if
* Al(li]) =1
* AZ(i,'j,) =1
« H(i,i') >0,H(j,j') >0

* s AGE, i) sjjr is high if
e §,i are likely to be aligned
« j,j arelikely to be aligned

Bayati, Mohsen, et al. "Algorithms for large, sparse network alignment problems." 2009 Ninth
IEEE International Conference on Data Mining. IEEE, 2009.
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NetAlign — Formulation #2

* Encode the prior knowledge
» s'vec(H) = Y%, S(i,i")H(i,i") = score from prior knowledge

* Valid matching constraints
* Lit st HGiN>0 S 1) =1

* Xi st HiiN>0S( 1) =1
« $(i,i") € {0,1}

Bayati, Mohsen, et al. "Algorithms for large, sparse network alignment problems." 2009 Ninth
IEEE International Conference on Data Mining. |IEEE, 2009.
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NetAlign — Factor Graph

A B Variable nodes Function nodes
 Nodes: g‘g . f
* Variable nodes: e.g., 9‘@ ) 12, f2

* Node pairs that form overlaps ) oy g}
 Function nodes: constraints 2! g
1 Z s <1 1 Z s <1 93
fi= HGiN>0 gir = H(i,iN>0 =
0 otherwise 0 otherwise 1122' @ hi1r22/
- {1 Sii'jj" = Sui'Sjj’
i 0 otherwise

* Edges: connecting each function node to the variable
nodes it acts on

Bayati, Mohsen, et al. "Algorithms for large, sparse network alignment problems." 2009 Ninth

IEEE International Conference on Data Mining. |IEEE, 2009.
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NetAlign — Algorithm ﬁ

 Belief propagation
* |teratively makes local and greedy decisions

* Updated by passing messages between nodes in factor graph
t t
ii' > il g

e Control matching constraints
* Also contain info about term as’vec(H)

* Messages m

32) @

* Messages mfi/_)h

it jj'
* Agents in a square should communicate
* Term §STAS 22) @

Bayati, Mohsen, et al. "Algorithms for large, sparse network alignment problems." 2009 Ninth
IEEE International Conference on Data Mining. IEEE, 2009.
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Experimental Results

Alg. Data Overlap  Sol. Time Total Time

MWM  musm-homo 393 36.2% — —
dmela-scere 135 35.4% — —
lesh-small 119 36.8% — —
lesh2wiki 2346 13.3% — -

Iso musm-homo 1027  94.5% 0.0 0.4
dmela-scere 301  79.0% 3.7 10.7
lesh-small 257  79.6% 0.0 0.7
lesh2wiki 11732 66.6% 11.7 587.3

MP musm-homo 1076  99.0% 2.6 13.2
dmela-scere 369  96.9% 26.7 34.9
lesh-small 316 97.8% 7.6 12.6
lesh2wiki 15974 90.7% 3795.3 4198.4

MP++  musm-homo 1062 97.7% 14.4 17.3
dmela-scere 376  98.7% 28.7 33.3
lesh-small 318 98.5% 11.8 15.2
lesh2wiki 15771 89.6% 4103.8 4990.2

MR musm-homo 1070 98.4% 12.5 12.6
dmela-scere 375 98.4% 22.7 79.4
lesh-small 318 98.5% 4.1 16.8
lesh2wiki 16836 95.6%  4878.2 4988.0

Bayati, Mohsen, et al. "Algorithms for large, sparse network alignment problems." 2009 Ninth
E IEEE International Conference on Data Mining. |IEEE, 2009.
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Final: Attributed Network Alignment ‘

e Given:

* two networks {G;} (I = 1,2) where G; = {V, &, 4;, N}, E;}
and N, E; denote the node attributes and edge attributes;

* prior alignment matrices H between (4 and G,.

* Find: the alignment matrix § between Ql and Qz-

4 ) r D

f“\e —

Node Attribute: different shapes
Edge Attribute: straight vs. curved lines

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd
E ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final — Formulation #1 ﬁ

* Topological consistency

* Intuition: similar node-pairs tend to have similar neighboring
node-pairs

* Example:

e Large S(a, x) }
— large S(b,
+ Large A,(a, b) and A, (x, ) arge S(b,y)

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd
E ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final — Formulation #2

* Node attribute consistency
* Intuition: similar node-pairs share similar node attributes

* Large S(a, x)=—> node-a and node-x share similar attributes

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final — Formulation #3 ﬁ

* Edge attribute consistency

* Intuition: similar node-pairs connect to their neighbor-pairs
via similar edge attributes

 Example:
* Large S(a, x) Edge (a,b) & (x,y) share
* Large S(b,y) similar attributes

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final — Overall Formulation ﬁ

e Objective function
2 #1. Topology Consist
mgn J(S) = z [S(x,a) S(,b) opology Consistency

- A:(a,b)A;(x,y)
oy Wfxa) f(y,b)
XP(x,a)d(y, b)xLIJ((x, y), (a, b))
#2. Node Attribute Consistency #3. Edge Attribute Consistency

* Matrix-form objective function

s(v) s(w) r W)

min J(S),= min ; [,/D(v, 2 JDw,w) \
l s = vec(S) |= msin ST(I — W)S

attributed Kronecker product

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd
E ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final — Algorithm

* Fixed-point solution: by setting derivative to O
e Converges to the global optimal solution

s=aWs+(1—a)h = s = (1—a)(1—aW)_1h

* Intuition: a similarity propagation to neighboring
node-pairs, which is additionally calibrated by
node/edge attributes

* Speed-up variants:
* Low-rank approximation for full alignment
* Low-rank approximation for on-query alignment

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd
E ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.




Final — Low-Rank Approximation
Algorithm

* If we only consider node attributes

1 1\ "1
s=(1—-a) (I — aDNzN(Al (0 AZ)NDNZ) h

* Key Idea: Low rank approximation of A; and A,

- 3 =) p
. s~ (1—-a) (I + aDNzNUAUTNDNZ) h
ShermLaerr\‘;xgrrlson whereU = U; Q U,
A =[(A; ® A)™! — aUTNDF'NU] ™
S %

« Complexity: 0(n®°) or O(mntmax) 2 0(n*r*)

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd
E ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.




Final — Experimental Results

I

¥ FINAL-N-2- FINAL-NE7 - IsoRank- > - UniAlign —¥= FINAL-N-2- FINAL-NE7- IsoRank ~~ UniAlign
—5- FINAL-E-9- FINAL-N+O - NetAlign—<d - Klau =5~ FINAL-E <O~ FINAL-N+O- NetAlign <]~ Klau

1
0.8
. 206
§ g 0.6
2 Q
0 (N
< <04ER 1 :
02} 0.2 — e
|
O L i 1 O 4 i 1 |
0 005 01 015 0.2 0 0.05 0.1 0.15 0.2
Noise on Weight Noise on Alignment Preference

Observation: attributes help improve network alignment.

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final — Experimental Results

—¥—FINAL-N
A —8-FINAL-E
0.89 *a 0.8t —A-FINAL-NE
V4 O ~@-FINAL-N+
9 # —7~IsoRank
&>0.6F 306+ —©-NetAlign
© © UniAlign
3 —F—FINALN 3 O
< 04} —B-FINAL-E <04V '
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FINAL-N+
0.2¢ —IsoRank 0.2f
—S—-NetAlign |
ol . UniAlign 0|_ o _
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Running Time (second) Running Time (second)

Observation: FINAL gains a better quality-speed balance.

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final — Experimental Results

1
0.8
o
E FINAL On-Query FINAL-N+ Exact FINAL-N
-
o 06F
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g
'..g 04t
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10° 10" 102 10°

Log of Time (second)

Observation: FINAL On-Query gains around 90% accuracy
relative to exact FINAL-N, but more than 100 times faster.

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd
E ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.




Final — More on Computations

* Further speed-up: from 0(n?) to O(m)
* Key idea: indirect representation of § [1]
* Theorem: Low-rank of A; and A, = low-rank of §

I8 - I

ro X1rq
» Alignment quality: linear complexity w/o approximation
* Multilevel alignment (perfect interpolation theorem) [2]
* Implicit Krylov subspace methods [3]

[1] Zhang, Si, et al. "ineat: Incomplete network alignment." 2017 IEEE International Conference on Data Mining (ICDM). IEEE, 2017.
[2] Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
[3] Du, Boxin, and Hanghang Tong. "Fasten: Fast sylvester equation solver for graph mining." Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. 2018.
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Overview of Part 1

Pairwise NA

Collective NA

Dch

Higher-Order NA Related Tasks

= Consistency-based
= w/o attributes
= w/ attributes
= Embedding-based
= w/o attributes
= w/ attributes
= Optimal transport-
based
= w/o attributes

Consistency-based
= w/o attributes
= w/ attributes

Embedding-based
= w/o attributes

Consistency-based
= Single-level
=  Multilevel

Entity alignment
= Non-GNN based
= GNN-based
Cross-layer inference
Cross-network
transformation
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Embedding-Based Methods ﬁ

* Intuition: to learn node representations that
* Preserve structural/attribute proximity within networks

* Preserve proximity across aligned nodes
elelel felele




IONE: Aligning Users by Network Embeddi

* Background: network embedding by LINE (2"d order)

 Compute two distributions:

Empirical distribution

of neighborhood P,

structure: Wik
Model distribution of < ST
neighborhood p, (v, 1v,) = expu; 3
structure: zexp( p ui)

kev

* Minimize the KL divergence by omitting constant terms

0, EKL(pz(Iv)pz(lv))—/Ewlogpz(vlv)

(i,))EE

Tang, Jian, et al. "Line: Large-scale information network embedding." Proceedings of the 24th
international conference on world wide web. 2015.

Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." /jcai. 2016.



IONE — Within-Network Embedding i@L

* Intuition: to preserve structure proximity

* Embedding vectors for node-i

* A node vector u;
e Context vectors: (1) input context u{, (2) output context u{'

T

— T
Input context by exp(uj - uj)
s P1(vjvi) = —/T —
model distribution: Y1 exp (uk - ui)
Output context exp (@ @)

p2(vilv;) =

model distribution: TR

Sy exp (@1
Empirical distributions: P1(i,5) = wi;/df""  Pa(i, ) = wij/dj"

* Objective: minimize KL divergences

Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." /jcai. 2016.
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IONE — Cross-Network Embedding

* Intuition: aligned nodes coincide in embedding space

T
exp(u” " uj,

Model distribution: p: (v |[vi¥) =
' " ZREVX eXp(u’YT )

Wij

Empirical distribution:  p1(v/|vi) = z pa(vY|v Jot

pa(vy|vk) probability that vk and v are aligned

* Objective: minimize KL divergences
* e.g., P1(UJY|V1'X) VS. 131(V]¥|Vix)

Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." /jcai. 2016.
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IONE — Model Inference Ll
* SGD with negative sampling

- T
i) o logcr('ﬁ"X E)\)

X
log p1(v]

K i —/XT —X
+2. m=1 Evn ~pPan (V) 108, o ( —Un I )

v' " -T "
log p1 (l} |l,r\X ) o< log a(-ﬂ’} . UZ\ )
C T v
+Z7‘I7\1.:1E'vn~pn(v) 108, U(_‘m,} : ‘EZX )

Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." /jcai. 2016.
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IONE — Experimental Results

* Dataset: Foursquare-Twitter
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Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." /jcai. 2016.
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IONE — Case Study Ll

Twitter Network \ 300

>
200 “
100
B kyl_an
0 @8 mil_an
< AMA hue_an
VWY Bar tw
PP tim_fs
-200f 44 joc tw ||
‘ m rad_fs
=300} ' o jes fs
A o9 JES tw
-400 B o8P jam_tw -
Foursquare Network | l+*+ Jefm—fs

0 L I L
-600 =500 -400 -300 -200 ~-100 0 100 200

Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." /jcai. 2016.
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DeepLink: Deep Learning for User Identity
Linkage

* Motivations:
* Heterogeneity across networks = Complex alighment

* Scarcity of labeled alignment = Supervised training is not
easy

* Key questions:
* How to learn non-linear transformation for alignment?
* How to boost supervised training algorithm?

* Key idea: use deep neural network with dual-learning

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM
E 2018-IEEE Conference on Computer Communications. IEEE, 2018.




DeepLink — Network Embedding

* Key idea: pre-trained Skip-gram based embedding

* To predict the context of a center node

Graph Sampling  Sequences ® Context Sampllng'

y Q @-0-0-6-® e Random walks from center nodes
e _'> .*®*@ * Obijective function:

@5 ; @4.*@ e Original: to maximize
e RERE PR DEPPPPPEEEEPDPEEPREPPREPE PRI | exp(vI _ v),)
NG -©~@ @ Pluces | we) = Sem Vv

/ '—>.*.*®»©*“ * With negative sampling:
""""" . ®-0-0-0-0-® Il v, +ZEU pn(wlog(1 — a(VEI V., )]

1=1

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM
E 2018-IEEE Conference on Computer Communications. IEEE, 2018.




DeepLink — Neural Mapping Learning

* Goal: to learn non-linear alignment across networks
* Intuition: neural networks capture complex nonlinearity
* Key idea: use two multilayer perceptrons as mappings

* One MLP (denoted by ®) to map from network G° to Gt
* Another MLP (denoted by ®~1) for Gt to G°

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM
E 2018-IEEE Conference on Computer Communications. IEEE, 2018.




DeepLink — Dual Learning

* Goal: to address the lack of labeled alignment

* Components:

* Unsupervised alignment pre-training uses node embedding
to learning two weak mapping functions @ and &1

* Supervised alignment learning uses labeled alignment to
improve weak mapping functions

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM

2018-IEEE Conference on Computer Communications. IEEE, 2018.




DeepLink — Unsupervised Pre-training

* Goal: to learn self-consistent mappings

* Method: autoencoder type of architecture
* Encoder: mapping function &
* Decoder: mapping function ®~1 o less

* Objective function:
* Minimize difference between

b~ 1 ( D (vu)) and vu Unsupervised i . ‘

A 1
Training 1] IRy

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM

E 2018-IEEE Conference on Computer Communications. IEEE, 2018.



DeepLink — Supervised Learning

* Key idea: align according to some reward functions

* Method:
e Find k-similar embeddings v'(u;) in G¢ for mapped embeddings
of node-a in G%, i.e., u; € Top((b(v(ua))

* Rewards:

Training
G G’
1 k : same person i
re, = - > log(cos(v(u:), v/ (ua)) + 1) e opk e
i=1 L etap
by
/ (2) reward 1

‘A
] .
-1, L ".' T :
: ] / N
-}‘ <
| --"'J‘,' >
(4) reward| 2
A |
|

\ _I (5) reward for user a |

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018.




DeepLink — Experimental Results

* Dataset: Foursquare-Twitter

Comparisons of alignment precision.

Precision

Pa] P@5 P@9 P@l3 P@2] P@30

CRW 0.0000 0.0219 0.0476 0.0538 0.0909 0.1603
MAG 0.0638 0.1362 0.1705 0.2081 0.2708 0.3229
MAH 0.0500 0.1219 0.1886 0.2148 0.2513 0.0003
ONE 0.1229 0.2533 0.3038 0.3510 0.4071 0.4270
IONE 0.2238 0.4033 0.4638 0.5010 0.5571 0.5970
DeepLink 0.3447 0.5942 0.6609 0.6866 0.7000 0.7048

Observation: Deeplink achieves highest
accuracy in top-k identity matching.

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018.




DeepLink — Experimental Results

* Visualization of cosine similarities of randomly sampled
anchor nodes (the more diagonalized, the better).

e Observations:
\ * |ONE disrupts the embedding
N similarities of labeled alignment
pairs after training.
In contrast, DeeplLink still
preserves the anchor linkage.

e Similarly for testing anchor
nodes.

(a) IONE Anchor Nodes (b) DeepLink Anchor Nodes.

(c) IONE Testing Nodes (d) DeepLink Testing Nodes

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM
E 2018-IEEE Conference on Computer Communications. IEEE, 2018.




Regal: Representation Learning-Based |/
Graph Alignment

* Goal: unsupervised embedding for network alignment

T el | ione

Key idea matrix skip-gram w/ negative
factorization sampling
Attributes w/ node attributes w/o attributes
Supervision unsupervised semi-supervised
Complexity sub-quadratic sub-quadratic

Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the
27th ACM International Conference on Information and Knowledge Management. 2018.
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Regal — Overview

* Node feature extraction

* Node embedding learning by matrix factorization
* Network alignment

Input Graphs Step 1. Node Identity Extraction Step 2. Efficient Similarity-based Representation Step 3. Fast
(feature extraction not shown for simplicity) 2a. Reduced nxp 2b. Similarity to Representation Node Alignment
e ’ l l ’ Similarity Computation using the SVD of Wi=U £ V!
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Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the
E 27th ACM International Conference on Information and Knowledge Management. 2018.




Regal — Node Feature Extraction [@}f

e Structural identity
. Rﬁ: the set of nodes exactly k steps away from u
e dX(i): the number of nodes in R with degree of i
e d, =YL 5% 1dE (§isthe discount factor)

* Logarithmic binning: dX (i) is the number of nodes u € R¥
such that |log, deg(u)| =i

e Attribute-based identity
* Node input feature vector f,

Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the
E 27th ACM International Conference on Information and Knowledge Management. 2018.




Regal — Cross-Network Node Similarity [@}f
* Direct computation
sim(u, v) = exp[—¥slldy, — dyll3 — yaxdist(fu, fo)]

* Limitation: costly computation 0(n?) where n = n; + n,

e Efficient computation

nNEE
* Reduce to node-landmark similarity A
* L:aset of p landmark nodes chosen randomly B
* Node-landmark similarity matrix: C(u,v), v € L 1) ncx:p

* Landmark-landmark similarity

Wy, vy) =Cv,vy), v €EL

Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the
E 27th ACM International Conference on Information and Knowledge Management. 2018.




Regal — Node Embedding Learning i

* Nystrom-based approximation
S~§=CW*C’

« W*: pseudo-inverse of W
1
* Embedding: Y = CUXz where [U,X,V] = SVD(W™)

xNetMF: Proposed Fast Approximation Typical Approach

skips the computation of matrices S and Z7 requires computation of S, Y, Z!
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Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the
27th ACM International Conference on Information and Knowledge Management. 2018.




Regal — Alignment Inference i@}ﬁ

* K-D tree for fast similarity search
e Similarity scores:

* Feature extraction: O (nKdg, ) Simiarty B

* Node similarity: O (npb) p| Y2 Algn- gH
 Node embedding: 0(np?) |
 Alignment: O(nlogn)

Learned node Inferred (sparse)
embeddings alignment matrix M
S = 2
sim(u,v) = 6_”Y1 [ul-Y, V][, o — o 1721374576
8 Y1 Embedding @
o C | . t . ® -based ®
omplexity: 3 ‘ 8
ff‘ | similarity

Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the
E 27th ACM International Conference on Information and Knowledge Management. 2018.
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Regal — Experimental Results

e Data constructions: (1) noisy permutations of one
network, (2) synthetic node attributes
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Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the
27th ACM International Conference on Information and Knowledge Management. 2018.
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Regal — Experimental Results

* Running time:

Dataset Arxiv PPI Arenas
FINAL 4182 (180)  62.88 (32.20)  3.82(1.41)
NetAlign 149.62 (282.03) 22.44 (0.61) 1.89 (0.07)
IsoRank 17.04 (6.22)  6.14(1.33) 0.73 (0.05)
Klau 1291.00 (373) 476.54 (8.98) 43.04 (0.80)

REGAL-node2vec  709.04 (20.98)  139.56 (1.54) 15.05 (0.23)
REGAL-struc2vec 197537 (223.22) 441.35 (13.21) 74.07 (0.95)
REGAL 86.80 (11.23)  18.27(2.12)  2.32(0.31)

Faster computations due to landmark strategy
and K-D tree search.

Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the
E 27th ACM International Conference on Information and Knowledge Management. 2018.




Overview of Part 1

Pairwise NA

Collective NA

Dch

Higher-Order NA Related Tasks

= Consistency-based
= w/o attributes
= w/ attributes

= Embedding-based
= w/o attributes
= w/ attributes

= Optimal transport-

based

= w/o attributes

Consistency-based
= w/o attributes
= w/ attributes

Embedding-based
=  w/o attributes

Consistency-based
= Single-level
=  Multilevel

Entity alignment
= Non-GNN based
= GNN-based
Cross-layer inference
Cross-network
transformation




Gromov-Wasserstein Learning for
Graph Matching and Node Embedding

* Backgrounds:
* Networks are often noisy.
* Many methods learn specific transformations across
embeddings of different networks.
* Key question:
* How to jointly learn node embeddings and infer alignment?

* Benefits of joint problem:

* Distance between learned node embeddings as auxiliary
information of edges = help reduce noise

* Learn in same manifold =2 lower risk of model misspecification

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv
preprint arXiv:1901.06003 (2019).




GWL - Preliminaries

* Gromov-Wasserstein distance
* An optimal transport-like distance for metric spaces
* Calculates distances between pairs of samples of each domain
* Measures how these distances compare to those in other domains

* Gromov-Wasserstein discrepancy

* A relaxation by using dissimilarity measurement instead of strict
distance metrics

* Metric-measure space of a graph
» Corresponds to a pair (C, ) € RIVXWVIx3 IVl of a graph G.
e C = [cij] represents a node distance/dissimilarity matrix.
o i = |u;] is the empirical distribution of nodes.

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv
E preprint arXiv:1901.06003 (2019).




GWL - Gromov-Wasserstein Learning
Framework

* Gromov-Wasserstein discrepancy between graphs
* Given G, and G;, the discrepancy between (Cg, us) and (Cq, ;)

dew (Ms. (t) = MINTeT(p, pus) Z L(c§;. i) Ty T e

i.7,2",7"

= lllillTen(:“S_th') (L((»YS Cjt T) T>

* L(-,-): element-wise loss, e.g., mean square or KL-divergence

e T: optimal transport between nodes of two networks,
indicating probabilities of alignment

= Zi,i’L(Cl]'C v /)T Y
» L(Cs,C,, T) = [L;;1] € RIVsIIVl

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv
E preprint arXiv:1901.06003 (2019).




GWL - Gromov-Wasserstein Learning
Framework

* Proposed model

* Use node embeddings X, X; for dissimilarity matrices

min min  (L(C4(X,), Cy(X,).T), T)
X Xt Tell(pspae) v

~
Gromov-Wasserstein discrepancy

— n(K(:XS.Xt). T> + BR(Xs. Xy).

.

v v
Wasserstein discrepancy prior information

c C.(X;))=(1—-a)C; +aK(X,,X;) where C, is computed
by edge weights and K(X,, X;) measures distance within
same network based on node embedding.

* R(XSJ Xt) — Zk:s,tL(K(Xk;Xk); Ck) + L(K(XSJ Xt)i CSt)

Optional when given labeled alignment

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv
E preprint arXiv:1901.06003 (2019).




GWL — Learning Algorithm

* Alternatively learn optimal transport and embedding

Absolute matching

* Learning optimal transport e S P i
. . | 7,8 onembedngs
* Proximal point method V4 /‘},----2\3 I
llllllTrH (10 e) <L(C ( m)) Ct(X[ )) T)T> % a 1234567 8
\ / C
(ﬁl<K(XS(m"). Xt_(m : ), T) H~KL(T'||T () } e D Optimal /‘
. transport ) /
A proximal term based on KL-divergence , -

Update embeddings
based on optimal
transport and graph
topology

petween grapns
Cost=K(4, 1)

Embedding space of nodes

* Updating embeddings

* Given optimal transport T solve by gradient descent

IlliIIXS_‘Xt('}m(K(X X)), T . > + BR( X, Xy)

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv
E preprint arXiv:1901.06003 (2019).




GWL — Experimental Results

* Communication network alignment
e Dataset: MC3 used in the Mini-Challenge 3 of VAST

Challenge 2018

* Model Variants:

e GWL-C and GWL-R: use
cosine and RBF distance
on embeddings

* GWD: no embedding
-based distance

Call—Email (Sparse)

Call—=Email (Dense)

Method Node Correctness (%) | Node Correctness (%)
GAA 34.22 0.53
LRSA 38.20 2.93
TAME 37.39 2.67

GRAAL 39.67 0.48

MI-GRAAL 35.53 0.64
MAGNA++ 7.88 0.09
HugAlign 36.21 3.86

NETAL 36.87 1.77
GWD 23.16+0.46 1.7740.22

GWL-R 390.644-0.57 3.80+0.23

GWL-C 40.45+0.53 4.2340.27

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv
E preprint arXiv:1901.06003 (2019).




GWL — Experimental Results

* Procedure recommendation
e Dataset: MIMIC-IIl dataset

* Goal: recommend suitable procedures for patients,
according to their disease characteristics.

Top-1 (%) Top-5 (%)
Method P R i P R o
Word2Vec 30.95 13.27 18.25 | 28.89 46.98 32.59
GloVe 32.66 13.01 17.22 | 27.93 44.79 31.47

DWL (Scratch) | 37.89 1242 17.16 | 27.39 43.81 30.81
DWL (Finetune) | 40.00 13.76 18.71 | 30.59 48.56 34.28

GWD-R 46.29 17.01 22.32 | 31.82 43.81 33.77
GWD-C 43.16 15.79 20.77 | 31.42 42.99 33.25
GWL-R 46.20 16.93 22.22 | 32.03 4475 34.18
GWL-C 47.46 17.25 22.71 | 32.09 45.64 34.31

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv
E preprint arXiv:1901.06003 (2019).
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Overview of Part 1

Collective NA Higher-Order NA Related Tasks

Pairwise NA

= Consistency-based = Consistency-based | |* Consistency-based = Entity alighment
= w/o attributes = w/o attributes] = Single-level = Non-GNN based
= w/ attributes = w/ attributes = Multilevel =  GNN-based
= Embedding-based = Embedding-based = Cross-layer inference
= w/o attributes = w/o attributes =  Cross-network
= w/ attributes transformation
= Optimal transport-
based
= w/o attributes




Collective Network Alignment [@}f

* Goal: to find alignment across multiple networks

* Possible solution o [Bmm
* Find pairwise alighment P
* Then combine
* Transitivity constraint may be vioIate'd'"'v" \

* Problem setting:
* Given: more than two networks G = {G{, ***, G}
* Find: alignment across G;, G; (i,j = 1,---,m) jointly




Multiple Anonymized Social Networks
Alignment

» Goal: to find anchor links/alignment across multiple
networks without attributes

* Key challenge: how to preserve transitivity property

Network I User Accounts
0 Alice
A n - ’ B -
ol P “ B ob

:' Charles
“ 5 David

: Aq "8 Eva
s ™\

5
y 2
- < ]
o o AEL '“'i 6
B |
Network IT Network IIT

Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE
E International Conference on Data Mining. IEEE, 2015.




UMA — Unsupervised Pairwise Alignment

* Key idea: to minimize the alighment inconsistency

* l.e., the number of non-shared edges between those
mapped from G and those in GU)

* Mathematical formulation

P 2
T'*J) = arg min

e [[(TED)TSOTED _ 50|

F
st. T ¢ o, 1 <]

(i) 143 1 , A1) x I
(@3 U o q T one-to-one mapping

(T T <1 1 constraints

« $W §U): adjacency matrices of networks g@') and gU)
o T alignment matrix from g(i) to g(f)

Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE
E International Conference on Data Mining. IEEE, 2015.




UMA — Transitivity Penalties

* Measure the number of inconsistent edges between
the mapped from G® - GU) - G and GO - &)

e Mathematical formulation
C('{(__,‘“-;' _. G('j'l._ (k) 1)

— H(T(‘j,m )T (T8 T8 p(i)p(Gk) _ (p(isk) ‘)_S‘-‘""‘T“f"')”z
» ‘ F

* Extension ton (n = 3) networks

c{a® . c@ ... gmy
= Z c{c® . qW gy

v{G! i) (7) f(_”,'ik} }C{G"f 1) @(2) ... gln )}

Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE
E International Conference on Data Mining. IEEE, 2015.




UMA — Optimization Problem

* Objective: to minimize the alighment inconsistency
and transitivity penalties simultaneously

* Mathematical formulation

Tf;z‘-,j'} Td:k) ki)

. (i, a : al;
= arg My 5) p(i.k) (ki) H(T‘I‘J))Tb(‘JT(vl i) _ gd) '

F . . .
2 |Alignment inconsistency

n H(‘T(.J.H)TSU)I(]-H _s®|® L ||(I(k.z_l)TS(HI[LU _ s
M

IE I I F
+af|[(x@)TrED) TsOTENTER _pE0gO (ptko)T F Transitivity penalties

w10 € (0,1 D1 168 ¢ 1o, 13D <P
(k) € {0,1} U®) | ju®|
T(‘i.j)1|u”i’ x1 1|z.4"'*'i'|><1! (T[z,j])T1|u‘i"'3'|><1 < 1|u'iif'|><1_‘ lReIaxations

f T (k)| (7)) (] (7) (k).
T("]"L‘]llb{ =1 < 1|14 X].’(»T(_}.k]) 1|Z,‘f |1 < 1|l«{ | %1

One-to-one constraints

' Linear constraint + L1 norm

(i) (k). (I VT (k)| (2)
T(,k.z)lu ><1:$1|Z.1 [ =1 (.T"k"z')) 1|l.4 |xl:$1|b{ xls

Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE
E International Conference on Data Mining. IEEE, 2015.




UMA — Transitive Network Matching

* Goal: to solve for binary variable xl( LJ) indicating

whether node u; in g@ is aligned with node u,,, in g(ﬂ
Z l}ln';)T LI)(1,m) Z’L}ln{ T (1,m)

Il,m I,m

+Z zflni)T“” I,m),

max
x(i.3) xrﬁjAk‘» x(k i)

* Optimization problem
* Select high scores in alignment

I

s Y A<, Y <1 vl cuo)
ud) U ) et
. ) II
* One-to-one constraint « S U<t Y 2R <1 vl eyt
u}“ElA‘ ul) (k) cgq(k)
Z ri <1 Z lff,,z) < 1,vuld e y®
L L] L] ° ' ., . J -
* Transitivity constraint o (ki) ,
oo + a0 2l £o vl e (1,2, U]},
vme {1,2,---, U}, Yoe {1,2,--- ,u®|, |
lglnjl) € {0,1}, Vu(i) eV ) ey,
xR e 10,1}, ‘v’uﬁ,{) EZ/{U) u”‘ 3782
207" € 0,1}, vul®) e U® i e u®.

Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE

International Conference on Data Mining. IEEE, 2015.




UMA — Experimental Results

e Dataset: Stack Overflow, Super User and Programmers
* Alignment performance

1.2} [mmm UMA  mmm Big Align PM  mEE RDD T T — T T H r —— - X
T 1.2{EEm UMA EEE Big Align PM  EEE RDD[ 1.2f|mmm UMA  EEE Big Align PM  EEE RDD
= INA B3 Big Align B3 ReR mmNA m Bl-Algn pr—— B INA 3 Big Align B RPR
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0.0
) ) (7) (k) k i
(a) AUC (G, GU)) (b) AUC (G, G(*)) (c) AUC (GF), g(1))
1.2/ [ UMA  mmm Big Align P mm RDD 1.2;(WEN UMA  EEE Blg Align PM  EEN ROD({ 1.o{[mm UMA e Big Allgn P mmm RDD)]
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Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE
E International Conference on Data Mining. IEEE, 2015.




COSNET: Connecting Social Networks S‘Mﬂg
with Local and Global Consistency

* Intuitions: binary classification over node pairs
* Instances: node pairs X = {x;}
 Labels: Y = {y;}, y; = 1if x; refers to same node, otherwise 0

* Factors considered:
* Node feature consistency (e.g., user profiles)
* Structural consistency
* Global consistency (i.e., transitivity constraints)

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2015.



COSNET — Node Feature Consistency i@L

* Intuition: to encode the feature similarity for x;

 Formulation:
}/ X ZWI gl Xis l/z)

* g;(x;,y;)isa vector-valued feature function
* Encodes the user profile similarity for node pair x;
* w; is the model parameter

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2015.



COSNET - Structural Consistency L

* |ntuition:
* |f two nodes are aligned, their neighbors are likely to be aligned

 Matching graph MG = (Vye, Enc)

* Same as Kronecker product graph

e Pairwise formulation:
E.(Y.X)= >  wif(y.uy)
)T ify; =y; =0

1,0.0
fo(yiy;) =4 (0,1,0)T ify; +y; =1
0, 0, l)T lfyl —UY; = 1

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2015.



COSNET - Global Consistency Violation L

DEFINITION 2 (GLOBAL INCONSISTENCY). Given a set of @
social networks =, a set of user pairs X and the corresponding la- N *0
bels'Y, if there exists a sequence of user pairs (Xiy , Xig, "+ ,Xi. ), v 3
such that @ ________ ,@

Vi =i, d0, - in, vy = 1 ,@
(X}

'
; .
2 1 H
Vk=1,2,-,n—1V, =Vi_, @ ________ @ Inconsistent!
and @

X X )

For the pair <VZ;2n, Vi > , the corresponding label y; = 0 H f

then we say that the assigned labels Y causes global inconsistency @‘ -------
given G and X.

and

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global
E consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2015.




COSNET - Global Consistency Ll

* Triadic closure in the matching graph

e Formulation: [

E(Y,X)= > wifi(Ye) S
-
((1,0,0,0)T if |Y.| =0

) (0,1,0,0)T |y, =1
fe(viui) =0 (0,0,1,0)7 if|Y,| =2
| (0,0,0,1)T if V.| =3

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2015.



COSNET — Model Learning i@}%

* Objective function:

EY,X) = Y weakx,v)+ Y wif(viy)
x;€EVrma <X¢,Xj>€EMG
+ > wifi(Ye)
c€Tma

* Define distance of two matching configurations Y and Y’

AYY) = > alyeu)+ Y Se(Ye Y+

c€ET v

oY) (YL Y5))

Hamming distance

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global
E consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2015.



COSNET — Model Learning [@}f
* By max-margin theory:

L2
min o (W7 + pé

A

st. E(V,X;W)<E(Y,X;W)—A(Y,Y) +¢

e ¥,Y:input labeled configuration and learned configuration

e W = (w;,w,, w;): model parameters

* ¢:slack variable to handle non-separable data

e u: trade-off between the maximum margin & error penalty

» Constraint: distance between the energy of ¥, Y at least A(Y,Y)

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global
E consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2015.



COSNET — Model Learning [@}f

* The original problem is intractable.
e Use Lagrangian relaxation for dual decomposition

1‘1‘11;1 ;H‘” |2 + W E(Y,X; W) — max LY, X, \;W))

st. » A =0 vieF
Y €Y;
* f € F: factor functions
e A: Lagrange multipliers

* Convex and non-differentiable
 Solution: projected sub-gradient method

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global
E consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2015.



COSNET — Public Dataset bl

e Data statistics

Dataset Network #Users #Relationships
Twitter 40,171,624 | 1,468,365,182
LiveJournal 3,017,286 87,037,567

SNS Flickr 215,495 9,114,557
Last.fm 136,420 1,685,524
MySpace 854,498 6,489,736

LinkedIn 2985414 25,965,384
Academia ArnetMiner 1,053,188 3.916.,907
VideoLectures 11,178 786,353

* Link: https://www.aminer.cn/cosnet

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global
E consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2015.


https://www.aminer.cn/cosnet

COSNET — Experimental Results Lt

* Connecting social media sites
* Twitter, Livelournal, Last.fm, Flickr, MySpace

100
B Name-match [ SiGMa I W/O gIObaI

20 ] == SvM == COSNET-|  consistency
[—1 MNA B COSNET

80

70 o B o

60 __ -

50

40 |

Precision Recall F1

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global
E consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2015.



COSNET — Experimental Results Lt

* Connecting Aminer with LinkedIn and VideolLectures

100

Bl Name-match 1 MNA @ COSNET-
90 = SVM 1 SiGMa B COSNET

80 ]
70

60

50

e

Precision Recall F1

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global
E consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2015.
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Overview of Part 1

P

Collective NA

Pairwise NA

Higher-Order NA Related Tasks

= Consistency-based = Consistency-based = Consistency-based = Entity alighment
= w/o attributes = w/o attributes = Single-level = Non-GNN based
= w/ attributes = w/ attributes = Multilevel =  GNN-based
= Embedding-based = Embedding-based = Cross-layer inference
= w/o attributes » w/o attributes] = Cross-network
= w/ attributes transformation
= Optimal transport-
based
= w/o attributes




Embedding-Based Collective Network
Alignment

* Goal: to learn node embeddings that can infer alignment
in the embedding space

==




Cross-Network Embedding for Multi-
Network Alignment

* Motivations: networks heterogeneity
 Different networks may own different semantic meanings;
* Same node may have distinct embeddings in different networks

* Goal: to learn node embeddings for multiple network
alignment

* Key question: how to capture the commonness among
anchor node counterparts and specific semantics in
different networks?

Chu, Xiaokai, et al. "Cross-network embedding for multi-network alignment." The World Wide Web
E Conference. 2019.




CrossMNA — Cross Network Embedding

* Key idea: split node embedding into two components
vE = Wu; +r¥
* Intra-vector v;: captures structural information in a network
* Inter-vector u;: captures the commonness of anchor node

w

* Net k t k. t t k- ifi manti
etwork vector r . captures network-specitic semantics
Toy Multiple Networks Embedding Space Learnt
o ue b i 900000000 | Embedding ~ Downstream Tasks
e P uy : e u i
(o . v , cootbuomp| [T
— N . ) 2 H e e o ' C00000000
- us i
: : ' Jointly
" g ~} | Embed { ' || Optimize r
a2 —— 12 ;
T i
w,-,?’}; ) b s _» ¢ ' Intra Network Analysis
a3 :Lijf ' ;000000000 Vertex Identity
Y
B ;000000000
@ known anchor node = -+ known anchor link inter-vector intra-vector
< unknown node unknown anchor link network vector

Chu, Xiaokai, et al. "Cross-network embedding for multi-network alignment." The World Wide Web
E Conference. 2019.




Twitter dataset

CrossMNA — Experimental Results

0.40;

* Multiple network alignment

Arxiv dataset

Chu, Xiaokai, et al. "Cross-network embedding for multi-network alignment." The World Wide Web
Conference. 2019.
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CrossMNA — Experimental Results

* Multiple network link prediction

arXiv SacchCere Twitter
30% 50% 80% 30% 50% 80% 30% 50% 80%
DeepWalk | 87.86 94.41 98.12 | 69.20 7396 7829 | 57.09 59.96 63.74
LINE 75.05 85.73 9475 | 60.54 65.05 68.87 | 53.12 5297 53.22
node2vec 88.06 9457 97.11 | 71.15 76.33 80.16 | 56.84 61.22 65.93
PMNE 90.12 9447 9524 | 77.61 7985 8135 | 61.12 70.72 75.91
MELL 9351 96.30 98.84 | 76.18 79.92 81.21 | 70.64 75.89 79.84
CrossMNA | 96.46 97.53 99.19 | 76.88 81.12 82.59 | 75.85 80.48 85.29

Dataset

Observation: CrossMNA performs better due to transmitting
complementary information across networks.

Chu, Xiaokai, et al. "Cross-network embedding for multi-network alignment." The World Wide Web
E Conference. 2019.




CrossMNA — Experimental Results

* Scalability: memory usage

0.8 ~ owune o « DW/LINE
— -  PMNE o 9o PMMNE
807 - e 8 |
0.6 MTNE ° 6/
m SMNE o 6 SMNE
2051 . crossMnA £ -~ CressMNA
T ! [T
w 0.3 ]
8 @ 21
2.0.2/ &
(LN} s S— — —— — ——— 0{ » .  SE——
2 3 4 5 6 7 8 9 10 10° 5-10° 10 5-10° 10° 5-10° 10°
N VI

Observation: CrossMNA has less memory
usage than other baseline methods.

Chu, Xiaokai, et al. "Cross-network embedding for multi-network alignment." The World Wide Web
Conference. 2019.
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Overview of Part 1

Higher-Order NA Related Tasks

Pairwise NA Collective NA

= Consistency-based = Consistency-based = Consistency-based| |® Entity alignment
= w/o attributes = w/o attributes =  Single-level = Non-GNN based
= w/ attributes = w/ attributes =  Multilevel =  GNN-based
= Embedding-based = Embedding-based = Cross-layer inference
= w/o attributes =  w/o attributes = Cross-network
= w/ attributes transformation
= Optimal transport-
based
= w/o attributes




Higher-order Network Alignment

* Higher-order network mining:
* Involves higher-order structures, instead of edges

* Motivations:

* Traditional approaches (e.g., NetAlign) aim to maximize # of
conserved edges (overlaps/squares).

* Leverage higher-order structures exist in networks (e.g.,
motifs, clusters, etc.).

 Single-level: use higher-order structures to align nodes
* Multilevel: to align both nodes and clusters at multi-level



Triangular Alignment (TAME)

* Network motifs: connected subgraphs that occurs
with significantly higher frequency
 3"d-order: 3-node line, triangle

e kt"-order: k-node star, etc.

3
k=5

e Objective: to maximize # of aligned substructures

Mohammadi, Shahin, et al. "Triangular alignment (TAME): A tensor-based approach for higher-
E order network alignment." IEEE/ACM transactions on computational biology and bioinformatics

14.6 (2016): 1446-1458.



TAME — Formulation #1

* Binary quadratic program in NetAlign

1 v T+ MNTa, i
maximize (1 —a)w' x + S| Sz [~ To maximize # of

subject to Cz < 1|1~"'c|+|1-4-’H-\ conserved edges
x(ii’) € {0, 1}.

* Higher-order extensioﬁn/, X (Ty QT )x™ L= (Ty @ To)a™

maximize (1 —a)w!z + — Ta @ To)x™| maximize (1 — a)w
T m! | T g
subject to Cx < 1y |+ |vy|

x(ii") € {0, 1}.

T, “ V3
;L+F(_AH><G);13
)

subjectto Cz < 1|1-"G|+|1-‘"H|
x(ii') € {0,1}.

Jy and J;: the motif-tensors * Apxg= Ay @ Ag: Kronecker
associated with a m-node motif product of triangle tensors
in both graphs G and H e Counts # of conserved triangles

Mohammadi, Shahin, et al. "Triangular alignment (TAME): A tensor-based approach for higher-
E order network alignment." IEEE/ACM transactions on computational biology and bioinformatics

14.6 (2016): 1446-1458.



TAME — Formulation #2

* Relaxed formulation
* Remove one-to-one constraint and relax x to be any reals

* Add a 2-norm constraint on x to make it bounded
maximize (Ay.o)z°
€T

subject to  ||z|| = 1. —— Tensor eigenvector problem
* The classic SS-HOPM is costly to solve it.

* Implicit kernel for computing tensor-vector products

(Apyge?)

i1’

=3 Dyt ji' kK e (i e (k) Aol =

i’ kk
2 , - . ;4 - k' k! o5’
= Dgli. i k) Ay §' K)X(. ") X (k. k') —) 2D TG k)N o gy 1) KO VRO ) +X G XK ')

(j.k)EN A ¢ (i)

g’ kK
=Y Nglij. k)Y XG5 Ap. i k)X (kK
.k 5 k!

Mohammadi, Shahin, et al. "Triangular alignment (TAME): A tensor-based approach for higher-
order network alignment." IEEE/ACM transactions on computational biology and bioinformatics

14.6 (2016): 1446-1458.



TAME — Algorithm

* Key ideas:

e To use implicit tensor-kernel product ¥ = Ay ;x> for
Agyexs = xT'x
. Algorithm 2 The Triangular AlignMEnt (TAME) algorithm
* SS-HOPM main IOOp Computes nput: Triangle tensors A, Ay; Sequence similarities w;

Shift parameter /3

1 1 1 1 1 Qutput: The best topological scores X from any iteration
topological similarity matrices R y
A score function to solve a w e w/|w]
bipartite max-weight matching

X1 = unvec(xr.q)

To encode integer constraint
41 = score(Xy.1)

Of X and One'tO‘One ma pplng 122 Update (X, 7)pest t0 (X, )41 if tpr1 > Thest
13 k=k+1

con St ral nt 14: until A\, — \,_q is small or the max iteration is hit
15: return Xpest

T =impTTV(A,. Ay, . xp)
Akt1 = Ii Ty
Tpt1 = Ty + Pxg

N o S|
Thtl = Tz |

Mohammadi, Shahin, et al. "Triangular alignment (TAME): A tensor-based approach for higher-
E order network alignment." IEEE/ACM transactions on computational biology and bioinformatics

14.6 (2016): 1446-1458.



TAME — Experimental Results

* Alignment quality on yeast vs. human dataset

0.35

0.3F

0.251

Observation: TAME performs
closely to the best method in
preserving the # of conserved
edges

0.2f

0.15F

NCV-GS3 (# Edges)

01

0.051

Mohammadi, Shahin, et al. "Triangular alignment (TAME): A tensor-based approach for higher-
order network alignment." IEEE/ACM transactions on computational biology and bioinformatics

14.6 (2016): 1446-1458.



TAME — Experimental Results

* Metric: # of conserved triangles

0.35

03r

0.251

Observation: TAME ranks
the highest in terms of the
number of conserved
triangles

o
o
T

015

NCV-tGS3 (# Triangles)

01r

0.05}

Mohammadi, Shahin, et al. "Triangular alignment (TAME): A tensor-based approach for higher-
order network alignment." IEEE/ACM transactions on computational biology and bioinformatics

14.6 (2016): 1446-1458.



Multilevel Network Alignment Lt

e Goals: to find node correspondence as well as the
correspondence among clusters at different levels

 Motivation:
e Networks exhibit hierarchical cluster-within-clusters structure

basketball

soccer

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana — Challenges

* C1: Alignment accuracy

o ‘|, \
I o ST & -
0 Y = & ‘.;\ S : K5
Uy A, LA
N2 ; % ey V' e
¢ ¥oas S SN iy
g
Ve
7
Ve
/ Latiga Premier .
Premi e League
remier
7

League N _

N - soccer

soccer

* Errors propagate through levels
e C2: Scalability  Better than quadratic?

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana — Problem Definition

* Given:
e (1) adjacency matrices A;, B; of two undirected networks;

* (2) a sparse prior alignment preference H;
* (3) the number of levels L = 2 of interests.
* Find: a set of alignment matrices §; atlevel-[, [ = 1,---, L
* where § indicates the alignment at the node level

S3 S1
[12] 1) ® © 12 &
“\ o . (1) o ] . 1) 1 2 6 7 G
0 4 o 500/0\'” ®dTo0 |y 9 ARAASAT P
L o ) o ! o] SR
Coarsening Alignment ’ Interpolation
) ® o3 ' I 10 O ‘\o — Ryt
) :o/\ ¥ o @ AV, 7
L)
\ . o 0 o 0 o o |0 LR & 11 1
™~ L? o {\9 ? © / E N
—— : Edges (d) (e)

— — : Alignment

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.




Qo
Moana Formulation: Multilevel Optimiza

* Generic strategy
e coarsening =2 alignment 2> |interpolation

* Alignment interpolations
* Bilinear interpolations by P; € RPV™1, Q; € R ™2 (p;<

ny, qp < Ny)
* w.l.o.g., §; = Q1S,P, between level-1 & level-2

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.

I




Qo
Moana Formulation: Multilevel Optimiza

* Multilevel alignment formulation FINAL-P
at node level

Level-1: minas]i(I—A4; ® B;)s; + (1 — a)|ls; — hy||5

S1
l If P,PT =Tand Q,Q =1

Level-2: min asg(l — Az ® BZ)SZ + (1 — a)”SZ - h2”%
S

2

* A; = P1A,P1,B; = Q1B1Q1 and H;, = Q H,P]
* same properties (e.g., convexity) and algorithm as FINAL-P
* ‘good’ (semi-) orthogonal P{, Q1 make A,, B, well-represented

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana Formulation: Perfect Interpolatiom

* Denote S}, S, are optimal solutions at level-/ and
level-(1 + 1)

 Perfect interpolation (to address error propagation):

Interpolation from the optimal alignment matrix at
level-(l + 1) is equal to that at level-1

 IfP,Q; (I=1,---,L — 1) are orthogonal
* Then S} = Q[ S;11 P

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.

I




Moana — Coarsening Algorithm [@}f

* Generic strategy

* Coarsening =2 alighment =2 interpolation

* Network coarsening by P;, Q,
*» Ay, = PJAP[,B;; = QBQ]
* Requirements on Py, Q,
* Perfect interpolation: they are orthogonal matrix

 Efficient computation: they are sparse matrix

* Informative coarsening: they can uncover hierarchical
cluster-within-clusters structures

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.

I




Moana — Coarsening Algorithm i@}!

* Multiresolution matrix factorization

S, _q active sets S, S,

=) () () m) - () - (1)

P, 4 P, P, Ay Py P} Pi_, A

* Coarsening procedure
* P, P,PAPIP; - P]_; =A, > A
* Q-1+ Q2Q:B1Q1Q; - Q[_; = B, > B,
* $(Sp,, 94,) indicates the alignment among clusters at
the [-th granularity

Kondor, Risi, Nedelina Teneva, and Vikas Garg. "Multiresolution matrix factorization." International
E Conference on Machine Learning. 2014.

110




Moana — Alignment Algorithm [@}f

* Generic strategy Ap =, |An 2|
-. coarsening =2 alignment = interpolation B, -1, Bél 1’3(; i
* Alignment across the coarsest networks ‘ ‘

~ B, O0][S.,, S_][4, © H,_ H
[ AR
o B._||S, S, llo 4, H, H,
‘ block-wise computation
ng = aﬁngleLl + (1 — CZ)HLl 3:L3 = aEngLg;ziLl + (1 - a)FIL3 )
SL2 =CZBL1$L2AL2+(1—CZ)HL2 '§L4 =(1—(X)(I—CZAL2®BL3) hL4_
* Alignment at finer levels
» perfect interpolations: §; = Q1 S, P;

E Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.




Moana — Experimental Setups [@}f

* Datasets
* Gr-Qc network vs. its permutation (nodes: 5,241 vs. 5,241)
* Google+ vs. its permutation (nodes: 23,628 vs. 23,628)
* Amazon co-purchasing networks (nodes: 74,596 vs. 66,951)
 ACM vs DBLP coauthor networks (nodes: 9,872 vs. 9,916)

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana — Experimental Results

—¥—Moana=@ AMG-F =& :Umeyama PriorSim| —¥%—Moana =@ -AMG-F =< -Umeyama =[» -iNeat
=& :FINAL =& -HubAlign =4 - ModuleAlign = [» :iNeat =& -FINAL =& -HubAlign PriorSim
1
. >0.8
§ -0--0-0--90-0--90----=----- @ o
3 06 \‘& 3 06
8 :3_%‘9—%_ ________ 8 ‘
S A A A A A A A - - ¢ S SN
€04l - £ 0.4 i A
c R 5 S ‘9---9-__
2 < = Bl T S I
0.2 < - 02 ---0---6--_g
’Q‘~ _—_e_—_e“-
?-0'-0-0-—0--0-—@-::::,~ 7 :
ol 3 3 3 3 ~¥ O ---4---4---4---§---i---¢
0 0.1 0.2 0.3 0.4 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3
noise on weight noise on prior similarity

Observations: (1) the performance of Moana is close to FINAL-P;
(2) Moana outperforms all other methods.

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana — Experimental Results

© o o
E=N m (s 0]

et
N

cluster alignment accuracy

level of clusters

Observation: Moana achieves a good performance in cluster
alignment at different levels.

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana — Experimental Results

\ e

Interpolation , -/

\ \
l—f N Y ) \
— s 2 )
y SRS
=% = N

S

A

MMF coars\ening .- ’(-1:" A Alignment =~ ,7 Al Interpolation = J
==D \"\’/‘ ) \ Ny "‘ : — |
y :;:f 4 :: Y &= ;':* ,/ P |
.n\ e} ‘*\\
)I/\ N
S
© = 1 Alignment| ()

Observation: Moana can unveil meaningful alignment of
clusters at different granularities.

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana — Experimental Results

250 T T T T T 14

-
n
T

200

—
o
T

150

Q0
T

o
T

running time (seconds)
o

running time (seconds)

501

# of nonzero elements in H x10°

Observation: (1)Moana scales linearly w.r.t. the number of edges;
(2)Moana scales linearly w.r.t. the number of nonzero
elementsin H;.

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Overview of Part 1

Pairwise NA

Collective NA

Dch

Higher-Order NA Related Tasks

= Consistency-based
= w/o attributes
= w/ attributes
= Embedding-based
= w/o attributes
= w/ attributes
= Optimal transport-
based
= w/o attributes

Consistency-based
= w/o attributes
= w/ attributes

Embedding-based
= w/o attributes

Consistency-based
= Single-level
=  Multilevel

Entity alignment
= Non-GNN based
= GNN-based
Cross-layer inference
Cross-network
transformation




Entity Alignment

* Goal: to link entities among multiple knowledge graphs

* Problem Definition:
* Given KGs {KG;|KG; = (E;,R;,T;)} and seed alighment £;
* Find all the aligned entities

I



Iterative Entity Alignment via Joint
Knowledge Embeddings

* Key components:
* Knowledge embedding: TransE, PTransE
* Joint embedding: translation-based, linear transformation
* |terative alignment: adding newly aligned entities

o [ul
e _ |
® — o
o sl
o sl
e &1
Ial
o
+ o0 -
— |e Reliahility = 1
o
€3
o
Il
+ |9 |8 Reliability = R(®, @)
o
Knowledge Graph Relationship Among Embeddings

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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ITransE — Knowledge Embeddings

* TransE: relations as translating vectors

‘ 1 ~ city of
%‘ r - E (hJ r, t)
ik 7“% >kl
* Loss function: L(h,rt) = E [y + E(h,r,t) — E(h', 7", t)]+

(h' v t")eT—

* Negative samples: T~ ={(W,nt)|h" € E}U{(h,rt')|t' € E}
U{('h,'r’,t:)|7" € R}, (h,nt)eT.

o
a“‘ n /' '
co® -
N %,

* PTransE: to encode multi-step relation path MARVEL
E(p,r) =|lp—r|l = |lp — (t = h)|| = E(h,p, ) T

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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ITransE — Joint Embeddings

* Key idea: to join embeddings in a unified space

* Translation-based model:
* Key idea: view alignment as a special relation
* Formulation: givene,; € E{,e; € E;, > e + rEi~E2) e,
E(e1,e2) = ||e1 + r'P17F2)
* Linear transformation model:
* Key idea: embedding space can be transformed linearly
* Formulation: transformation matrix M(E17E2)

E(e1,e2) = [|[MF17E2) g, — o]

— ez

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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ITransE — Iterative Alignment

* Key idea: iteratively adding newly alighed entities

 Soft alignment:
» Reliability scores of newly aligned entities

R(e1,e2) = o(k(0 — E(e1,e2)))

e Score function for soft alighment
Is = Z R(@l-f’?)(H(el.eQ) +%(eg,el))-

(:6’1 €9 )Eflﬂ

%(6’1-.62): Z (—-"T(‘—:‘“Q-,"-f)‘f‘ Z [_.-‘T(h.‘r.f‘g).

(e1,r,t) (h,r.e1)

* Limit # of newly aligned entities to a threshold in each
alignment procedure

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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ITransE — Experimental Results

* Dataset: DFB1, DFB2, DFB3 from FB15K

* Entity alignment performance
* |TransE: iterative alignment w/ TransE
* |[PTranskE: iterative alignment w/ PTransE

Mewe | o PPl D B3

Hits@1 Hits@10 MeanRank | Hits@1 Hits@10 Mean Rank | Hits@l Hits@10 Mean Rank
MTransE (LT) 38.9 61.0 237.7 12.3 33.8 419.2 6.5 22.0 699.8
MTransE (TB) 13.6 35.1 547.7 13.9 354 675.7 4.5 16.1 1255.5
TransE + PS 61.9 79.2 105.2 41.1 67.0 154.9 12.2 34.6 431.9
ITransE (HA) 62.6 78.9 100.0 41.2 66.9 151.9 12.3 33.7 4323
ITransE (SA) 67.1 83.1 80.1 57.7 77.7 109.3 16.2 40.9 367.2
PTransE + PS 65.8 83.4 62.9 46.3 72.1 96.8 15.8 40.2 346.9
[PTransE (HA) 66.1 83.3 59.1 46.2 72.6 04.2 15.1 39.7 337.6
[PTransE (SA) 71.7 86.5 49.0 63.5 82.2 67.5 20.4 474 281.0

Observations:

* |PTransE performs better than ITransE
e Soft alignment performs better than hard alignment

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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ITransE — Experimental Results

e Effectiveness of soft alignment strategy

T T T T 100 T ?

. l* ) ‘ | '. —* 1|~ ITransE (SA)
— 63} o . - v 921w 1|~= TransE + PS
S5 " | = 4f >, o, ||~ IPTransE (SA)
T 64t S e | o el 1= PTransE + PS
o v V. — “ — o ———
T 5|~ 2 G0 -

'

=0 | b §
_l','t} L VI — 1 — 'l — 1 — I J& 1 1 1 T — 4
“500 1,000 1.5002.0002.5003.000 500 1.000 1.500 2.000 2.500 3.000
[teration [teration

Observation: the performance of all
methods increase with iterations.

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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Knowledge Graph Alignment via
Graph Convolutional Networks

* Key idea: use GCNs to embed entities where aligned
entities are expected to be as close as possible.

* Assumptions:
* Equivalent entities tend to have similar attributes
* Equivalent entities are neighbored by other equivalent entities

* Embedding framework:

[Hgl—f-l). H(l+1)]

? a

= o (D2 AD- 2 HOWDO: HOW D))

S ) a a

Wang, Zhichun, et al. "Cross-lingual knowledge graph alignment via graph convolutional networks."

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018.
125




GCN-Align — Construct Adjacency Matrix

* KGs are relational multi-graphs (i.e., typed relations)

* Key idea: two measures on relations

#Head_Entities_of _r
T riples_of _r

Relation functionality: fun(r) =

Inverse functionality: ;. — #l@l-Entiticsof r
' ' #1riples_of_r

* Edge weight: influence of i-th entity over j-th entity

”‘ij — Z I‘fUH ‘|‘ Z .f”“(")

(ei,rej)eG (ej.rei)eG

Wang, Zhichun, et al. "Cross-lingual knowledge graph alignment via graph convolutional networks."
E Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018.
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GCN-Align — Alignment Prediction

* Model training:
* Margin-based rank loss for both hg and h,
* h;: structure embedding
* h,: attribute embedding

e Small distance for aligned entities for prediction

hsi_hs' hai_ha'
O B L) RN L O

* d,, d,: dimensions of structure and attribute embedding
* [: hyperparameter balancing importance of two embeddings

* For each entity e;, return a list of candidate entities in KG,

Wang, Zhichun, et al. "Cross-lingual knowledge graph alignment via graph convolutional networks."
E Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018.
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GCN-Align — Experimental Results
* Datasets: DBP15K from DBpedia with different languages

| DBPI5K A px | JA— EN | EN — JA |
| | Hits@l Hits@10 Hits@50 | Hits@l Hits@10 Hits@50 |
‘ *JE | 18.92 39.97 54.24 ] 17.80 38.44 52.48 ]
| *MTransE | 27.86 57.45 7594 | 2372 49.92 67.93 |

SEw/oneg. | 33.10 63.90 80.80 29.71 56.28 73.84

*JAPE SE 34.27 66.39 83.61 31.40 60.80 78.51

SE + AE 36.25 68.50 85.35 38.37 67.27 82.65

SE w/o neg. 28.90 60.61 80.03 25.34 53.36 71.94

JAPE' SE 29.35 63.31 82.76 26.37 57.35 76.87

SE + AE 31.06 64.11 81.57 32.45 62.21 79.08

GCN SE 38.21 72.49 82.69 36.90 68.50 79.51

7 SE + AE 39.91 74.46 86.10 38.42 71.81 83.72
| DBP15Krn_ 5 | FR— EN | EN — FR |
| | His@l Hits@10 Hits@50 | Hits@l Hits@10 Hits@50 |
| *JE | 1538 38.84 56.50 | 14.61 37.25 5401 |
‘ “MTransE | 24.41 55.55 74.41 | 21.26 50.60 69.93 |

SE w/o neg. 29.55 62.18 79.36 25.40 56.55 74.96

*JAPE SE 29.63 64.55 81.90 26.55 60.30 78.71

SE + AE 32.39 66.68 83.19 32.97 65.91 82.38

SE w/o neg. 28.23 60.99 78.47 24.68 55.25 74.19

JAPE' SE 27.58 62.03 79.98 24.93 58.95 71.79

SE + AE 30.21 65.81 82.57 31.42 63.86 80.95

GCN SE 36.51 73.42 85.93 36.08 72.37 85.44

SE + AE 37.29 74.49 86.73 36.77 73.06 86.39

Wang, Zhichun, et al. "Cross-lingual knowledge graph alignment via graph convolutional networks."
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018.
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Overview of Part 1

Pairwise NA

Collective NA

Dch

Higher-Order NA Related Tasks

= Consistency-based
= w/o attributes
= w/ attributes
= Embedding-based
= w/o attributes
= w/ attributes
= Optimal transport-
based
= w/o attributes

Consistency-based
= w/o attributes
= w/ attributes

Embedding-based
= w/o attributes

Consistency-based
= Single-level
=  Multilevel

Entity alignment
= Non-GNN based
= GNN-based
Cross-layer inference
Cross-network
transformation




Multi-layered Networks

* An example of multi-layered networks
./\ —a®

,./

Chemical Network

Disease Network

QD D

Lym

PPI NETWORK

Infrastructure networks Biological system networks

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks."
E Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 2016. 130



Cross-Layer Dependency Inference

* Given: a multi-layered network
* Layer-layer dependency matrix G;
* Within-layer connectivity matrices A = {Al, ,Ag};
* Observed cross-layer dependency matrices D = {Dij}

* Find: true cross-layer dependency matrices {ijij}

* To link different types of nodes (alignment links same)
-';-"._/f_’..ﬁ‘)::. /j.

Chemical Network

* A, for chemical network, etc.
 G(1,2) =1,6(1,3) = 0;
i D, are represented by solid
e arrows between G4 and G,

PPl NETWORK

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks."
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 2016. 1



Fascinate — Formulation

* Key idea: as a collective collaborative filtering problem

* Within-layer networks as user-user network, item-item
similarity network, etc.

* Cross-layer dependency as user-item ratings
* Optimization problem:

min J = Z IWi; ® (Dij — F.iFj/)H%w
| i,j: G(i,5)=1

N >y

v
C1: Matching Observed Cross-Layer Dependencies

g g
+ « E II‘(»FAi,/(T‘i. — AZ)F1) + :"3 E ”Fl”%’
i=1 e
N - h\/—/

~
C2: Node Homophily C3: Regularization

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks."
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 2016.



Fascinate — Optimization Algorithm

* Block coordinate descent method
* For each F;, use multiplicative update method

)J; iy — - |

¢ :2( Z [—(le (=) W-i.j ® D.i!j )FJ
Jj: G(i,7)=1

+ (WZJ O W-z'_.j ® (FlFJ,) )FJ]

+ ol F; — oA F; + 'sz)

JF';

X = Z (W, ©W,,; ®D;;)F; +aA;F;
Fi(u,v) < Fi(u,v) "

Y = Z (Wz_] O W.i__j O (FiFjl))Fj + aT;F; + BF;

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks."
E Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 2016. 133



* Datasets:

Fascinate — Experimental Setups

Dataset | # of Layers | # of Nodes | # of Links | # of CrossLinks
SOCIAL 3 125,344 214,181 188.844
BIO 3 35,631 253,827 75,456
INFRA-5 5 349 379 565
INFRA-3 3 15,126 29,861 28,023,500
* Abstract dependency structure
R1 R2 _

Paper Chemical C—) Al:ggrt

m/‘_—\; ( V\J R3 /# R4 /'___' )
Author Venue Gene Disease Internet Power  AS
(a) SOCIAL (b) BIO (c) INFRA-5 (d) INFRA-3

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks."
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 2016.



Fascinate — Experimental Results

* Effectiveness of dependency inference on BIO

I

Methods MAP | R-MPR | HLU | AUC | Prec@10
FASCINATE 0.0660 | 0.2651 | 8.4556 | 0.7529 0.0118
FASCINATE-CLUST | 0.0667 | 0.2462 | 8.2160 | 0.7351 0.0108
MulCol 0.0465 | 0.2450 | 6.0024 | 0.7336 0.0087
PairSid 0.0308 | 0.1729 | 3.8950 | 0.6520 0.0062
PairCol 0.0303 | 0.1586 | 3.7857 | 0.6406 0.0056
PairNMF 0.0053 | 0.0290 | 0.5541 | 0.4998 0.0007
PairRec 0.0056 | 0.0435 | 0.5775 | 0.5179 0.0007
FlatNMF 0.0050 | 0.0125 0.4807 | 0.5007 0.0007
FlatRec 0.0063 | 0.1009 | 0.6276 | 0.5829 0.0009

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks."
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 2016.
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Fascinate — Experimental Results

* Effectiveness of dependency inference on INFRA-5

I

Methods MAP | R-MPR HLU AUC | Prec@10
FASCINATE 0.5040 | 0.3777 | 67.2231 | 0.8916 0.2500
FASCINATE-CLUST | 0.4297 | 0.3220 | 56.8215 | 0.8159 0.2340
MulCol 0.4523 | 0.3239 | 59.8115 | 0.8329 0.2413
PairSid 0.3948 | 0.2392 | 49.5484 | 0.7413 0.2225
PairCol 0.3682 | 0.2489 | 48.5966 | 0.7406 0.2309
PairNMF 0.1315 | 0.0464 | 15.7148 | 0.5385 0.0711
PairRec 0.0970 | 0.0099 0.4853 | 0.5184 0.0399
FlatNMF 0.3212 | 0.2697 | 44.4654 | 0.7622 0.1999
FlatRec 0.1020 | 0.0778 | 11.5598 | 0.5740 0.0488

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks."
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 2016.
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Overview of Part 1

Pairwise NA Collective NA

Higher-Order NA Related Tasks

= Consistency-based = Consistency-based = Consistency-based = Entity alighment
= w/o attributes = w/o attributes = Single-level = Non-GNN based
= w/ attributes = w/ attributes = Multilevel =  GNN-based
= Embedding-based = Embedding-based = Cross-layer inference
= w/o attributes =  w/o attributes = Cross-network
= w/ attributes transformation
= Optimal transport-
based
= w/o attributes




Cross-Network Node Associations

 Goal: to find node associations across different networks

Transportation Network

Cross-Layer Node Dependency

Node Correspondence Users Purchase Products

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM
E SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.




Limitations of Traditional Methods

* Linear and/or consistency assumptions

- T |2
min ||By — PAoP" |7 min ||R — U{Uz||i+az Tr(UT(D; — A)U;)
e 2 [ 5 . .
min ||VeC(BO) " PVGC(AO)"lz Network-based regularizatior|
Linear transformation| Factorization-based

recommendation and cross-

Graph matching-based
layer dependency inference

network alignment

* Embedding space disparity issue O
Ideal case 4
O
Rotation around v Oi@ ®
—
O
@

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM
E SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.




Cross-Network Transformation

* Given: (1) Source and target networks G; = {V1,44, Xy}, G, =
{V,,B,,Y,}; Observed cross-network node associations L

* Output: (1) Cross-network transformation function g, s.t.
9(G1) = Go; (2) Node association function g,4e

e

Structure transformation

Source network G4

Transformation
function g 40]Beijing

M
F |25|nYe g
| > M|35[seattle | T
M

ale, 30 (age), Beijing

Prof.|China
Stud] USA

HEHEEE

Eng. | USA
Cross-Netwc!rk o 30|Beijing qE:.gd KChina
Transformation  Node associations oes

Attribute transformation

Male, ,, ofes Inode
Female, Student, USA ™ Ynode g

70 iy

»—

Male, Engineer, China  Female, Student, Kor > g
Node n
Target network G, associations

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM
E SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.




NetTrans — Model Overview

* Key idea: encoder-decoder architecture
* Encoder: to coarsen source network at different resolutions
* Decoder: to reconstruct target network at different resolutions

Y3 = MLP(X3)
A3 > B3
B3 = A3

Encoder =3 (4, X;) | ’ k=1 (B3,Y3) Decoder
=2 (A2X;) k=2 (By,Y>)
(A, X1) —_— (By,Y1)
—t h e % w— — k=3
A 4 4 I
v Y

— - » skip connections

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.




NetTrans — Encoder

* Key component: TransPool as a pooling layer

e Supernode selection
 Self-attention-based pooling

/7
// o lIAl—l (I:l) _eaRe-index
- e | f e
Jb/\o /I PT 1 l
A ‘ a
0 o
n X %

Topk L =1Gumbel [RP.X W} 2
electonH T softmax j - _’-
SEIECHoN ™ Message

L pgssing
W seif attention ;
elr-attention Max Aggregation

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM
E SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.




NetTrans — Encoder

e Supernode representation learning
* Attention-based message passing
e Aggregation by node-to-supernode assignment

7
// 1) ‘!Al—l(I'I) ‘EaRe—ind?
N ' VT
@’b‘: \\9/// P{ W Al

=
B al
X -
Top-k | [ Gumbel KXWy d
lection|— " oftmax ] - -
selec | _|Message
L{ passing

VIax Aggregation

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM
E SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.




NetTrans — Encoder

* Node-to-supernode assignment
* Gumbel softmax to approximate P
e Supernode candidate pruning

/7
/0 Aa(LD) €9Re-index
- / > > /4
EV\O / P ‘ l
v l
B A
N X N
Topk L] l HGumbel‘ PR ﬁ
selection | Message softmax
- passing
{ L [
BB 5eit-attention > .
Max Aggregation

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM
E SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.




NetTrans — Encoder

e Supernode connections
» Use auxiliary connections 4

1 ~
A= E(Al—1(1; D+A4)

//0 ,}AHU‘ f X GsRe-infiex
- ,g;{‘ - i d A
9. Pl W
A
|| Topk, . = Gumbel Pl)A(,M:/ll | ; X
selection Message softmax -
passing
1 =
B sef-attention > .
Max Aggregation

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM
E SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.




NetTrans — Decoder

* Goal: to reconstruct target network

* Key idea: same latent meanings of supernodes
* Part #1: leverage (4 by skip connections
e Part #2: calibrate part #1 from supernodes to nodes

Y3 = MLP(X3)
B; = A3
4

Encoder (=3 (A43,X3) | k=1 (B3Y3) Decoder
=2 (43,X;) . k=2 (B,Y3)
(A4,X1) . 3 3(31'1/1)
-1] (a0.%) |_D oot
] v Y

gl AO

— - » skip connections

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.




NetTrans — Experimental Results

* Effectiveness of NetTrans for network alignment

Coral-Cora2 ACM-DBLP Foursquare-Twitter
Hits@10 | Hits@30 | Accuracy | Hits@10 | Hits@30 | Accuracy | Hits@10 | Hits@30 | Accuracy

NetTrans 90.98% 97.51% 89.89% 84.09% 94.52% 58.21% 24.68% 34.58% 9.17%
FINAL-N 88.73% 90.77% 87.58% 82.91% 90.71% 54.39% 24.09% 33.80% 8.47%
FINAL-P 62.28% 80.01% 54.34% 69.70% 83.12% 36.34% 24.09% 33.80% 8.47%
REGAL 60.90% 69.20% 46.26% 63.68% 71.80% 41.78% 0.15% 2.20% 0.11%
IONE 73.03% 79.92% 42.29% 58.93% 84.19% 33.00% 13.44% 28.17% 4.13%
CrossMNA | 59.06% 68.62% 33.26% 42.54% 49.69% 21.04% 3.37% 14.79% 2.48%

I

Observation: NetTrans outperforms all other
baselines for network alignment task

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.




NetTrans — Experimental Results

e Effectiveness of NetTrans for social recommendation

Ciao-0.2 Ciao-0.3 Ciao-0.5
Prec@10 | Rec@10 | Rec@50 | Prec@10 | Rec@10 | Rec@50 | Prec@10 | Rec@10 | Rec@50
NetTrans 13.87% 11.08% | 29.90% 11.01% 13.23% | 28.15% 10.87% 12.43% | 39.02%
BPR 1.37% 0.6% 20.25% 1.38% 0.62% 20.18% 1.00% 0.37% 14.97%
wpZAN 11.99% 9.19% 20.77% 9.88% 10.33% 23.22% 9.85% 11.64% 26.04%
GraphRec 8.65% 6.62% 17.56% 8.42% 6.60% 18.07% 6.94% 6.63% 18.08%
SamWalker 4.94% 1.97% 5.98% 4.39% 2.07% 5.67% 2.48% 1.58% 4.05%
NGCF 2.77% 1.21% 3.26% 2.77% 1.48% 3.61% 3.17% 1.99% 4.77%

Observation: NetTrans outperforms all other

baselines for recommendation task

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM

I

SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.




RoadMap @

* Motivations and Background v’
* Part I: Recent Network Alignment Algorithms v’
* Part Il: Network Alignment Applications

e Part Ill: Future Research Directions

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM
E SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.




Overview of Part I1

P

Social Analysis

Bioinformatics Security

Knowledge Base

User identity linkage
Recommendation
= Friends
= Products
Information diffusion

Identify functional
orthologs and
knowledge transfer
= Evolutionary
relationships
= Human aging
Connectome Analysis

Knowledge
completion

Modeling adversarial
activities




Social Analysis — User Identity Linkage

e User ldentity Linkage
* To identify the same physical user across social platforms

Gender

Username

Education

Gender

Biography

* Can be used for de-anonymization, information integration, etc.




User Identity Linkage

* Existing methods:
* Profile based [Zafarani’13, Zhang’14, Perito’11, Vosecky’09]
* Network based [Zhou’16, Zhang’15, Liu’16]
* Profile + network based [Zhang’15, Shen’14, Zhang’’'16]

* Network-based can be considered as network
alighment w/o attributes.

* Profile + network-based methods can be viewed as
network alignment w/ attributes.




Social Analysis - Recommendation

* Friend recommendation: i
* For two social networks, if we know 'ﬂ J
SIS 2 B Q/—\ g

* Useruq isafriend ofuseru, inG; == RN

_ . flickr | % |
e User v, in G, and user uy in G, are A ——
same person w4 a2

* User v, in G, and user u, in G, are /ﬁ_....ﬁ,.&-ﬁ
same person
* But user v; and user v, are not friend in G,
* Then, we can recommend v to user v,

Yan, Ming, et al. "Friend transfer: Cold-start friend recommendation with cross-platform transfer learning of social
E knowledge." 2013 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2013.

Nelakurthi, Arun Reddy, and Jingrui He. "Finding cut from the same cloth: Cross network link recommendation via 153
joint matrix factorization." Thirty-First AAAI Conference on Artificial Intelligence. 2017.




Cross-Site Friend Recommendation

* Think of it as a cross-site link prediction problem

* Given two incomplete social networks, we jointly solve
network alignment and link prediction problems

—: Observed edges
—: Imputed edges
— —: Alignment




CENALP — Network Embedding

* DeepWalk-based network embedding
* Key idea: build a world-view graph

q-Pg (1—gq)-Pgg

W = _
(1-q)-Pgg q-Pg

* Within-network node sampling with a probability of g, and
cross-network sampling with (1 — q)

e Allows for cross-network Skip-gram embedding

e Construction of ngr by structure and attribute

min log(d+1) — . min log(d + 1,)’ +
dEsg(u’)

dist = 1

Esplu)

. ¢ ’
Simgu (U, U ) =

max log(d+ 1) — max log(d+ 1)’ :
Esp(u) Esp(u’)

desg(u')

Du, Xingbo, et al. "Cross-network Skip-gram Embedding for Joint Network Alignment and Link
E Prediction." IEEE Transactions on Knowledge and Data Engineering (2020).




CENALP — Network Alignment and
Link Prediction

* Greedy alignment by embedding-based similarity

* Given embeddings of u, u’ in two networks

X Xy

SimMemp (U, 1) = -
T %2 - kw2

* Greedy-based alignment objective

u',u”" =argmax  simemp(u,u’)

w,u’
* Embedding for link prediction
VERTEX PRODUCT ouTPuT
EMBEDDING LAYER LAYER
layer (1) = Concatel}aTte (X, ©Xy),
@ x.u.xxr;x.»‘tu.,
. layer, (Z: w,b) = w - layer,(Z) + b = - layefn (1),
LOGISTIC 1

REGRESSION

EMBEDDING OF VERTEX u layerz (Z:w) =0 [layerl (Z: )| =
EMBEDDING OF VERTEX v

HADAMARD HADAMARD PRODUCT
PRODUCT

- 1+ C—layerl[l':u' ) ?

Du, Xingbo, et al. "Cross-network Skip-gram Embedding for Joint Network Alignment and Link
Prediction." IEEE Transactions on Knowledge and Data Engineering (2020).




CENALP — Algorithm

e Objective function
t= ¥ 2| Y tomolarTxi)

weEwalks U1EW “uz;€C,,
I\’neg
t T i
+ ) Eupnriqu logo(—xZ T -x) |
k=1
* Overall procedure CRONATIRS ™, (7 s
- IS O O
’ , e & < ——]
DRI ES

_______________________________________

» ] -
; NETWORK \ LINK
ALIGNMENT PREDICTION
.,

Du, Xingbo, et al. "Cross-network Skip-gram Embedding for Joint Network Alignment and Link
E Prediction." IEEE Transactions on Knowledge and Data Engineering (2020).




CENALP — Experimental Results

* AUC score of link prediction

Dataset Method Training rate.

95% | 90% | 85% | 80% | 75% | 70% | 65% | 60% | 55% | 50%

JC [11] | 92.28% | 90.93% | 90.37% | 88.44% | 85.43% | 84.12% | 80.51% | 77.99% | 74.81% | 72.16%
AA [12] | 92.33% | 91.01% | 90.30% | 88.32% | 85.44% | 84.07% | 80.48% | 77.94% | 74.82% | 72.14%
SC [13] | 78.84% | 78.89% | 78.68% | 78.54% | 74.72% | 77.21% | 76.83% | 75.87% | 7391% | 74.40%

DBLP n2v [22] | 78.40% | 81.34% | 78.72% | 78.32% | 75.01% | 74.30% | 73.32% | 71.60% | 70.56% | 68.61%
T n2v+LR | 95.58% | 95.44% | 94.30% | 94.30% | 92.37% | 93.07% | 90.86% | 90.80% | 89.25% | 88.08%

disturbed copy CLF [8] | 96.92% | 96.55% | 95.70% | 95.69% | 94.43% | 94.28% | 92.95% | 92.93% | 92.23% | 90.68%
MNN [43] | 98.13% | 97.76% | 97.57% | 97.28% | 97.10% | 96.78% | 96.38% | 96.44% | 96.03% | 95.86%
CE-CLF | 9837% | 98.29% | 97.88% | 97.80% | 97.34% | 96.74% | 96.75% | 96.36% | 96.09% | 95.86%
CELP | 98.48% | 98.39% | 98.36% | 98.57% | 98.28% | 98.49% | 98.58% | 98.31% | 98.38% | 98.27%
CENALP | 99.65% | 99.27% | 99.35% | 99.38% | 99.36% | 99.08% | 99.01% | 99.29% | 99.25% | 99.06%

JC [11] | 74.76% | 77.89% | 76.94% | 75.64% | 73.15% | 72.63% | 70.48% | 68.90% | 67.25% | 65.12%
AA [12] | 7477% | 77.54% | 76.57% | 7576% | 73.36% | 72.68% | 71.09% | 68.84% | 67.19% | 65.18%
SC [13] | 84.39% | 83.39% | 86.88% | 84.53% | 83.83% | 83.79% | 81.56% | 80.80% | 81.81% | 77.61%

Facebook n2v [22] | 75.62% | 78.94% | 78.23% | 79.36% | 76.18% | 75.25% | 74.64% | 74.86% | 74.49% | 71.16%
T n2v+LR | 82.20% | 85.58% | 83.04% | 84.51% | 81.64% | 82.07% | 81.17% | 81.02% | 80.08% | 78.04%
Twitter CLF [8] | 84.88% | 85.02% | 86.18% | 86.70% | 84.00% | 83.99% | 82.95% | 82.43% | 81.96% | 80.75%

MNN [43] | 95.72% | 96.44% | 96.28% | 96.30% | 96.21% | 96.25% | 96.07% | 95.88% | 95.47% | 95.23%
CE-CLF | 96.52% | 96.84% | 96.37% | 96.34% | 96.30% | 95.69% | 94.92% | 94.31% | 93.11% | 92.00%
CELP | 97.29% | 97.52% | 97.46% | 97.85% | 97.99% | 97.56% | 97.23% | 97.15% | 96.66% | 96.14%
CENALP | 97.31% | 97.77% | 97.51% | 97.24% | 97.60% | 97.86% | 97.34% | 96.47% | 96.74% | 96.16%

Du, Xingbo, et al. "Cross-network Skip-gram Embedding for Joint Network Alignment and Link
E Prediction." IEEE Transactions on Knowledge and Data Engineering (2020).




Social Analysis - Recommendation

* Cross-site product recommendation:

* Intuition: if users are aligned, purchase histories can be
combined for better recommendation

* Key idea: leverage cross-site actions to improve user modeling
* Benefits: may mitigate issues, e.g., cold start, etc.

& e~ /O

DL~~~
o . @ »
p/ e~ _ @
o ~. 9 O
O—e o ®
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a Users Items




JUMA — Approach

» Key idea: use a probabilistic graphical model for joint
user modeling over aligned sites

* User’s site-specific preference
Pl-q is transferred from
. User
universal preference U; by  preference
. q Module
transferring model T4,

©1O

Action

Module

* User conducts actions A?
based on Piq and site-specific

item models {qbg}.

Cao, Xuezhi, and Yong Yu. "Joint user modeling across aligned heterogeneous sites." Proceedings

E of the 10th ACM Conference on Recommender Systems. 2016.




JUMA — Approach

* Joint user modeling over aligned sites

Text-Based
(Weibo)

* For item-based site (Douban), {Douvany (%) ?©

use matrix factorization o . . @ o
method.
@) — e @
()
@

e For text-based site (Weibo), use

Latent Dirichlet Allocation (LDA)
to model topic distributions for ‘] P
microblogs. @ — g

Cao, Xuezhi, and Yong Yu. "Joint user modeling across aligned heterogeneous sites." Proceedings
of the 10th ACM Conference on Recommender Systems. 2016.




JUMA — Experimental Results

e Effectiveness of recommendation

TARGET

ALGS

AUC SCORE, VARYING TRAINING INFORMATION RATIO

0.4

0.5

0.6

0.7

0.8

0.9

Text-Based
(Weibo)

LDA
JUMA

0.6514 + 0.0017
0.6824 £ 0.0014

0.6605 + 0.0015
0.6892 £ 0.0016

0.6694 + 0.0016
0.6976 £ 0.0014

0.6769 + 0.0018
0.7058 £+ 0.0017

0.6839 + 0.0015
0.7120 % 0.0012

0.6928 + 0.0014
0.7194 + 0.0013

CTR
JUMA

0.7021 + 0.0021
0.7338 & 0.0017

0.7133 4+ 0.0017
0.7420 + 0.0015

0.7262 + 0.0018
0.7502 % 0.0018

0.7352 4+ 0.0017
0.7592 + 0.0015

0.7432 + 0.0016
0.7670 % 0.0015

0.7532 + 0.0015
0.7743 £ 0.0014

Item-Based
(Douban)

PMF
SVD++
TMF
mmTM
JUMA

0.7275 £ 0.0016
0.7856 £ 0.0012
0.7872 + 0.0015
0.6929 + 0.0019
0.8127 + 0.0017

0.7323 £ 0.0013
0.7929 + 0.0010
0.7946 + 0.0012
0.6940 + 0.0011
0.8172 + 0.0016

0.7384 + 0.0015
0.7986 4+ 0.0016
0.8001 + 0.0013
0.6943 + 0.0012
0.8219 + 0.0013

0.7428 4+ 0.0016
0.8055 + 0.0012
0.8071 + 0.0019
0.6963 + 0.0015
0.8235 + 0.0011

0.7485 + 0.0014
0.8089 4 0.0013
0.8102 + 0.0014
0.7034 + 0.0010
0.8243 + 0.0015

0.7521 + 0.0013
0.8112 4+ 0.0011
0.8132 + 0.0012
0.7064 + 0.0018
0.8259 + 0.0013

I

Observation: JUMA performs best for both text-
based site Weibo and item-based site Douban.

Cao, Xuezhi, and Yong Yu. "Joint user modeling across aligned heterogeneous sites." Proceedings

of the 10th ACM Conference on Recommender Systems. 2016.




JUMA — Experimental Results

* Effectiveness of addressing cold-start
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Observation: Improvements are higher when
dealing with cold users than non-cold users.

Cao, Xuezhi, and Yong Yu. "Joint user modeling across aligned heterogeneous sites." Proceedings
E of the 10th ACM Conference on Recommender Systems. 2016.




Social Analysis — Information Diffusion

* Motivations
* Users can post messages in multiple platforms;

* Information thus propagates within-network and across
networks.

)
@
- -
&

.

social network 1 social network 2




M&M — Approach

e Goal: multi-aligned multi-relational network influence
maximizer

* Key idea: to extends traditional linear threshold to
depict diffusion across networks

 Activation probability functions:

* For intra-network relation i Yt
9pi (t+1) =
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* For inter-network relation j

Zhan, Qianyi, et al. "Influence maximization across partially aligned heterogenous social
E networks." Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Cham,
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2015.



M&M — Experimental Results

e Effectiveness of influence maximization

* Metric: # of activated users by the seed users
- 500 v
500 o—e MEM oo MEM
o« ME&M-Foursquare 1 »—e M&M-Foursquare
o —a MEM-Twitter w 400} ™= ME&M-Twitter
2 aool|*= @ a o—e LCI
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g ©-¢ Greedy-Twitter E 300} ©-¢ Greedy-Twitter rs .
@ 300} *—* LT-Foursquare i LT-Foursquare
‘S A LT-Twitter g LT-Twitter
8 8 200
£ 200 |
v )
3 S
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< 100 = 100
0 " " 0 A A
10 20 30 40 50 10 20 30 40 50
seed user number seed user number
(a) 30% anchor user (b) 60% anchor user

Zhan, Qianyi, et al. "Influence maximization across partially aligned heterogenous social
E networks." Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Cham,

2015. 166
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Bioinformatics — Knowledge Transfer

* Motivations:
* Traditional methods are based on sequence alignment

* Network data and sequence data provide complementary
insights
* Restricting to sequences may limit knowledge transfer

* Network alignment to identify functional orthologs

* Benefits: insightful for knowledge of aging and other
biological processes.

Faisal, Fazle E., et al. "The post-genomic era of biological network alignment." EURASIP Journal on
Bioinformatics and Systems Biology 2015.1 (2015): 3.




Knowledge Transfer — Evolutionary
Relationships Discovery

* Goal: using network alignment to guide biological
knowledge transfer

* From well-studied species to less well-studied species

* Methods:

 GRAAL and H-GRAAL: focused on phylogenetic tree
inference based on metabolic networks

* MI-GRAAL:

* Used these PPl network data to infer evolutionary
relationships

* Considered five herpesviruses based on their network
similarities.

Faisal, Fazle E., et al. "The post-genomic era of biological network alignment." EURASIP Journal on
E Bioinformatics and Systems Biology 2015.1 (2015): 3.




Knowledge Transfer — Human Aging
Discovery

* Motivations:
* Susceptibility to diseases increases with age
* Important to study molecular mechanisms behind aging and
aging-associated diseases
* Traditional methods:
* Transferring knowledge from well-studied species to human
between conserved sequence regions
* Network alignment-based methods:

 MI-GRAAL and IsoRankN: align well known aging-related
network parts of one species to known aging-related
network parts of other species

Faisal, Fazle E., et al. "The post-genomic era of biological network alignment." EURASIP Journal on
E Bioinformatics and Systems Biology 2015.1 (2015): 3.
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Knowledge Completion

* Goal: to complete a triple (h,7,t) whenoneof h,7,t
IS missing
* Application scenario by entity alignment:
* Two sets of triplets (i.e., KGs) for training

* One set of triplets for testing
* Two training KGs can be aligned

* Methods:

* Basically can be any KG alignment methods
* ITransE/IPTransE for example

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.

I




ITransE — Experimental Results

* Effectiveness of ITransE for knowledge completion

Entity Prediction Relation Prediction

Metric Mean Rank Hits@10 Mean Rank Hits@ ]
Raw Filter Raw Filter Raw Filter Raw Filter
MTransE (LT) 240.8 131.3 36.4 47.3 37.2 36.9 48.3 56.9
MTransE (TB) 851.3 759.7 9.4 10.8 203.7 203.4 274 27.7
TransE 246.1 131.6 42.5 54.3 55.9 55.6 44.2 50.7
TransE + Aux 232.8 121.5 43.3 54.9 50.1 49.8 44.4 50.9
[TransE (SA) 209.2 101.0 44.2 55.1 19.8 19.6 54.2 60.7
PTransE 213.0 97.2 50.9 72.1 2.33 1.96 67.4 86.9
PTransE + Aux 206.3 80.4 52.7 80.7 2.34 1.93 68.8 90.5
[PTransE (SA) 197.5 70.6 53.0 80.8 2.03 1.62 68.6 90.8

Observation: By successfully leveraging the auxiliary
information (i.e., second KG by alignment), ITransE and
IPTransE perform better than other baseline methods.

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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Security — Modeling Adversarial Activities

* Background:
* Networks are natural structure to model adversarial activities
* Smuggling
* lllegal arm dealing
* |llicit drug production
* But such activities are often embedded in different domains

«d a/ﬁ 7*»
05
2 | L=egie]
looks normal looks normal money laundering?

Xu, Jiejun, et al. "GTA3 2018: Workshop on Graph Techniques for Adversarial Activity Analytics."
E Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.

2018. 175



MAA — Challenges

* Domain heterogeneity
 Communication networks
* Phone call, emails, text, etc.
* People who call each other may unlikely text often
e Similarly, email network is structurally distinct from phone
call network
* Spatial-temporal challenge
* Relations contain much spatial-temporal information
* Who calls whom at which location and at what time

* Very large-scale networks

I




MAA — Approaches

* Any scalable network alignment methods
e w/o attribute: only based on connections
» w/ attribute: view spatial-temporal information as attributes

* Encode temporal information:
* Count # of connections in certain time window
* Values at all time windows form node attributes
e Can be used as attribute-based prior similarity matrix

* And/or as the attributes in attributed alignhment methods (e.g.,
FINAL)




RoadMap @

* Motivations and Background v’
* Part I: Recent Network Alignment Algorithms v’
* Part Il: Network Alignment Applications v’

e Part lll: Future Research Directions




Big Network Alignment — 4Vs

e 4\/ characteristics also hold for networks
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Big Network Alignment — Volume

* Real-world networks are very large-scale
* Facebook, Instagram, Twitter have billions of users

* Challenge: most of existing methods have at least
0 (n?) complexity
* Some recent consistency-based and embedding-based
methods reduce the complexity to linear

* Complexity may be even larger if we handle multiple
networks collectively

* Question: how to efficiently do network alignment?

* Possible directions: (1) leverage approximation
techniques, (2) parallelizable algorithm

I




Big Network Alignment — Variety

* Real-world networks have rich information
* Node/edge attributes, text descriptions, temporal information

* Methods exist to handle attribute information
e But few can handle temporal relation information
* Who called whom at what time, etc.

* Question: how to better incorporate side-information
into network alignment?

* Possible directions: heterogeneous network alignment,
temporal network alignment, etc.




Big Network Alignment — Variety

* Network heterogeneity
* Networks to be aligned carry different types of information
* Even same user may behave differently in different networks

* Existing methods explicitly or implicitly build upon
consistency assumptions
* But network heterogeneity may easily violate this assumption

* Questions:
* How to align different types of networks (e.g., LinkedIn vs. FB)?
* How to adaptively control consistency assumption?

* Possible directions: Deep learning methods that are
highly learnable.




Big Network Alignment — Velocity

* Networks are dynamically changing over time.

* Dynamic network alignment
e Simple solution: run from scratch at each timestamp
* Limitation: time consuming; can’t capture dynamics

* Questions:
* How to efficiently handle alignment over dynamic networks?
 How to leverage the dynamics (e.g., smoothness)?

* Possible directions:
* Matrix approximation to avoid unnecessary re-computations.
* Dynamic network embedding-based alignment methods.




Big Network Alignment — Veracity

* Real-world networks are often noisy and incomplete.
* Missing connections
* Missing nodes
* Missing attribute information

* Existing methods:
* Jointly solve network alignment and link prediction
* Benefit: if handled properly, they mutually benefit each other

* Challenge: error propagation

 |f alignment or imputed edges are not correct, the
performance will be hurt.




Adversarial Network Alignment

* Improve the alignment effectiveness and robustness
* Noise/adversarial attacks can mislead alighment

( ) (o

Rewiring
attacks

)




Adversarial Network Alignment

* Background:

 Existing adversarial attacks on network alignment are based
on derivative-based importance score

* But no work exits on adversarial defense

* Challenge:

* Compared to adversarial attack/defense in single network,
multiple networks may further complicate the defense
process.

e Possible direction:

* Graph neural network-based adversarial learning on
network alignment




Integrated Network Alignment

* Explainable network alignment

* Background: there exist explainable network mining tasks
* Network embedding
* Graph neural networks
* Ranking, clustering, etc.

* Problem goal:
e Explain why two nodes should be aligned or not

* Possible directions:

* Extend explainable network embedding to embedding-
based network alignment




Integrated Network Alignment

* Fair network alignment
* Background:

* Fairness has been studied recently in many machine
learning and data mining tasks

e Fairness in graphs has attracted attentions very recently,
but for single network

* Problem goal:
* To debias the network alighment
* Possible direction:

e Extend fairness in single network mining to multiple
networks first, then combine the specific objective of
network alignment




Summary

* Background and motivation

* Network alignment aims to find node correspondence
across networks

* A key step to many mining tasks across multiple networks

* Recent network alignment algorithms
e Pairwise network alignment
* Collective network alignment
* Higher-order network alignment
* Other related tasks

* Network alignment applications

 Future directions

I
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