Network Alignment:
Recent Advances and Future Directions

Si Zhang (UIUC)

Hanghang Tong (UIUC)
Mining on Multiple Networks

Graph Level
(e.g., graph similarity, classification, etc.)

Subgraph Level
(e.g., subgraph matching, cross-domain clustering, etc.)

Node Level
(e.g., network alignment, multi-view node classification)

We Are Here!
Multiple Networks Are Prevalent

Online Social Networks

Transaction Networks
- CHASE
- Bank of America
- PayPal
- Venmo
- Alipay

PPI Networks
- yeast
- elegans
- fly
- mouse

Knowledge Graphs
- DBpedia
- Freebase
- Yago
Multiple Networks: Examples

- Multiple social networks are inter-linked

Linked by “branches”
Multiple Networks: Examples

- Multiple transaction networks are inter-linked

Q: How to find those “branches”?

“Branches”
What Is Network Alignment?

- Find node correspondence across multiple networks
Network Alignment: Prob. Def.

• Given:
 • a set of networks $\{G_l\}$ ($l \geq 2$) where $G_l = \{\mathcal{V}_l, \mathcal{E}_l, A_l\}$;
 • $\mathcal{V}_l, \mathcal{E}_l, A_l$ are the nodes, edges and adjacency matrix of G_l;
 • prior alignment matrices $\{H_{l_1,l_2}\}$ between G_{l_1} and G_{l_2}.

• Find: the alignment matrices $\{S_{l_1,l_2}\}$ between G_{l_1} and G_{l_2}.
Why Do We Care?

Identify Species-Specific Pathways

Protein-Protein Interaction (PPI) networks

PPI network 1

PPI network 2

Cross Network Information Diffusion

Social network 1

Social network 2

Cross-Site Recommendation

Fraud Detection

Looks normal

Looks normal

Money laundering?
Related Setting: Graph Matching

• It solves for the permutation matrix P that minimizes

$$\|A_2 - P^T A_1 P\|_F^2 + \text{Tr}(H^T P)$$

• Can be interpreted as a quadratic assignment problem

• $P \in \{0,1\}^{n \times n}$, $P1 = 1$, $1^T P = 1^T$

• Need relaxations on the constraints
 • Doubly stochastic relaxation
 • Spectral relaxation

• Optional external information H
Related Setting: Entity Alignment

• To align entities across knowledge graphs

Traditional Methods

• Graph matching-based methods [Koutra’13, Zhang’15]

\[
\min_S \|A_2 - S^T A_1 S\|_F^2
\]

• Assumption: networks are noisy permutations of each other

• Sparse probabilistic relaxation, i.e., \(0 \leq S_{ij} \leq 1, \|S\|_0 \leq t\)

• For bipartite graphs, \(\min_{P,Q} \|B_2 - PB_1 Q\|_F^2\) [Koutra’13]
Traditional Methods

- Random walk-based methods (e.g., IsoRank) [Singh’08, Liao’09]
 - Intuition: random walks on Kronecker product graph
 \[s = \alpha (A_1 \otimes A_2) s + (1 - \alpha) h \]
 - \(s = \text{vec}(S), h = \text{vec}(H) \)

Key Challenge #1: Complexity

- **Time complexity:**
 - Most of existing works have an at least $O(n^2)$ time complexity
 - Inefficient computations for large-scale networks

- **Space complexity:**
 - At least $O(n^2)$ to store the alignment matrix
 - Costly memory consumptions

- **Q:** How to efficiently solve network alignment?
Key Challenge #2: Variety

• Networks have rich contextual information
 • Node attributes, e.g., gender, age, etc.
 • Edge attributes, e.g., relation types, etc.

• **Q:** How to encode contextual information to enhance the alignment performance?
Key Challenge #3: Heterogeneity

• Networks appear in various sources
 • Networks may capture distinct information
 • Facebook: to connect friend, family, etc.
 • LinkedIn: to connect professionals
 • Same nodes have different behavior patterns
 • E.g., a user is very active in Facebook but quiet in Twitter

• Q: How to handle the heterogeneity behind multi-sourced networks?
RoadMap

• Motivations and Background ✓
• Part I: Recent Network Alignment Algorithms
• Part II: Network Alignment Applications
• Part III: Future Research Directions
Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

- **Pairwise NA**
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes
 - w/ attributes
 - Optimal transport-based
 - w/o attributes

- **Collective NA**
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes

- **Higher-Order NA**
 - Consistency-based
 - Single-level
 - Multilevel
 - w/ attributes

- **Related Tasks**
 - Entity alignment
 - Non-GNN based
 - GNN-based
 - Cross-layer inference
 - Cross-network transformation
Pairwise Network Alignment

- **Given:** two networks G_1, G_2 with/without attributes
- **Find:** the node correspondence across networks

Illustrative example of pairwise network alignment w/o attributes
Consistency-Based Methods

• Intuition:
 • If two nodes are aligned, e.g., node-a in G_1 and node-x in G_2
 • Then their neighbors are likely to be aligned

\[A_1(a, b) \]
\[A_2(x, y) \]

\[
\begin{pmatrix}
 y & x \\
 b & 0.9 \\
 a & 1.0
\end{pmatrix}
\]
NetAlign: A Message Passing Method

• Key idea: to maximize the number of overlaps

NetAlign – Formulation #1

• To maximize the # of overlaps
 • Equivalent to maximizing the # of nonzeros in A
 • $\frac{\beta}{2} s^T As$

- $A(i'i', j'j') = 1$ if
 - $A_1(i, j) = 1$
 - $A_2(i', j') = 1$
 - $H(i, i') > 0, H(j, j') > 0$

- $s_{ii'} A(i'i', j'j') s_{jj'}$ is high if
 - i, i' are likely to be aligned
 - j, j' are likely to be aligned

NetAlign – Formulation #2

- Encode the prior knowledge
 - \(s^T \text{vec}(H) = \sum_{i,i'} S(i, i') H(i, i') \rightarrow \text{score from prior knowledge} \)

- Valid matching constraints
 - \(\sum_{i'} s.t. H(i, i') > 0 S(i, i') \leq 1 \)
 - \(\sum_i s.t. H(i, i') > 0 S(i, i') \leq 1 \)
 - \(S(i, i') \in \{0,1\} \)

NetAlign – Factor Graph

• Nodes:
 • Variable nodes: e.g.,
 • Node pairs that form overlaps
 • Function nodes: constraints

\[
\begin{align*}
 f_i &= \begin{cases}
 1 & \sum_{H(i,i') > 0} s_{ii'} \leq 1 \\
 0 & \text{otherwise}
 \end{cases} \\
 g_{i'} &= \begin{cases}
 1 & \sum_{H(i,i') > 0} s_{ii'} \leq 1 \\
 0 & \text{otherwise}
 \end{cases} \\
 h_{ii'jj'} &= \begin{cases}
 1 & s_{ii'jj'} = s_{ii'}s_{jj'} \\
 0 & \text{otherwise}
 \end{cases}
\end{align*}
\]

• Edges: connecting each function node to the variable nodes it acts on

NetAlign – Algorithm

- Belief propagation
 - Iteratively makes local and greedy decisions
 - Updated by passing messages between nodes in factor graph
- Messages $m_{ii'}^t \rightarrow f_i$, $m_{ii'}^t \rightarrow g_{i'}$
 - Control matching constraints
 - Also contain info about term $\alpha s^T \text{vec}(H)$
- Messages $m_{ii'}^t \rightarrow h_{ii'jj'}$
 - Agents in a square should communicate
- Term $\frac{\beta}{2} s^T A s$

Experimental Results

<table>
<thead>
<tr>
<th>Alg.</th>
<th>Data</th>
<th>Overlap</th>
<th>Sol. Time</th>
<th>Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MWM</td>
<td>musm-homo</td>
<td>393</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>dmela-scere</td>
<td>135</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>lcsh-small</td>
<td>119</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>lcsh2wiki</td>
<td>2346</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iso</td>
<td>musm-homo</td>
<td>1027</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>dmela-scere</td>
<td>301</td>
<td>3.7</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>lcsh-small</td>
<td>257</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>lcsh2wiki</td>
<td>11732</td>
<td>11.7</td>
<td>587.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>musm-homo</td>
<td>1076</td>
<td>2.6</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>dmela-scere</td>
<td>369</td>
<td>26.7</td>
<td>34.9</td>
</tr>
<tr>
<td></td>
<td>lcsh-small</td>
<td>316</td>
<td>7.6</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>lcsh2wiki</td>
<td>15974</td>
<td>3795.3</td>
<td>4198.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP++</td>
<td>musm-homo</td>
<td>1062</td>
<td>14.4</td>
<td>17.3</td>
</tr>
<tr>
<td></td>
<td>dmela-scere</td>
<td>376</td>
<td>28.7</td>
<td>33.3</td>
</tr>
<tr>
<td></td>
<td>lcsh-small</td>
<td>318</td>
<td>11.8</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>lcsh2wiki</td>
<td>15771</td>
<td>4103.8</td>
<td>4990.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR</td>
<td>musm-homo</td>
<td>1070</td>
<td>12.5</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>dmela-scere</td>
<td>375</td>
<td>22.7</td>
<td>79.4</td>
</tr>
<tr>
<td></td>
<td>lcsh-small</td>
<td>318</td>
<td>4.1</td>
<td>16.8</td>
</tr>
<tr>
<td></td>
<td>lcsh2wiki</td>
<td>16836</td>
<td>4878.2</td>
<td>4988.0</td>
</tr>
</tbody>
</table>
Final: Attributed Network Alignment

- **Given:**
 - two networks \(\{G_l\} (l = 1, 2) \) where \(G_l = \{V_l, E_l, A_l, N_l, E_l\} \)
 - \(N_l, E_l \) denote the node attributes and edge attributes;
 - prior alignment matrices \(H \) between \(G_1 \) and \(G_2 \).

- **Find:** the alignment matrix \(S \) between \(G_1 \) and \(G_2 \).

Final – Formulation #1

- Topological consistency
 - **Intuition:** similar node-pairs tend to have similar neighboring node-pairs

- Example:
 - Large $S(a, x)$
 - Large $A_1(a, b)$ and $A_2(x, y)$

Final – Formulation #2

• Node attribute consistency
 • **Intuition:** similar node-pairs share similar node attributes

 ![Diagram](image)

 • Large $S(a, x)$ → node-a and node-x share similar attributes

Final – Formulation #3

• Edge attribute consistency
 • **Intuition:** similar node-pairs connect to their neighbor-pairs via similar edge attributes

• Example:
 • Large $S(a, x)$
 • Large $S(b, y)$

Edge (a, b) & (x, y) share similar attributes

Final – Overall Formulation

• Objective function

\[
\min_S J(S) = \sum_{a,b,x,y} \left[\frac{S(x,a)}{\sqrt{f(x,a)}} - \frac{S(y,b)}{\sqrt{f(y,b)}} \right]^2 \times \Phi(x,a) \Phi(y,b) \times \Psi((x,y),(a,b))
\]

#1. Topology Consistency
\[A_1(a,b)A_2(x,y)\]

#2. Node Attribute Consistency

#3. Edge Attribute Consistency

• Matrix-form objective function

\[
\min_S J(S) = \min_S \sum_{v,w} \left[\frac{s(v)}{\sqrt{D(v,v)}} - \frac{s(w)}{\sqrt{D(w,w)}} \right]^2 W(v,w)
\]

\[s = \text{vec}(S) = \min_S s^T(I - \overline{W})s\]

attributed Kronecker product

Final – Algorithm

• Fixed-point solution: by setting derivative to 0
 • Converges to the global optimal solution

\[s = a \overline{W}s + (1 - a)h \Rightarrow s = (1 - a)(I - a \overline{W})^{-1}h \]

• Intuition: a similarity propagation to neighboring node-pairs, which is additionally calibrated by node/edge attributes

• Speed-up variants:
 • Low-rank approximation for full alignment
 • Low-rank approximation for on-query alignment

Final – Low-Rank Approximation Algorithm

• If we only consider node attributes

\[s = (1 - \alpha) \left(I - \alpha D_N^{-2} N (A_1 \otimes A_2) N D_N^{-2} \right)^{-1} h \]

• **Key Idea:** Low rank approximation of \(A_1 \) and \(A_2 \)

\[
\begin{aligned}
A_1 &\approx U_1 \Lambda_1 U_1^T \\
A_2 &\approx U_2 \Lambda_2 U_2^T \\
\end{aligned}
\]

Sherman-Morrison Lemma

\[
\begin{aligned}
s &\approx (1 - \alpha) \left(I + \alpha D_N^{-2} N U \Lambda U^T N D_N^{-2} \right) h \\
\Lambda &= [(\Lambda_1 \otimes \Lambda_2)^{-1} - \alpha U^T N D_N^{-1} N U]^{-1}
\end{aligned}
\]

• **Complexity:** \(O(n^6) \) or \(O(mnt_{\max}) \) \(\rightarrow \) \(O(n^2 r^4) \)

Final – Experimental Results

Observation: attributes help improve network alignment.

Final – Experimental Results

Observation: FINAL gains a better quality-speed balance.

Final – Experimental Results

Observation: FINAL On-Query gains around 90% accuracy relative to exact FINAL-N, but more than 100 times faster.

Final – More on Computations

• Further speed-up: from $O(n^2)$ to $O(m)$
 • Key idea: indirect representation of S [1]
 • Theorem: Low-rank of A_1 and $A_2 \rightarrow$ low-rank of S

\[
S \leftarrow U_2 \times M \times U_1^T
\]

• Alignment quality: linear complexity w/o approximation
 • Multilevel alignment (perfect interpolation theorem) [2]
 • Implicit Krylov subspace methods [3]

Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

- **Pairwise NA**
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - **Embedding-based**
 - w/o attributes
 - w/ attributes
 - Optimal transport-based
 - w/o attributes

- **Collective NA**
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes

- **Higher-Order NA**
 - Consistency-based
 - Single-level
 - Multilevel
 - Embedding-based
 - w/o attributes

- **Related Tasks**
 - Entity alignment
 - Non-GNN based
 - GNN-based
 - Cross-layer inference
 - Cross-network transformation
Embedding-Based Methods

• Intuition: to learn node representations that
 • Preserve structural/attribute proximity within networks
 • Preserve proximity across aligned nodes
IONE: Aligning Users by Network Embedding

• Background: network embedding by LINE (2nd order)

 • Compute two distributions:

 Empirical distribution of neighborhood structure:

 Model distribution of neighborhood structure:

 $\hat{p}_2(v_j \mid v_i) = \frac{\sum_{k \in V} w_{ik}}{\sum_{k \in V} w_{ik}}$

 $p_2(v_j \mid v_i) = \frac{\exp(\mathbf{u}_i^T \mathbf{\tilde{u}}_j)}{\sum_{k \in V} \exp(\mathbf{u}_k^T \mathbf{\tilde{u}}_i)}$

 • Minimize the KL divergence by omitting constant terms

 $O_2 = \sum_i KL(\hat{p}_2(\cdot \mid v_i), p_2(\cdot \mid v_i)) = -\sum_{(i,j) \in E} w_{ij} \log p_2(v_j \mid v_i)$

IONE – Within-Network Embedding

• **Intuition:** to preserve structure proximity

• Embedding vectors for node-\(i\)
 - A node vector \(u_i\)
 - Context vectors: (1) input context \(u_i'\), (2) output context \(u_i''\)

\[
p_1(v_j|v_i) = \frac{\exp(u_j'^T \cdot \overrightarrow{u_i})}{\sum_{k=1}^{V} \exp(u_k'^T \cdot \overrightarrow{u_i})}
\]

\[
p_2(v_i|v_j) = \frac{\exp(u_i''^T \cdot \overrightarrow{u_j})}{\sum_{k=1}^{V} \exp(u_k''^T \cdot \overrightarrow{u_j})}
\]

Empirical distributions:
\[
\hat{p}_1(i, j) = w_{ij}/d_{i}^{\text{out}} \quad \hat{p}_2(i, j) = w_{ij}/d_{j}^{\text{in}}
\]

• **Objective:** minimize KL divergences

IONE – Cross-Network Embedding

• **Intuition**: aligned nodes coincide in embedding space

Model distribution:
\[p_1(v_j^Y | v_k^X) = \frac{\exp(u_j^Y^T u_k^X)}{\sum_{k \in V_X} \exp(u_j^Y^T u_k^X)} \]

Empirical distribution:
\[\hat{p}_1(v_j^Y | v_k^X) = \sum_{i \in V_Y} p_a(v_i^Y | v_k^X) \times \frac{w_{ij}}{d_i^{\text{out}}} \]

• \(p_a(v_i^Y | v_k^X) \): probability that \(v_k^X \) and \(v_i^Y \) are aligned

• **Objective**: minimize KL divergences
 • e.g., \(p_1(v_j^Y | v_i^X) \) vs. \(\hat{p}_1(v_j^Y | v_i^X) \)

IONE – Model Inference

• SGD with negative sampling

\[
\log p_1(v_j^X | v_i^X) \propto \log \sigma (\overrightarrow{u_j^X}^T \cdot \overrightarrow{u_i^X}) \\
+ \sum_{m=1}^{K} E_{v_n \sim p_n(v)} \log \sigma (-\overrightarrow{u_n^X}^T \cdot \overrightarrow{u_i^X})
\]

\[
\log p_1(v_j^Y | v_k^X) \propto \log \sigma (\overrightarrow{u_j^Y}^T \cdot \overrightarrow{u_k^X}) \\
+ \sum_{m=1}^{K} E_{v_n \sim p_n(v)} \log \sigma (-\overrightarrow{u_n^Y}^T \cdot \overrightarrow{u_k^X})
\]
IONE – Experimental Results

- Dataset: Foursquare-Twitter

IONE – Case Study

DeepLink: Deep Learning for User Identity Linkage

• Motivations:
 • Heterogeneity across networks → Complex alignment
 • Scarcity of labeled alignment → Supervised training is not easy

• Key questions:
 • How to learn non-linear transformation for alignment?
 • How to boost supervised training algorithm?

• Key idea: use deep neural network with dual-learning

DeepLink – Network Embedding

• Key idea: pre-trained Skip-gram based embedding
 • To predict the context of a center node

• Context sampling:
 • Random walks from center nodes

• Objective function:
 • Original: to maximize
 \[p(u_{t+j} \mid u_t) = \frac{\exp(v_{u_{t+j}}^T v_{u_t}')}{{\sum_i^m \exp(v_{u_i}^T v_{u_t}')}} \]
 • With negative sampling:
 \[\log[\sigma(v_{u_{t+j}}^T v_{u_t}')] + \sum_{i=1}^K \mathbb{E}_{u_i \sim p_n(u)}[\log(1 - \sigma(v_{u_i}^T v_{u_t}'))] \]

DeepLink – Neural Mapping Learning

• Goal: to learn non-linear alignment across networks

• Intuition: neural networks capture complex nonlinearity

• Key idea: use two multilayer perceptrons as mappings
 • One MLP (denoted by Φ) to map from network \mathcal{G}^s to \mathcal{G}^t
 • Another MLP (denoted by Φ^{-1}) for \mathcal{G}^t to \mathcal{G}^s
DeepLink – Dual Learning

• Goal: to address the lack of labeled alignment

• Components:
 • **Unsupervised alignment pre-training** uses node embedding to learning two weak mapping functions Φ and Φ^{-1}
 • **Supervised alignment learning** uses labeled alignment to improve weak mapping functions

DeepLink – Unsupervised Pre-training

• Goal: to learn self-consistent mappings
• Method: autoencoder type of architecture
 • Encoder: mapping function Φ
 • Decoder: mapping function Φ^{-1}
• Objective function:
 • Minimize difference between $\Phi^{-1}(\Phi(\nu_u))$ and ν_u

DeepLink – Supervised Learning

- Key idea: align according to some reward functions
 - Method:
 - Find k-similar embeddings $v'(u_i)$ in G^t for mapped embeddings of node-a in G^s, i.e., $u_i \in \text{Top}(\Phi(v(u_a)))$
 - Rewards:
 - To maximize rewards

DeepLink – Experimental Results

- Dataset: Foursquare-Twitter

Comparisons of alignment precision.

<table>
<thead>
<tr>
<th></th>
<th>P@1</th>
<th>P@5</th>
<th>P@9</th>
<th>P@13</th>
<th>P@21</th>
<th>P@30</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRW</td>
<td>0.000</td>
<td>0.021</td>
<td>0.047</td>
<td>0.053</td>
<td>0.090</td>
<td>0.160</td>
</tr>
<tr>
<td>MAG</td>
<td>0.064</td>
<td>0.136</td>
<td>0.170</td>
<td>0.208</td>
<td>0.271</td>
<td>0.323</td>
</tr>
<tr>
<td>MAH</td>
<td>0.050</td>
<td>0.121</td>
<td>0.188</td>
<td>0.214</td>
<td>0.251</td>
<td>0.000</td>
</tr>
<tr>
<td>ONE</td>
<td>0.123</td>
<td>0.253</td>
<td>0.304</td>
<td>0.351</td>
<td>0.407</td>
<td>0.427</td>
</tr>
<tr>
<td>IONE</td>
<td>0.224</td>
<td>0.403</td>
<td>0.463</td>
<td>0.501</td>
<td>0.557</td>
<td>0.597</td>
</tr>
<tr>
<td>DeepLink</td>
<td>0.345</td>
<td>0.594</td>
<td>0.661</td>
<td>0.687</td>
<td>0.700</td>
<td>0.705</td>
</tr>
</tbody>
</table>

Observation: DeepLink achieves highest accuracy in top-k identity matching.

DeepLink – Experimental Results

- Visualization of cosine similarities of randomly sampled anchor nodes (the more diagonalized, the better).

Observations:
- IONE disrupts the embedding similarities of labeled alignment pairs after training.
- In contrast, DeepLink still preserves the anchor linkage.
- Similarly for testing anchor nodes.

Regal: Representation Learning-Based Graph Alignment

- Goal: unsupervised embedding for network alignment

<table>
<thead>
<tr>
<th></th>
<th>Regal</th>
<th>IONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key idea</td>
<td>matrix factorization</td>
<td>skip-gram w/ negative sampling</td>
</tr>
<tr>
<td>Attributes</td>
<td>w/ node attributes</td>
<td>w/o attributes</td>
</tr>
<tr>
<td>Supervision</td>
<td>unsupervised</td>
<td>semi-supervised</td>
</tr>
<tr>
<td>Complexity</td>
<td>sub-quadratic</td>
<td>sub-quadratic</td>
</tr>
</tbody>
</table>

Regal – Overview

• Node feature extraction
• Node embedding learning by matrix factorization
• Network alignment

Regal – Node Feature Extraction

• Structural identity
 • \mathcal{R}^k_u: the set of nodes exactly k steps away from u
 • $d^k_u(i)$: the number of nodes in \mathcal{R}^k_u with degree of i
 • $d_u = \sum_{i=1}^{K} \delta^{k-1} d^k_u$ (δ is the discount factor)
 • Logarithmic binning: $d^k_u(i)$ is the number of nodes $u \in \mathcal{R}^k_u$ such that $\lfloor \log_2 \text{deg}(u) \rfloor = i$

• Attribute-based identity
 • Node input feature vector f_u

Regal – Cross-Network Node Similarity

• Direct computation

\[\text{sim}(u, v) = \exp[-\gamma_s \|d_u - d_v\|_2^2 - \gamma_a \times \text{dist}(f_u, f_v)] \]

• Limitation: costly computation \(O(n^2) \) where \(n = n_1 + n_2 \)

• Efficient computation
 • Reduce to node-landmark similarity
 • \(\mathcal{L} \): a set of \(p \) landmark nodes chosen randomly
 • Node-landmark similarity matrix: \(C(u, v), v \in \mathcal{L} \)
 • Landmark-landmark similarity

\[W(v_1, v_2) = C(v_1, v_2), v_1 \in \mathcal{L} \]

Regal – Node Embedding Learning

- Nystrom-based approximation
 \[S \approx \tilde{S} = CW^+C^T \]
 - \(W^+ \): pseudo-inverse of \(W \)
- Embedding: \(Y = CU\Sigma\Sigma^{-1} \) where \([U, \Sigma, V] = \text{SVD}(W^+)\)
Regal – Alignment Inference

• K-D tree for fast similarity search

• Similarity scores:

\[sim(u, v) = e^{-\| \tilde{Y}_1[u] - \tilde{Y}_2[v] \|^2} \]

• Complexity:
 • Feature extraction: \(O(nKd_{avg}^2) \)
 • Node similarity: \(O(npb) \)
 • Node embedding: \(O(np^2) \)
 • Alignment: \(O(n \log n) \)

Regal – Experimental Results

- Data constructions: (1) noisy permutations of one network, (2) synthetic node attributes

Regal – Experimental Results

• Running time:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Arxiv (seconds)</th>
<th>PPI (seconds)</th>
<th>Arenas (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINAL</td>
<td>4182 (180)</td>
<td>62.88 (32.20)</td>
<td>3.82 (1.41)</td>
</tr>
<tr>
<td>NetAlign</td>
<td>149.62 (282.03)</td>
<td>22.44 (0.61)</td>
<td>1.89 (0.07)</td>
</tr>
<tr>
<td>IsoRank</td>
<td>17.04 (6.22)</td>
<td>6.14 (1.33)</td>
<td>0.73 (0.05)</td>
</tr>
<tr>
<td>Klau</td>
<td>1291.00 (373)</td>
<td>476.54 (8.98)</td>
<td>43.04 (0.80)</td>
</tr>
<tr>
<td>REGAL-node2vec</td>
<td>709.04 (20.98)</td>
<td>139.56 (1.54)</td>
<td>15.05 (0.23)</td>
</tr>
<tr>
<td>REGAL-struc2vec</td>
<td>1975.37 (223.22)</td>
<td>441.35 (13.21)</td>
<td>74.07 (0.95)</td>
</tr>
<tr>
<td>REGAL</td>
<td>86.80 (11.23)</td>
<td>18.27 (2.12)</td>
<td>2.32 (0.31)</td>
</tr>
</tbody>
</table>

Faster computations due to landmark strategy and K-D tree search.

Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

- **Pairwise NA**
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes
 - w/ attributes
 - Optimal transport-based
 - w/o attributes

- **Collective NA**
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes
 - w/ attributes

- **Higher-Order NA**
 - Consistency-based
 - Single-level
 - Multilevel

- **Related Tasks**
 - Entity alignment
 - Non-GNN based
 - GNN-based
 - Cross-layer inference
 - Cross-network transformation
Gromov-Wasserstein Learning for Graph Matching and Node Embedding

• Backgrounds:
 • Networks are often noisy.
 • Many methods learn specific transformations across embeddings of different networks.

• Key question:
 • How to jointly learn node embeddings and infer alignment?

• Benefits of joint problem:
 • Distance between learned node embeddings as auxiliary information of edges \(\rightarrow\) help reduce noise
 • Learn in same manifold \(\rightarrow\) lower risk of model misspecification

GWL - Preliminaries

• Gromov-Wasserstein distance
 • An optimal transport-like distance for metric spaces
 • Calculates distances between pairs of samples of each domain
 • Measures how these distances compare to those in other domains

• Gromov-Wasserstein discrepancy
 • A relaxation by using dissimilarity measurement instead of strict distance metrics

• Metric-measure space of a graph
 • Corresponds to a pair \((C, \mu) \in R^{|V| \times |V| \times \Sigma |V|}\) of a graph \(\mathcal{G}\).
 • \(C = [c_{ij}]\) represents a node distance/dissimilarity matrix.
 • \(\mu = [\mu_i]\) is the empirical distribution of nodes.

GWL - Gromov-Wasserstein Learning Framework

• Gromov-Wasserstein discrepancy between graphs
 • Given \mathcal{G}_S and \mathcal{G}_T, the discrepancy between (C_S, μ_S) and (C_T, μ_T)

$$d_{GW}(\mu_S, \mu_T) := \min_{T \in \Pi(\mu_s, \mu_t)} \sum_{i,j,i',j'} L(c_{ij}^S, c_{i'j'}^T) T_{ii'} T_{jj'}$$

$$= \min_{T \in \Pi(\mu_s, \mu_t)} \langle L(C_S, C_T, T), T \rangle.$$

• $L(\cdot, \cdot)$: element-wise loss, e.g., mean square or KL-divergence
• T: optimal transport between nodes of two networks, indicating probabilities of alignment

• $L_{jj'} = \sum_{i,i'} L(c_{ij}^S, c_{i'j'}^T) T_{ii'}$
• $L(C_S, C_T, T) = [L_{jj'}] \in R^{|V_S| \times |V_T|}$

GWL - Gromov-Wasserstein Learning Framework

• Proposed model
 • Use node embeddings X_s, X_t for dissimilarity matrices

$$
\min_{X_s, X_t} \min_{T \in \Pi(\mu_s, \mu_t)} \left\{ \frac{L(C_s(X_s), C_t(X_t), T), T}{\text{Gromov-Wasserstein discrepancy}} + \alpha \langle K(X_s, X_t), T \rangle + \beta R(X_s, X_t). \right\}
$$

• $C_s(X_s) = (1 - \alpha)C_s + \alpha K(X_s, X_s)$ where C_s is computed by edge weights and $K(X_s, X_s)$ measures distance within same network based on node embedding.

• $R(X_s, X_t) = \sum_{k=S,t} L(K(X_k, X_k), C_k) + L(K(X_s, X_t), C_{st})$

Optional when given labeled alignment

GWL – Learning Algorithm

• Alternatively learn optimal transport and embedding
• Learning optimal transport
 • Proximal point method

\[
\min_{T \in \Pi(\mu_s, \mu_t)} \left< L(C_s(X_s^{(m)}), C_t(X_t^{(m)}), T), T \right> + \alpha \left< K(X_s^{(m)}, X_t^{(m)}), T \right> + \gamma KL(T || T^{(n)})
\]

A proximal term based on KL-divergence

• Updating embeddings
 • Given optimal transport \(\hat{T}^{(m)} \), solve by gradient descent

\[
\min_{X_s, X_t} \alpha_m \left< K(X_s, X_t), \hat{T}^{(m)} \right> + \beta R(X_s, X_t)
\]

GWL – Experimental Results

- Communication network alignment
 - Dataset: MC3 used in the Mini-Challenge 3 of VAST Challenge 2018

- Model Variants:
 - GWL-C and GWL-R: use cosine and RBF distance on embeddings
 - GWD: no embedding-based distance

<table>
<thead>
<tr>
<th>Method</th>
<th>Call→Email (Sparse) Node Correctness (%)</th>
<th>Call→Email (Dense) Node Correctness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAA</td>
<td>34.22</td>
<td>0.53</td>
</tr>
<tr>
<td>LRSA</td>
<td>38.20</td>
<td>2.93</td>
</tr>
<tr>
<td>TAME</td>
<td>37.39</td>
<td>2.67</td>
</tr>
<tr>
<td>GRAAL</td>
<td>39.67</td>
<td>0.48</td>
</tr>
<tr>
<td>MI-GRAAL</td>
<td>35.53</td>
<td>0.64</td>
</tr>
<tr>
<td>MAGNA++</td>
<td>7.88</td>
<td>0.09</td>
</tr>
<tr>
<td>HugAlign</td>
<td>36.21</td>
<td>3.86</td>
</tr>
<tr>
<td>NETAL</td>
<td>36.87</td>
<td>1.77</td>
</tr>
<tr>
<td>GWD</td>
<td>23.16±0.46</td>
<td>1.77±0.22</td>
</tr>
<tr>
<td>GWL-R</td>
<td>39.64±0.57</td>
<td>3.80±0.23</td>
</tr>
<tr>
<td>GWL-C</td>
<td>40.45±0.53</td>
<td>4.23±0.27</td>
</tr>
</tbody>
</table>

GWL – Experimental Results

• Procedure recommendation
 • Dataset: MIMIC-III dataset
 • Goal: recommend suitable procedures for patients, according to their disease characteristics.

<table>
<thead>
<tr>
<th>Method</th>
<th>Top-1 (%)</th>
<th></th>
<th>Top-5 (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F1</td>
<td>P</td>
</tr>
<tr>
<td>Word2Vec</td>
<td>39.95</td>
<td>13.27</td>
<td>18.25</td>
<td>28.89</td>
</tr>
<tr>
<td>GloVe</td>
<td>32.66</td>
<td>13.01</td>
<td>17.22</td>
<td>27.93</td>
</tr>
<tr>
<td>DWL (Scratch)</td>
<td>37.89</td>
<td>12.42</td>
<td>17.16</td>
<td>27.39</td>
</tr>
<tr>
<td>DWL (Finetune)</td>
<td>40.00</td>
<td>13.76</td>
<td>18.71</td>
<td>30.59</td>
</tr>
<tr>
<td>GWD-R</td>
<td>46.29</td>
<td>17.01</td>
<td>22.32</td>
<td>31.82</td>
</tr>
<tr>
<td>GWD-C</td>
<td>43.16</td>
<td>15.79</td>
<td>20.77</td>
<td>31.42</td>
</tr>
<tr>
<td>GWL-R</td>
<td>46.20</td>
<td>16.93</td>
<td>22.22</td>
<td>32.03</td>
</tr>
<tr>
<td>GWL-C</td>
<td>47.46</td>
<td>17.25</td>
<td>22.71</td>
<td>32.09</td>
</tr>
</tbody>
</table>

Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

Pairwise NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes
 - w/ attributes
- Optimal transport-based
 - w/o attributes

Collective NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes
 - w/ attributes

Higher-Order NA
- Consistency-based
 - Single-level
 - Multilevel

Related Tasks
- Entity alignment
 - Non-GNN based
 - GNN-based
- Cross-layer inference
- Cross-network transformation
Collective Network Alignment

- Goal: to find alignment across multiple networks
- Possible solution
 - Find pairwise alignment
 - Then combine
 - Transitivity constraint may be violated

- Problem setting:
 - Given: more than two networks $\mathcal{G} = \{\mathcal{G}_1, \ldots, \mathcal{G}_m\}$
 - Find: alignment across $\mathcal{G}_i, \mathcal{G}_j$ ($i, j = 1, \ldots, m$) jointly
Multiple Anonymized Social Networks Alignment

• Goal: to find anchor links/alignment across multiple networks without attributes
• Key challenge: how to preserve transitivity property

UMA – Unsupervised Pairwise Alignment

• Key idea: to minimize the alignment inconsistency
 • I.e., the number of non-shared edges between those mapped from $G^{(i)}$ and those in $G^{(j)}$

• Mathematical formulation

\[
\bar{T}^{(i,j)} = \arg \min_{T^{(i,j)}} \left\| (T^{(i,j)})^T S^{(i)} T^{(i,j)} - S^{(j)} \right\|_F^2 \\
\text{s.t. } T^{(i,j)} \in \{0, 1\}^{|U^{(i)}| \times |U^{(j)}|},
\]

\[
T^{(i,j)} 1_{|U^{(j)}| \times 1} \preceq 1_{|U^{(i)}| \times 1},
\]

\[
(T^{(i,j)})^T 1_{|U^{(i)}| \times 1} \preceq 1_{|U^{(j)}| \times 1},
\]

• $S^{(i)}, S^{(j)}$: adjacency matrices of networks $G^{(i)}$ and $G^{(j)}$
• $T^{(i,j)}$: alignment matrix from $G^{(i)}$ to $G^{(j)}$

UMA – Transitivity Penalties

• Measure the number of inconsistent edges between the mapped from $G^{(i)} \rightarrow G^{(j)} \rightarrow G^{(k)}$ and $G^{(i)} \rightarrow G^{(k)}$

• Mathematical formulation

$$C(\{G^{(i)}, G^{(j)}, G^{(k)}\})$$
$$= \left\| \left(T^{(j,k)} \right)^\top \left(T^{(i,j)} \right)^\top S^{(i)} T^{(i,j)} T^{(j,k)} - \left(T^{(i,k)} \right)^\top S^{(i)} T^{(i,k)} \right\|_F^2$$

• Extension to n ($n \geq 3$) networks

$$C(\{G^{(1)}, G^{(2)}, \ldots, G^{(n)}\})$$
$$= \sum_{\forall \{G^{(i)}, G^{(j)}, G^{(k)}\} \subset \{G^{(1)}, G^{(2)}, \ldots, G^{(n)}\}} C(\{G^{(i)}, G^{(j)}, G^{(k)}\})$$

UMA – Optimization Problem

- **Objective:** to minimize the alignment inconsistency and transitivity penalties simultaneously

- **Mathematical formulation**

\[
\begin{align*}
\hat{T}^{(i,j)}, \hat{T}^{(j,k)}, \hat{T}^{(k,i)} &= \arg\min_{T^{(i,j)}, T^{(j,k)}, T^{(k,i)}} \left\| (T^{(i,j)})^T S^{(i)} T^{(i,j)} - S^{(j)} \right\|_F^2 \\
&\quad + \left\| (T^{(j,k)})^T S^{(j)} T^{(j,k)} - S^{(k)} \right\|_F^2 \\
&\quad + \left\| (T^{(k,i)})^T S^{(k)} T^{(k,i)} - S^{(i)} \right\|_F^2 \\
&\quad + \alpha \left\| (T^{(j,k)})^T (T^{(i,j)})^T S^{(i)} T^{(i,j)} T^{(j,k)} - (T^{(k,i)})^T S^{(i)} T^{(k,i)} \right\|_F^2
\end{align*}
\]

- **Alignment inconsistency**
- **Transitivity penalties**
- **One-to-one constraints**
- **Relaxations**
- **Linear constraint + L1 norm**

UMA – Transitive Network Matching

• Goal: to solve for binary variable $x_{l,m}^{(i,j)}$ indicating whether node u_l in $G^{(i)}$ is aligned with node u_m in $G^{(j)}$

• Optimization problem
 • Select high scores in alignment
 • One-to-one constraint
 • Transitivity constraint

UMA – Experimental Results

- Dataset: Stack Overflow, Super User and Programmers
- Alignment performance

COSNET: Connecting Social Networks with Local and Global Consistency

• Intuitions: binary classification over node pairs
 • Instances: node pairs $X = \{x_i\}$
 • Labels: $Y = \{y_i\}$, $y_i = 1$ if x_i refers to same node, otherwise 0

• Factors considered:
 • Node feature consistency (e.g., user profiles)
 • Structural consistency
 • Global consistency (i.e., transitivity constraints)

COSNET – Node Feature Consistency

• Intuition: to encode the feature similarity for x_i

• Formulation:

$$E_l(Y, X) = \sum_i w_l^T g_l(x_i, y_i)$$

• $g_l(x_i, y_i)$ is a vector-valued feature function
 • Encodes the user profile similarity for node pair x_i
• w_l is the model parameter
COSNET – Structural Consistency

• Intuition:
 • If two nodes are aligned, their neighbors are likely to be aligned

• Matching graph $MG = (V_{MG}, E_{MG})$
 • Same as Kronecker product graph

• Pairwise formulation:

$$E_e(Y, X) = \sum_{\langle x_i, x_j \rangle \in E_{MG}} w_e f_e(y_i, y_j)$$

$$f_e(y_i, y_j) = \begin{cases}
(1, 0, 0)^\top & \text{if } y_i = y_j = 0 \\
(0, 1, 0)^\top & \text{if } y_i + y_j = 1 \\
(0, 0, 1)^\top & \text{if } y_i = y_j = 1
\end{cases}$$

Definition 2 (Global Inconsistency). Given a set of social networks \mathbf{G}, a set of user pairs X and the corresponding labels Y, if there exists a sequence of user pairs $\langle x_{i_1}, x_{i_2}, \cdots, x_{i_n} \rangle$, such that

$$\forall i = i_1, i_2, \cdots, i_n, y_i = 1$$

and

$$\forall k = 1, 2, \cdots, n - 1, \mathcal{V}_i^2 = \mathcal{V}^1_{i_k+1}$$

and

For the pair $\langle \mathcal{V}_{i_n}^2, \mathcal{V}_1^1 \rangle$, the corresponding label $y_j = 0$

then we say that the assigned labels Y causes global inconsistency given \mathbf{G} and X.

COSNET – Global Consistency

• Triadic closure in the matching graph

• Formulation:

\[E_t(Y, X) = \sum_{c \in T_{MG}} w_t^T f_t(Y_c) \]

\[f_t(y_i, y_j) = \begin{cases}
(1, 0, 0, 0)^T & \text{if } |Y_c| = 0 \\
(0, 1, 0, 0)^T & \text{if } |Y_c| = 1 \\
(0, 0, 1, 0)^T & \text{if } |Y_c| = 2 \\
(0, 0, 0, 1)^T & \text{if } |Y_c| = 3
\end{cases} \]

COSNET – Model Learning

• Objective function:

\[
E(Y, X) = \sum_{x_i \in V_{MG}} w_i^T g_i(x_i, y_i) + \sum_{\langle x_i, x_j \rangle \in E_{MG}} w_e^T f_e(y_i, y_j)
+ \sum_{c \in T_{MG}} w_c^T f_t(Y_c)
\]

• Define distance of two matching configurations \(Y \) and \(Y' \)

\[
\Delta(Y, Y') = \sum_{x_i \in V_{MG}} \delta_l(y_i, y_i') + \sum_{c \in T_{MG}} \delta_c(Y_c, Y_c') + \sum_{\langle x_i, x_j \rangle \in E_{MG}} \delta_e(\langle y_i, y_j \rangle, \langle y_i', y_j' \rangle)
\]

Hamming distance

COSNET – Model Learning

• By max-margin theory:

\[
\min_{\mathcal{W}} \frac{1}{2} \|\mathcal{W}\|^2 + \mu \xi \\
\text{s.t. } E(\hat{Y}, X; \mathcal{W}) \leq E(Y, X; \mathcal{W}) - \Delta(Y, \hat{Y}) + \xi
\]

• \(\hat{Y}, Y\): input labeled configuration and learned configuration
• \(\mathcal{W} = (\mathbf{w}_l, \mathbf{w}_e, \mathbf{w}_t)\): model parameters
• \(\xi\): slack variable to handle non-separable data
• \(\mu\): trade-off between the maximum margin & error penalty
• Constraint: distance between the energy of \(\hat{Y}, Y\) at least \(\Delta(\hat{Y}, Y)\)

COSNET – Model Learning

• The original problem is intractable.
• Use Lagrangian relaxation for dual decomposition

$$
\min_{W, \lambda} \frac{1}{2} \|W\|^2 + \mu (E(\hat{Y}, X; W) - \max_{\lambda} L(Y, X, \lambda; W))
$$

s.t. \sum_{y_i \in Y_i} \lambda^f_i = 0, \ \forall f \in F

• \(f \in F \): factor functions
• \(\lambda \): Lagrange multipliers
• Convex and non-differentiable
• Solution: projected sub-gradient method

COSNET – Public Dataset

• Data statistics

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Network</th>
<th>#Users</th>
<th>#Relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNS</td>
<td>Twitter</td>
<td>40,171,624</td>
<td>1,468,365,182</td>
</tr>
<tr>
<td></td>
<td>LiveJournal</td>
<td>3,017,286</td>
<td>87,037,567</td>
</tr>
<tr>
<td></td>
<td>Flickr</td>
<td>215,495</td>
<td>9,114,557</td>
</tr>
<tr>
<td></td>
<td>Last.fm</td>
<td>136,420</td>
<td>1,685,524</td>
</tr>
<tr>
<td></td>
<td>MySpace</td>
<td>854,498</td>
<td>6,489,736</td>
</tr>
<tr>
<td>Academia</td>
<td>LinkedIn</td>
<td>2,985,414</td>
<td>25,965,384</td>
</tr>
<tr>
<td></td>
<td>ArnetMiner</td>
<td>1,053,188</td>
<td>3,916,907</td>
</tr>
<tr>
<td></td>
<td>VideoLectures</td>
<td>11,178</td>
<td>786,353</td>
</tr>
</tbody>
</table>

• Link: https://www.aminer.cn/cosnet

COSNET – Experimental Results

• Connecting social media sites
 • Twitter, LiveJournal, Last.fm, Flickr, MySpace

COSNET – Experimental Results

• Connecting Aminer with LinkedIn and VideoLectures

Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

Pairwise NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes
 - w/ attributes
- Optimal transport-based
 - w/o attributes

Collective NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/ o attributes

Higher-Order NA
- Consistency-based
 - Single-level
 - Multilevel

Related Tasks
- Entity alignment
 - Non-GNN based
 - GNN-based
- Cross-layer inference
- Cross-network transformation
Embedding-Based Collective Network Alignment

• Goal: to learn node embeddings that can infer alignment in the embedding space
Cross-Network Embedding for Multi-Network Alignment

• Motivations: networks heterogeneity
 • Different networks may own different semantic meanings;
 • Same node may have distinct embeddings in different networks

• Goal: to learn node embeddings for multiple network alignment

• Key question: how to capture the commonness among anchor node counterparts and specific semantics in different networks?
CrossMNA – Cross Network Embedding

• Key idea: split node embedding into two components

\[\mathbf{v}_i^k = \mathbf{Wu}_i + \mathbf{r}_i^k \]

• Intra-vector \(\mathbf{v}_i^k \): captures structural information in a network
• Inter-vector \(\mathbf{u}_i \): captures the commonness of anchor node
• Network vector \(\mathbf{r}_i^k \): captures network-specific semantics

CrossMNA – Experimental Results

• Multiple network alignment

Twitter dataset

Arxiv dataset

Precision@\(\alpha\) vs. \(\alpha\)
Precision@30 vs. training ratio

CrossMNA – Experimental Results

• Multiple network link prediction

<table>
<thead>
<tr>
<th>Dataset</th>
<th>arXiv 30%</th>
<th>arXiv 50%</th>
<th>arXiv 80%</th>
<th>SacchCere 30%</th>
<th>SacchCere 50%</th>
<th>SacchCere 80%</th>
<th>Twitter 30%</th>
<th>Twitter 50%</th>
<th>Twitter 80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeepWalk</td>
<td>87.86</td>
<td>94.41</td>
<td>98.12</td>
<td>69.20</td>
<td>73.96</td>
<td>78.29</td>
<td>57.09</td>
<td>59.96</td>
<td>63.74</td>
</tr>
<tr>
<td>LINE</td>
<td>75.05</td>
<td>85.73</td>
<td>94.75</td>
<td>60.54</td>
<td>65.05</td>
<td>68.87</td>
<td>53.12</td>
<td>52.97</td>
<td>53.22</td>
</tr>
<tr>
<td>node2vec</td>
<td>88.06</td>
<td>94.57</td>
<td>97.11</td>
<td>71.15</td>
<td>76.33</td>
<td>80.16</td>
<td>56.84</td>
<td>61.22</td>
<td>65.93</td>
</tr>
<tr>
<td>PMNE</td>
<td>90.12</td>
<td>94.47</td>
<td>95.24</td>
<td>77.61</td>
<td>79.85</td>
<td>81.35</td>
<td>61.12</td>
<td>70.72</td>
<td>75.91</td>
</tr>
<tr>
<td>MELL</td>
<td>93.51</td>
<td>96.30</td>
<td>98.84</td>
<td>76.18</td>
<td>79.92</td>
<td>81.21</td>
<td>70.64</td>
<td>75.89</td>
<td>79.84</td>
</tr>
<tr>
<td>CrossMNA</td>
<td>96.46</td>
<td>97.53</td>
<td>99.19</td>
<td>76.88</td>
<td>81.12</td>
<td>82.59</td>
<td>75.85</td>
<td>80.48</td>
<td>85.29</td>
</tr>
</tbody>
</table>

Observation: CrossMNA performs better due to transmitting complementary information across networks.

CrossMNA – Experimental Results

• Scalability: memory usage

Observation: CrossMNA has less memory usage than other baseline methods.
Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

Pairwise NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes
 - w/ attributes
- Optimal transport-based
 - w/o attributes

Collective NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes

Higher-Order NA
- Consistency-based
 - Single-level
 - Multilevel
- Embedding-based
 - w/o attributes

Related Tasks
- Entity alignment
 - Non-GNN based
 - GNN-based
- Cross-layer inference
- Cross-network transformation
Higher-order Network Alignment

• Higher-order network mining:
 • Involves higher-order structures, instead of edges

• Motivations:
 • Traditional approaches (e.g., NetAlign) aim to maximize # of conserved edges (overlaps/squares).
 • Leverage higher-order structures exist in networks (e.g., motifs, clusters, etc.).

• Single-level: use higher-order structures to align nodes
• Multilevel: to align both nodes and clusters at multi-level
Triangular Alignment (TAME)

- Network motifs: connected subgraphs that occur with significantly higher frequency
 - 3^{rd}-order: 3-node line, triangle
 - k^{th}-order: k-node star, etc.

- Objective: to maximize # of aligned substructures

TAME – Formulation #1

• Binary quadratic program in NetAlign

\[
\begin{align*}
\text{maximize} & \quad (1 - \alpha)w^T x + \frac{\alpha}{2} x^T S x \\
\text{subject to} & \quad Cx \leq 1 |V_G| + |V_H| \\
& \quad x(ii') \in \{0, 1\}.
\end{align*}
\]

To maximize # of conserved edges

• Higher-order extension

\[
x^T (\mathcal{T}_H \otimes \mathcal{T}_G) x^{m-1} = (\mathcal{T}_H \otimes \mathcal{T}_G) x^m
\]

\[
\begin{align*}
\text{maximize} & \quad (1 - \alpha)w^T x + \frac{\alpha}{m!} (\mathcal{T}_H \otimes \mathcal{T}_G) x^m \\
\text{subject to} & \quad Cx \leq 1 |V_G| + |V_H| \\
& \quad x(ii') \in \{0, 1\}.
\end{align*}
\]

\[
\begin{align*}
\text{maximize} & \quad (1 - \alpha)w^T x + \frac{\alpha}{6} (\Delta_{H \times G}) x^3 \\
\text{subject to} & \quad Cx \leq 1 |V_G| + |V_H| \\
& \quad x(ii') \in \{0, 1\}.
\end{align*}
\]

\(\mathcal{T}_H\) and \(\mathcal{T}_G\): the motif-tensors associated with a m-node motif in both graphs G and H

• \(\Delta_{H \times G} = \Delta_H \otimes \Delta_G\): Kronecker product of triangle tensors
• Counts # of conserved triangles

TAME – Formulation #2

• Relaxed formulation
 • Remove one-to-one constraint and relax x to be any reals
 • Add a 2-norm constraint on x to make it bounded

$$\begin{align*}
\text{maximize } & (\Delta_{H \times G} x^3 \\
\text{subject to } & \|x\| = 1.
\end{align*}$$

Tensor eigenvector problem

• The classic SS-HOPM is costly to solve it.

• Implicit kernel for computing tensor-vector products

TAME – Algorithm

• Key ideas:
 • To use implicit tensor-kernel product $\tilde{\mathbf{x}} = \Delta_{H \times G} \mathbf{x}^2$ for $\Delta_{H \times G} \mathbf{x}^3 = \mathbf{x}^T \tilde{\mathbf{x}}$
 • SS-HOPM main loop computes topological similarity matrices
 • A score function to solve a bipartite max-weight matching

To encode integer constraint of X and one-to-one mapping constraint

TAME – Experimental Results

• Alignment quality on yeast vs. human dataset

Observation: TAME performs closely to the best method in preserving the # of conserved edges

TAME – Experimental Results

• Metric: # of conserved triangles

Observation: TAME ranks the highest in terms of the number of conserved triangles
Multilevel Network Alignment

- **Goals:** to find node correspondence as well as the correspondence among clusters at different levels

- **Motivation:**
 - Networks exhibit hierarchical cluster-within-clusters structure

Moana – Challenges

• C1: Alignment accuracy

• Errors propagate through levels

• C2: Scalability Better than quadratic?

Moana – Problem Definition

• Given:
 • (1) adjacency matrices $\overline{A}_1, \overline{B}_1$ of two undirected networks;
 • (2) a sparse prior alignment preference H_1;
 • (3) the number of levels $L \geq 2$ of interests.

• Find: a set of alignment matrices S_l at level-l, $l = 1, \ldots, L$
 • where S_1 indicates the alignment at the node level

Moana Formulation: Multilevel Optimization

• Generic strategy
 • coarsening \rightarrow alignment \rightarrow interpolation

• Alignment interpolations
 • Bilinear interpolations by $P_l \in R^{p_l \times n_1}, Q_l \in R^{q_l \times n_2} (p_l \leq n_1, q_l \leq n_2)$
 • w.l.o.g., $S_1 = Q_1^T S_2 P_1$ between level-1 & level-2

Moana Formulation: Multilevel Optimization

• Multilevel alignment formulation

Level-1: \(\min_{s_1} \alpha s_1^T (I - A_1 \otimes B_1) s_1 + (1 - \alpha) \| s_1 - h_1 \|^2 \)

If \(P_1 P_1^T = I \) and \(Q_1 Q_1^T = I \)

Level-2: \(\min_{s_2} \alpha s_2^T (I - A_2 \otimes B_2) s_2 + (1 - \alpha) \| s_2 - h_2 \|^2 \)

• \(A_2 = P_1 A_1 P_1^T, B_2 = Q_1 B_1 Q_1^T \) and \(H_2 = Q_1 H_1 P_1^T \)

• same properties (e.g., convexity) and algorithm as FINAL-P

• ‘good’ (semi-) orthogonal \(P_1, Q_1 \) make \(A_2, B_2 \) well-represented

Moana Formulation: Perfect Interpolation

- Denote S_l^*, S_{l+1}^* are optimal solutions at level-l and level-$(l + 1)$
- Perfect interpolation (to address error propagation):

 Interpolation from the optimal alignment matrix at level-$(l + 1)$ is equal to that at level-l

- If P_l, Q_l ($l = 1, \ldots, L - 1$) are orthogonal
- Then $S_l^* = Q_l^T S_{l+1}^* P_l$
Moana – Coarsening Algorithm

• Generic strategy
 • Coarsening \rightarrow alignment \rightarrow interpolation

• Network coarsening by P_l, Q_l
 • $A_{l+1} = P_l A_l P_l^T, B_{l+1} = Q_l B_l Q_l^T$

• Requirements on P_l, Q_l
 • Perfect interpolation: they are orthogonal matrix
 • Efficient computation: they are sparse matrix
 • Informative coarsening: they can uncover hierarchical cluster-within-clusters structures

Moana – Coarsening Algorithm

- Multiresolution matrix factorization

$$\begin{pmatrix} S_{L-1} \\ \vdots \end{pmatrix} P_{L-1} \cdots P_2 P_1 A_1 P_1^T P_2^T \cdots P_{L-1}^T = A_L \rightarrow \tilde{A}_L$$

- Coarsening procedure
 - $$Q_{L-1} \cdots Q_2 Q_1 B_1 Q_1^T Q_2^T \cdots Q_{L-1}^T = B_L \rightarrow \tilde{B}_L$$

- $$S(S_{B_L}, S_{A_L})$$ indicates the alignment among clusters at the $$l$$-th granularity

Moana – Alignment Algorithm

- Generic strategy
 - coarsening \rightarrow alignment \rightarrow interpolation
- Alignment across the coarsest networks

$$
\tilde{S}_L = \alpha \begin{bmatrix} \tilde{B}_{L1} & 0 \\ 0 & \tilde{B}_{L2} \end{bmatrix} \begin{bmatrix} \tilde{S}_{L1} \\ \tilde{S}_{L3} \end{bmatrix} \begin{bmatrix} \tilde{A}_{L1} \\ 0 \end{bmatrix} + (1 - \alpha) \begin{bmatrix} \tilde{H}_{L1} \\ \tilde{H}_{L3} \end{bmatrix}
$$

block-wise computation

$$
\tilde{S}_{L1} = \alpha \tilde{B}_{L1} \tilde{S}_{L1} \tilde{A}_{L1} + (1 - \alpha)\tilde{H}_{L1} \\
\tilde{S}_{L2} = \alpha \tilde{B}_{L1} \tilde{S}_{L2} \tilde{A}_{L2} + (1 - \alpha)\tilde{H}_{L2} \\
\tilde{S}_{L3} = \alpha \tilde{B}_{L2} \tilde{S}_{L3} \tilde{A}_{L1} + (1 - \alpha)\tilde{H}_{L3} \\
\tilde{s}_{L4} = (1 - \alpha)(I - \alpha \tilde{A}_{L2} \otimes \tilde{B}_{L3})^{-1} \tilde{h}_{L4}
$$

- Alignment at finer levels
 - perfect interpolations: $S_l = Q_l^T S_{l+1} P_l$

Moana – Experimental Setups

• Datasets
 • Gr-Qc network vs. its permutation (nodes: 5,241 vs. 5,241)
 • Google+ vs. its permutation (nodes: 23,628 vs. 23,628)
 • Amazon co-purchasing networks (nodes: 74,596 vs. 66,951)
 • ACM vs DBLP coauthor networks (nodes: 9,872 vs. 9,916)

Moana – Experimental Results

Observations: (1) the performance of Moana is close to FINAL-P; (2) Moana outperforms all other methods.

Moana – Experimental Results

Observation: Moana achieves a good performance in cluster alignment at different levels.

Moana – Experimental Results

Observation: Moana can unveil meaningful alignment of clusters at different granularities.

Moana – Experimental Results

Observation: (1) Moana scales linearly w.r.t. the number of edges; (2) Moana scales linearly w.r.t. the number of nonzero elements in H_1.

Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

- **Pairwise NA**
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes
 - w/ attributes
 - Optimal transport-based
 - w/o attributes

- **Collective NA**
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes

- **Higher-Order NA**
 - Consistency-based
 - Single-level
 - Multilevel
 - Embedding-based
 - w/o attributes

- **Related Tasks**
 - Entity alignment
 - Non-GNN based
 - GNN-based
 - Cross-layer inference
 - Cross-network transformation
Entity Alignment

• Goal: to link entities among multiple knowledge graphs

• Problem Definition:
 • Given KGs \{KG_i|KG_i = (E_i, R_i, T_i)\} and seed alignment \mathcal{L};
 • Find all the aligned entities
Iterative Entity Alignment via Joint Knowledge Embeddings

• Key components:
 • Knowledge embedding: TransE, PTransE
 • Joint embedding: translation-based, linear transformation
 • Iterative alignment: adding newly aligned entities

ITransE – Knowledge Embeddings

• TransE: relations as translating vectors

\[E(h, r, t) = \|h + r - t\| \]

• Loss function:

\[L(h, r, t) = \sum_{(h', r', t') \in T^-} [\gamma + E(h, r, t) - E(h', r', t')]_+ \]

• Negative samples:

\[T^- = \{(h', r, t)|h' \in E\} \cup \{(h, r, t')|t' \in E\} \cup\{(h, r', t)|r' \in R\}, \ (h, r, t) \in T. \]

• PTransE: to encode multi-step relation path

\[E(p, r) = \|p - r\| = \|p - (t - h)\| = E(h, p, t) \]

ITransE – Joint Embeddings

- Key idea: to join embeddings in a unified space

Translation-based model:
- Key idea: view alignment as a special relation
- Formulation: given $e_1 \in E_1, e_2 \in E_2 \rightarrow e_1 + r^{(E_1 \rightarrow E_2)} \approx e_2$

$$E(e_1, e_2) = ||e_1 + r^{(E_1 \rightarrow E_2)} - e_2||.$$

Linear transformation model:
- Key idea: embedding space can be transformed linearly
- Formulation: transformation matrix $M^{(E_1 \rightarrow E_2)}$

$$E(e_1, e_2) = ||M^{(E_1 \rightarrow E_2)}e_1 - e_2||.$$

ITransE – Iterative Alignment

• Key idea: iteratively adding newly aligned entities

• Soft alignment:
 • Reliability scores of newly aligned entities
 \[R(e_1, e_2) = \sigma(k(\theta - E(e_1, e_2))) \]

• Score function for soft alignment
 \[I_S = \sum_{(e_1, e_2) \in M} R(e_1, e_2)(\mathcal{H}(e_1, e_2) + \mathcal{H}(e_2, e_1)) \]
 \[\mathcal{H}(e_1, e_2) = \sum_{(e_1, r, t)} U(e_2, r, t) + \sum_{(h, r, e_1)} U(h, r, e_2) \]

• Limit # of newly aligned entities to a threshold in each alignment procedure

ITransE – Experimental Results

- Dataset: DFB1, DFB2, DFB3 from FB15K
- Entity alignment performance
 - ITransE: iterative alignment w/ TransE
 - IPTransE: iterative alignment w/ PTransE

<table>
<thead>
<tr>
<th>Metric</th>
<th>DFB-1</th>
<th>DFB-2</th>
<th>DFB-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hits@1</td>
<td>Hits@10</td>
<td>Mean Rank</td>
</tr>
<tr>
<td>MTransE (LT)</td>
<td>38.9</td>
<td>61.0</td>
<td>237.7</td>
</tr>
<tr>
<td>MTransE (TB)</td>
<td>13.6</td>
<td>35.1</td>
<td>547.7</td>
</tr>
<tr>
<td>TransE + PS</td>
<td>61.9</td>
<td>79.2</td>
<td>105.2</td>
</tr>
<tr>
<td>ITransE (HA)</td>
<td>62.6</td>
<td>78.9</td>
<td>100.0</td>
</tr>
<tr>
<td>ITransE (SA)</td>
<td>67.1</td>
<td>83.1</td>
<td>80.1</td>
</tr>
<tr>
<td>PTransE + PS</td>
<td>65.8</td>
<td>83.4</td>
<td>62.9</td>
</tr>
<tr>
<td>IPTransE (HA)</td>
<td>66.1</td>
<td>83.3</td>
<td>59.1</td>
</tr>
<tr>
<td>IPTransE (SA)</td>
<td>71.7</td>
<td>86.5</td>
<td>49.0</td>
</tr>
</tbody>
</table>

Observations:
- IPTransE performs better than ITransE
- Soft alignment performs better than hard alignment

IITransE – Experimental Results

• Effectiveness of soft alignment strategy

Observation: the performance of all methods increase with iterations.

Knowledge Graph Alignment via Graph Convolutional Networks

• Key idea: use GCNs to embed entities where aligned entities are expected to be as close as possible.

• Assumptions:
 • Equivalent entities tend to have similar attributes
 • Equivalent entities are neighbored by other equivalent entities

• Embedding framework:

\[
[H_s^{(l+1)}; H_a^{(l+1)}] = \sigma \left(\hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2} [H_s^{(l)} W_s^{(l)}; H_a^{(l)} W_a^{(l)}] \right)
\]

GCN-Align – Construct Adjacency Matrix

• KGs are relational multi-graphs (i.e., typed relations)
• Key idea: two measures on relations

Relation functionality:
\[\text{fun}(r) = \frac{\#\text{Head Entities of } r}{\#\text{Triples of } r} \]

Inverse functionality:
\[\text{ifun}(r) = \frac{\#\text{Tail Entities of } r}{\#\text{Triples of } r} \]

• Edge weight: influence of \(i \)-th entity over \(j \)-th entity
\[
 a_{ij} = \sum_{\langle e_i, r, e_j \rangle \in G} \text{ifun}(r) + \sum_{\langle e_j, r, e_i \rangle \in G} \text{fun}(r)
\]

GCN-Align – Alignment Prediction

• Model training:
 • Margin-based rank loss for both h_s and h_a
 • h_s: structure embedding
 • h_a: attribute embedding

• Small distance for aligned entities for prediction

$$D(e_i, v_j) = \beta \frac{\|h_s(e_i) - h_s(v_j)\|_1}{d_s} + (1 - \beta) \frac{\|h_a(e_i) - h_a(v_j)\|_1}{d_a}$$

• d_s, d_a: dimensions of structure and attribute embedding
• β: hyperparameter balancing importance of two embeddings

• For each entity e_i, return a list of candidate entities in KG2
GCN-Align – Experimental Results

- **Datasets:** DBP15K from DBpedia with different languages

<table>
<thead>
<tr>
<th></th>
<th>JA → EN</th>
<th>EN → JA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hits@1</td>
<td>Hits@10</td>
</tr>
<tr>
<td>DBP15KJA–EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*JE</td>
<td>18.92</td>
<td>39.97</td>
</tr>
<tr>
<td>*MTransE</td>
<td>27.86</td>
<td>57.45</td>
</tr>
<tr>
<td>*JAPE SE w/o neg.</td>
<td>33.10</td>
<td>63.90</td>
</tr>
<tr>
<td>*JAPE SE + AE</td>
<td>34.27</td>
<td>66.39</td>
</tr>
<tr>
<td>*JAPE SE + AE</td>
<td>36.25</td>
<td>68.50</td>
</tr>
<tr>
<td>*JAPE’ SE w/o neg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*JAPE’ SE + AE</td>
<td>29.80</td>
<td>60.61</td>
</tr>
<tr>
<td>*JAPE’ SE + AE</td>
<td>31.06</td>
<td>64.11</td>
</tr>
<tr>
<td>*JAPE’ SE + AE</td>
<td>38.21</td>
<td>72.49</td>
</tr>
<tr>
<td>*JAPE’ SE + AE</td>
<td>39.91</td>
<td>74.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>FR → EN</th>
<th>EN → FR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hits@1</td>
<td>Hits@10</td>
</tr>
<tr>
<td>DBP15KFR–EN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*JE</td>
<td>15.38</td>
<td>38.84</td>
</tr>
<tr>
<td>*MTransE</td>
<td>24.41</td>
<td>55.55</td>
</tr>
<tr>
<td>*JAPE SE w/o neg.</td>
<td>29.55</td>
<td>62.18</td>
</tr>
<tr>
<td>*JAPE SE + AE</td>
<td>29.63</td>
<td>64.55</td>
</tr>
<tr>
<td>*JAPE SE + AE</td>
<td>32.39</td>
<td>66.68</td>
</tr>
<tr>
<td>*JAPE’ SE w/o neg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*JAPE’ SE + AE</td>
<td>28.23</td>
<td>60.99</td>
</tr>
<tr>
<td>*JAPE’ SE + AE</td>
<td>27.58</td>
<td>62.03</td>
</tr>
<tr>
<td>*JAPE’ SE + AE</td>
<td>30.21</td>
<td>65.81</td>
</tr>
<tr>
<td>GCN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE + AE</td>
<td>36.51</td>
<td>73.42</td>
</tr>
<tr>
<td>SE + AE</td>
<td>37.29</td>
<td>74.49</td>
</tr>
</tbody>
</table>

Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

Pairwise NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes
 - w/ attributes
- Optimal transport-based
 - w/o attributes

Collective NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes

Higher-Order NA
- Consistency-based
 - Single-level
 - Multilevel

Related Tasks
- Entity alignment
 - Non-GNN based
 - GNN-based
- Cross-layer inference
- Cross-network transformation
Multi-layered Networks

• An example of multi-layered networks

- Infrastructure networks
- Biological system networks

Cross-Layer Dependency Inference

• Given: a multi-layered network
 • Layer-layer dependency matrix G;
 • Within-layer connectivity matrices $\mathcal{A} = \{A_1, \ldots, A_g\}$;
 • Observed cross-layer dependency matrices $\mathcal{D} = \{D_{ij}\}$

• Find: true cross-layer dependency matrices $\{\widetilde{D}_{ij}\}$

• To link different types of nodes (alignment links same)

 • A_1 for chemical network, etc.
 • $G(1,2) = 1, G(1,3) = 0$;
 • D_{12} are represented by solid arrows between \mathcal{G}_1 and \mathcal{G}_2

Fascinate – Formulation

• Key idea: as a collective collaborative filtering problem
 - Within-layer networks as user-user network, item-item similarity network, etc.
 - Cross-layer dependency as user-item ratings

• Optimization problem:

\[
\min_{F_i \geq 0 (i=1, \ldots, g)} J = \sum_{i,j: G(i,j)=1} \|W_{i,j} \odot (D_{i,j} - F_i F_j')\|^2_F
\]

C1: Matching Observed Cross-Layer Dependencies

\[
+ \alpha \sum_{i=1}^g \text{tr}(F_i' (T_i - A_i) F_i) + \beta \sum_{i=1}^g \|F_i\|^2_F
\]

C2: Node Homophily

C3: Regularization

Fascinate – Optimization Algorithm

• Block coordinate descent method
• For each F_i, use multiplicative update method

$$\frac{\partial J_i}{\partial F_i} = 2 \sum_{j: G(i,j)=1} \left[- (W_{i,j} \circ W_{i,j} \circ D_{i,j}) F_j
ight]$$

$$+ (W_{i,j} \circ W_{i,j} \circ (F_i F_j')) F_j$$

$$+ \alpha T_i F_i - \alpha A_i F_i + \beta F_i$$

where

$$F_i(u, v) \leftarrow F_i(u, v) \frac{X(u, v)}{Y(u, v)}$$

$$X = \sum_{j: G(i,j)=1} (W_{i,j} \circ W_{i,j} \circ D_{i,j}) F_j + \alpha A_i F_i$$

$$Y = \sum_{j: G(i,j)=1} (W_{i,j} \circ W_{i,j} \circ (F_i F_j')) F_j + \alpha T_i F_i + \beta F_i$$

Fascinate – Experimental Setups

• Datasets:

<table>
<thead>
<tr>
<th>Dataset</th>
<th># of Layers</th>
<th># of Nodes</th>
<th># of Links</th>
<th># of CrossLinks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCIAL</td>
<td>3</td>
<td>125,344</td>
<td>214,181</td>
<td>188,844</td>
</tr>
<tr>
<td>BIO</td>
<td>3</td>
<td>35,631</td>
<td>253,827</td>
<td>75,456</td>
</tr>
<tr>
<td>INFRA-5</td>
<td>5</td>
<td>349</td>
<td>379</td>
<td>565</td>
</tr>
<tr>
<td>INFRA-3</td>
<td>3</td>
<td>15,126</td>
<td>29,861</td>
<td>28,023,500</td>
</tr>
</tbody>
</table>

• Abstract dependency structure
Fascinate – Experimental Results

- Effectiveness of dependency inference on BIO

<table>
<thead>
<tr>
<th>Methods</th>
<th>MAP</th>
<th>R-MPR</th>
<th>HLU</th>
<th>AUC</th>
<th>Prec@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASCINATE</td>
<td>0.0660</td>
<td>0.2651</td>
<td>8.4556</td>
<td>0.7529</td>
<td>0.0118</td>
</tr>
<tr>
<td>FASCINATE-CLUST</td>
<td>0.0667</td>
<td>0.2462</td>
<td>8.2160</td>
<td>0.7351</td>
<td>0.0108</td>
</tr>
<tr>
<td>MulCol</td>
<td>0.0465</td>
<td>0.2450</td>
<td>6.0024</td>
<td>0.7336</td>
<td>0.0087</td>
</tr>
<tr>
<td>PairSid</td>
<td>0.0308</td>
<td>0.1729</td>
<td>3.8950</td>
<td>0.6520</td>
<td>0.0062</td>
</tr>
<tr>
<td>PairCol</td>
<td>0.0303</td>
<td>0.1586</td>
<td>3.7857</td>
<td>0.6406</td>
<td>0.0056</td>
</tr>
<tr>
<td>PairNMF</td>
<td>0.0053</td>
<td>0.0290</td>
<td>0.5541</td>
<td>0.4998</td>
<td>0.0007</td>
</tr>
<tr>
<td>PairRec</td>
<td>0.0056</td>
<td>0.0435</td>
<td>0.5775</td>
<td>0.5179</td>
<td>0.0007</td>
</tr>
<tr>
<td>FlatNMF</td>
<td>0.0050</td>
<td>0.0125</td>
<td>0.4807</td>
<td>0.5007</td>
<td>0.0007</td>
</tr>
<tr>
<td>FlatRec</td>
<td>0.0063</td>
<td>0.1009</td>
<td>0.6276</td>
<td>0.5829</td>
<td>0.0009</td>
</tr>
</tbody>
</table>

Fascinate – Experimental Results

- Effectiveness of dependency inference on INFRA-5

<table>
<thead>
<tr>
<th>Methods</th>
<th>MAP</th>
<th>R-MPR</th>
<th>HLU</th>
<th>AUC</th>
<th>Prec@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fascinate</td>
<td>0.5040</td>
<td>0.3777</td>
<td>67.2231</td>
<td>0.8916</td>
<td>0.2500</td>
</tr>
<tr>
<td>Fascinate-Clust</td>
<td>0.4297</td>
<td>0.3220</td>
<td>56.8215</td>
<td>0.8159</td>
<td>0.2340</td>
</tr>
<tr>
<td>MulCol</td>
<td>0.4523</td>
<td>0.3239</td>
<td>59.8115</td>
<td>0.8329</td>
<td>0.2413</td>
</tr>
<tr>
<td>PairSid</td>
<td>0.3948</td>
<td>0.2392</td>
<td>49.5484</td>
<td>0.7413</td>
<td>0.2225</td>
</tr>
<tr>
<td>PairCol</td>
<td>0.3682</td>
<td>0.2489</td>
<td>48.5966</td>
<td>0.7406</td>
<td>0.2309</td>
</tr>
<tr>
<td>PairNMF</td>
<td>0.1315</td>
<td>0.0464</td>
<td>15.7148</td>
<td>0.5385</td>
<td>0.0711</td>
</tr>
<tr>
<td>PairRec</td>
<td>0.0970</td>
<td>0.0099</td>
<td>9.4853</td>
<td>0.5184</td>
<td>0.0399</td>
</tr>
<tr>
<td>FlatNMF</td>
<td>0.3212</td>
<td>0.2697</td>
<td>44.4654</td>
<td>0.7622</td>
<td>0.1999</td>
</tr>
<tr>
<td>FlatRec</td>
<td>0.1020</td>
<td>0.0778</td>
<td>11.5598</td>
<td>0.5740</td>
<td>0.0488</td>
</tr>
</tbody>
</table>

Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

Pairwise NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes
 - w/ attributes
- Optimal transport-based
 - w/o attributes

Collective NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes

Higher-Order NA
- Consistency-based
 - Single-level
 - Multilevel

Related Tasks
- Entity alignment
 - Non-GNN based
 - GNN-based
- Cross-layer inference
- Cross-network transformation
Cross-Network Node Associations

- Goal: to find node associations across different networks

Limitations of Traditional Methods

• Linear and/or consistency assumptions
 \[\min \|B_0 - PA_0P^T\|_F^2 \]
 \[\min \|\text{vec}(B_0) - \tilde{P}\text{vec}(A_0)\|_2^2 \]

Graph matching-based network alignment

Linear transformation

• Embedding space disparity issue

\[\min \|R - U_1^T U_2\|_F^2 + \alpha \sum \text{Tr}(U_i^T (D_i - A_i) U_i) \]

Factorization-based recommendation and cross-layer dependency inference

Cross-Network Transformation

- **Given:** (1) Source and target networks $G_1 = \{V_1, A_0, X_0\}$, $G_2 = \{V_2, B_0, Y_0\}$; Observed cross-network node associations L
- **Output:** (1) Cross-network transformation function g, s.t. $g(G_1) \approx G_2$; (2) Node association function g_{node}

NetTrans – Model Overview

- Key idea: encoder-decoder architecture
 - Encoder: to coarsen source network at different resolutions
 - Decoder: to reconstruct target network at different resolutions

NetTrans – Encoder

- Key component: TransPool as a pooling layer
- Supernode selection
 - Self-attention-based pooling

NetTrans – Encoder

- Supernode representation learning
 - Attention-based message passing
 - Aggregation by node-to-supernode assignment

NetTrans – Encoder

• Node-to-supernode assignment
 • Gumbel softmax to approximate P
 • Supernode candidate pruning

NetTrans – Encoder

- Supernode connections
 - Use auxiliary connections \tilde{A}_l

 \[
 A_l = \frac{1}{2} (A_{l-1}(I, I) + \tilde{A}_l)
 \]

NetTrans – Decoder

- Goal: to reconstruct target network
- Key idea: same latent meanings of supernodes
 - Part #1: leverage G_1 by skip connections
 - Part #2: calibrate part #1 from supernodes to nodes

NetTrans – Experimental Results

• Effectiveness of NetTrans for network alignment

<table>
<thead>
<tr>
<th></th>
<th>Cora1-Cora2</th>
<th>ACM-DBLP</th>
<th>Foursquare-Twitter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hits@10</td>
<td>Hits@30</td>
<td>Accuracy</td>
</tr>
<tr>
<td>NetTrans</td>
<td>90.98%</td>
<td>97.51%</td>
<td>89.89%</td>
</tr>
<tr>
<td>FINAL-N</td>
<td>88.73%</td>
<td>90.77%</td>
<td>87.58%</td>
</tr>
<tr>
<td>FINAL-P</td>
<td>62.28%</td>
<td>80.01%</td>
<td>54.34%</td>
</tr>
<tr>
<td>REGAL</td>
<td>60.90%</td>
<td>69.20%</td>
<td>46.26%</td>
</tr>
<tr>
<td>IONE</td>
<td>73.03%</td>
<td>79.92%</td>
<td>42.29%</td>
</tr>
<tr>
<td>CrossMNA</td>
<td>59.06%</td>
<td>68.62%</td>
<td>33.26%</td>
</tr>
</tbody>
</table>

Observation: NetTrans outperforms all other baselines for network alignment task.
NetTrans – Experimental Results

- Effectiveness of NetTrans for social recommendation

<table>
<thead>
<tr>
<th></th>
<th>Ciao-0.2</th>
<th></th>
<th></th>
<th>Ciao-0.3</th>
<th></th>
<th></th>
<th>Ciao-0.5</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prec@10</td>
<td>Rec@10</td>
<td>Rec@50</td>
<td>Prec@10</td>
<td>Rec@10</td>
<td>Rec@50</td>
<td>Prec@10</td>
<td>Rec@10</td>
<td>Rec@50</td>
</tr>
<tr>
<td>NetTrans</td>
<td>13.87%</td>
<td>11.08%</td>
<td>29.90%</td>
<td>11.01%</td>
<td>13.23%</td>
<td>28.15%</td>
<td>10.87%</td>
<td>12.43%</td>
<td>39.02%</td>
</tr>
<tr>
<td>BPR</td>
<td>1.37%</td>
<td>0.6%</td>
<td>20.25%</td>
<td>1.38%</td>
<td>0.62%</td>
<td>20.18%</td>
<td>1.00%</td>
<td>0.37%</td>
<td>14.97%</td>
</tr>
<tr>
<td>wpZAN</td>
<td>11.99%</td>
<td>9.19%</td>
<td>20.77%</td>
<td>9.88%</td>
<td>10.33%</td>
<td>23.22%</td>
<td>9.85%</td>
<td>11.64%</td>
<td>26.04%</td>
</tr>
<tr>
<td>GraphRec</td>
<td>8.65%</td>
<td>6.62%</td>
<td>17.56%</td>
<td>8.42%</td>
<td>6.60%</td>
<td>18.07%</td>
<td>6.94%</td>
<td>6.63%</td>
<td>18.08%</td>
</tr>
<tr>
<td>SamWalker</td>
<td>4.94%</td>
<td>1.97%</td>
<td>5.98%</td>
<td>4.39%</td>
<td>2.07%</td>
<td>5.67%</td>
<td>2.48%</td>
<td>1.58%</td>
<td>4.05%</td>
</tr>
<tr>
<td>NGCF</td>
<td>2.77%</td>
<td>1.21%</td>
<td>3.26%</td>
<td>2.77%</td>
<td>1.48%</td>
<td>3.61%</td>
<td>3.17%</td>
<td>1.99%</td>
<td>4.77%</td>
</tr>
</tbody>
</table>

Observation: NetTrans outperforms all other baselines for recommendation task

RoadMap

• Motivations and Background

• Part I: Recent Network Alignment Algorithms

• Part II: Network Alignment Applications

• Part III: Future Research Directions

Overview of Part II

Part II: Network Alignment

Applications

Social Analysis
- User identity linkage
- Recommendation
 - Friends
 - Products
- Information diffusion

Bioinformatics
- Identify functional orthologs and knowledge transfer
 - Evolutionary relationships
 - Human aging
- Connectome Analysis

Knowledge Base
- Knowledge completion

Security
- Modeling adversarial activities
Social Analysis – User Identity Linkage

- User Identity Linkage
 - To identify the same physical user across social platforms

- Can be used for de-anonymization, information integration, etc.
User Identity Linkage

• Existing methods:
 • Profile based [Zafarani’13, Zhang’14, Perito’11, Vosecky’09]
 • Network based [Zhou’16, Zhang’15, Liu’16]
 • Profile + network based [Zhang’15, Shen’14, Zhang’16]

• Network-based can be considered as network alignment w/o attributes.

• Profile + network-based methods can be viewed as network alignment w/ attributes.
Social Analysis - Recommendation

• Friend recommendation:
 • For two social networks, if we know
 • User u_1 is a friend of user u_2 in G_1
 • User v_1 in G_2 and user u_1 in G_1 are same person
 • User v_2 in G_2 and user u_2 in G_2 are same person
 • But user v_1 and user v_2 are not friend in G_2
 • Then, we can recommend v_1 to user v_2

Cross-Site Friend Recommendation

• Think of it as a cross-site link prediction problem
• Given two incomplete social networks, we jointly solve network alignment and link prediction problems
CENALP – Network Embedding

• DeepWalk-based network embedding
 • Key idea: build a world-view graph
 \[
 W = \begin{bmatrix}
 q \cdot P_g & (1 - q) \cdot P_{gg'} \\
 (1 - q) \cdot P_{g'g} & q \cdot P_{g'}
 \end{bmatrix}
 \]
 • Within-network node sampling with a probability of \(q \), and cross-network sampling with \((1 - q) \)
 • Allows for cross-network Skip-gram embedding

• Construction of \(P_{gg'} \) by structure and attribute

\[
\text{dist} = \left| \min_{d \in s_k(u)} \log(d + 1) - \min_{d \in s_k(u')} \log(d + 1) \right| + \left| \max_{d \in s_k(u)} \log(d + 1) - \max_{d \in s_k(u')} \log(d + 1) \right|
\]

\[
\text{sim}_{\text{attr}}(u, u') = \frac{y_u^\top \cdot y_{u'}}{||y_u||_2 \cdot ||y_{u'}||_2},
\]

CENALP – Network Alignment and Link Prediction

- Greedy alignment by embedding-based similarity
 - Given embeddings of \(u, u' \) in two networks
 \[
 \text{sim}_{\text{emb}}(u, u') = \frac{X_u^T \cdot X_{u'}}{||X_u||_2 \cdot ||X_{u'}||_2}
 \]
 - Greedy-based alignment objective
 \[
 u^*, u'^* = \arg \max_{u, u'} \text{sim}_{\text{emb}}(u, u')
 \]

- Embedding for link prediction

CENALP – Algorithm

- Objective function

\[
\mathcal{L} = \sum_{\omega \in \text{walks}} \sum_{u_1 \in \omega} \left[\sum_{u_j \in C_{u_1}} \log \sigma(x_{u_j}^{\text{out}} \cdot x_{u_1}^{\text{in}}) \right]
+ \sum_{k=1}^{K_{\text{neg}}} E_{u_k \sim R_k(u)} \log \sigma(-x_{u_k}^{\text{out}} \cdot x_{u_1}^{\text{in}}).
\]

- Overall procedure

CENALP – Experimental Results

• AUC score of link prediction

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>95%</th>
<th>90%</th>
<th>85%</th>
<th>80%</th>
<th>75%</th>
<th>70%</th>
<th>65%</th>
<th>60%</th>
<th>55%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBLP</td>
<td>JC [11]</td>
<td>92.28%</td>
<td>90.93%</td>
<td>90.37%</td>
<td>88.44%</td>
<td>85.43%</td>
<td>84.12%</td>
<td>80.51%</td>
<td>77.99%</td>
<td>74.81%</td>
<td>72.16%</td>
</tr>
<tr>
<td></td>
<td>AA [12]</td>
<td>92.33%</td>
<td>91.01%</td>
<td>90.30%</td>
<td>88.32%</td>
<td>85.44%</td>
<td>84.07%</td>
<td>80.48%</td>
<td>77.94%</td>
<td>74.82%</td>
<td>72.14%</td>
</tr>
<tr>
<td></td>
<td>SC [13]</td>
<td>78.84%</td>
<td>78.89%</td>
<td>78.68%</td>
<td>78.54%</td>
<td>74.72%</td>
<td>77.21%</td>
<td>76.83%</td>
<td>75.87%</td>
<td>73.91%</td>
<td>74.40%</td>
</tr>
<tr>
<td></td>
<td>n2v [22]</td>
<td>78.40%</td>
<td>81.34%</td>
<td>78.72%</td>
<td>78.32%</td>
<td>75.01%</td>
<td>74.30%</td>
<td>73.32%</td>
<td>71.60%</td>
<td>70.56%</td>
<td>68.61%</td>
</tr>
<tr>
<td></td>
<td>n2v+LR</td>
<td>95.58%</td>
<td>95.44%</td>
<td>94.30%</td>
<td>94.30%</td>
<td>92.37%</td>
<td>93.07%</td>
<td>90.86%</td>
<td>90.80%</td>
<td>89.25%</td>
<td>88.08%</td>
</tr>
<tr>
<td></td>
<td>CLF [8]</td>
<td>96.92%</td>
<td>96.55%</td>
<td>95.70%</td>
<td>95.69%</td>
<td>94.43%</td>
<td>94.28%</td>
<td>92.95%</td>
<td>92.93%</td>
<td>92.23%</td>
<td>90.68%</td>
</tr>
<tr>
<td></td>
<td>MNN [43]</td>
<td>98.13%</td>
<td>97.76%</td>
<td>97.57%</td>
<td>97.28%</td>
<td>97.10%</td>
<td>96.78%</td>
<td>96.38%</td>
<td>96.44%</td>
<td>96.03%</td>
<td>95.86%</td>
</tr>
<tr>
<td></td>
<td>CE-CLF</td>
<td>98.37%</td>
<td>98.29%</td>
<td>97.89%</td>
<td>97.80%</td>
<td>97.34%</td>
<td>96.74%</td>
<td>96.75%</td>
<td>96.36%</td>
<td>96.09%</td>
<td>95.86%</td>
</tr>
<tr>
<td></td>
<td>CELP</td>
<td>98.48%</td>
<td>98.39%</td>
<td>98.36%</td>
<td>98.57%</td>
<td>98.28%</td>
<td>98.49%</td>
<td>98.58%</td>
<td>98.31%</td>
<td>98.38%</td>
<td>98.27%</td>
</tr>
<tr>
<td></td>
<td>CENALP</td>
<td>99.65%</td>
<td>99.27%</td>
<td>99.35%</td>
<td>99.38%</td>
<td>99.36%</td>
<td>99.08%</td>
<td>99.01%</td>
<td>99.29%</td>
<td>99.25%</td>
<td>99.06%</td>
</tr>
</tbody>
</table>

Facebook	JC [11]	74.76%	77.89%	76.94%	75.64%	73.15%	72.63%	70.48%	68.90%	67.25%	65.12%
	AA [12]	74.77%	77.54%	76.57%	75.76%	73.36%	72.68%	71.09%	68.84%	67.19%	65.18%
	SC [13]	84.39%	83.39%	86.88%	84.53%	83.83%	83.79%	81.56%	80.80%	81.81%	77.61%
Twitter	n2v [22]	75.62%	78.94%	78.23%	79.36%	76.18%	75.25%	74.64%	74.86%	74.49%	71.16%
	n2v+LR	82.20%	85.58%	83.04%	84.51%	81.64%	82.07%	81.17%	80.02%	80.08%	78.04%
	CLF [8]	84.88%	85.02%	86.18%	86.70%	84.00%	83.99%	82.95%	82.43%	81.96%	80.75%
	MNN [43]	95.72%	96.44%	96.28%	96.30%	96.21%	96.25%	96.07%	95.88%	95.47%	95.23%
	CE-CLF	96.52%	96.84%	96.37%	96.34%	96.30%	95.69%	94.92%	94.31%	93.11%	92.00%
	CELP	97.29%	97.52%	97.46%	97.85%	97.99%	97.56%	97.23%	97.15%	96.66%	96.14%
	CENALP	97.31%	97.77%	97.51%	97.24%	97.60%	97.86%	97.34%	96.47%	96.74%	96.16%

Social Analysis - Recommendation

• Cross-site product recommendation:
 • Intuition: if users are aligned, purchase histories can be combined for better recommendation
 • Key idea: leverage cross-site actions to improve user modeling
 • Benefits: may mitigate issues, e.g., cold start, etc.
JUMA – Approach

• Key idea: use a probabilistic graphical model for joint user modeling over aligned sites

 • User’s site-specific preference P_i^q is transferred from universal preference U_i by transferring model T^q.

 • User conducts actions A_i^q based on P_i^q and site-specific item models $\{\phi_k^q\}$.

JUMA – Approach

• Joint user modeling over aligned sites

 • For item-based site (Douban), use matrix factorization method.

 • For text-based site (Weibo), use Latent Dirichlet Allocation (LDA) to model topic distributions for microblogs.

JUMA – Experimental Results

• Effectiveness of recommendation

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ALGS</th>
<th>AUC SCORE, VARYING TRAINING INFORMATION RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>Text-Based</td>
<td>LDA</td>
<td>0.6514 ± 0.0017</td>
</tr>
<tr>
<td>(Weibo)</td>
<td>JUMA</td>
<td>0.6824 ± 0.0014</td>
</tr>
<tr>
<td></td>
<td>CTR</td>
<td>0.7021 ± 0.0021</td>
</tr>
<tr>
<td></td>
<td>JUMA^+</td>
<td>0.7338 ± 0.0017</td>
</tr>
<tr>
<td>Item-Based</td>
<td>PMF</td>
<td>0.7275 ± 0.0016</td>
</tr>
<tr>
<td>(Douban)</td>
<td>SVD++</td>
<td>0.7856 ± 0.0012</td>
</tr>
<tr>
<td></td>
<td>TMF</td>
<td>0.7872 ± 0.0015</td>
</tr>
<tr>
<td></td>
<td>mmTM</td>
<td>0.6929 ± 0.0019</td>
</tr>
<tr>
<td></td>
<td>JUMA</td>
<td>0.8127 ± 0.0017</td>
</tr>
</tbody>
</table>

Observation: JUMA performs best for both text-based site Weibo and item-based site Douban.
JUMA – Experimental Results

• Effectiveness of addressing cold-start

Observation: Improvements are higher when dealing with cold users than non-cold users.

Social Analysis – Information Diffusion

• Motivations
 • Users can post messages in multiple platforms;
 • Information thus propagates within-network and across networks.

![Diagram of social networks](image)
M&M – Approach

• Goal: multi-aligned multi-relational network influence maximizer

• Key idea: to extend traditional linear threshold to depict diffusion across networks

• Activation probability functions:
 • For intra-network relation i
 \[
 g_{v,i}(t+1) = \frac{\sum_{u \in \Gamma_{in}(v,i)} \phi_{(u,v)} \varphi(u,t)}{\sum_{u \in \Gamma_{in}(v,i)} \phi_{(u,v)}}
 \]
 • For inter-network relation j
 \[
 h_{v,j}(t+1) = \frac{\sum_{u \in \Gamma_{in}(v,j)} \phi_{(u,v)} \varphi(u,t)}{\sum_{u \in \Gamma_{in}(v,j)} \phi_{(u,v)}}
 \]

M&M – Experimental Results

• Effectiveness of influence maximization
• Metric: # of activated users by the seed users

Overview of Part II

Part II: Network Alignment Applications

Social Analysis
- User identity linkage
- Recommendation
 - Friends
 - Products
- Information diffusion

Bioinformatics
- Identify functional orthologs and knowledge transfer
 - Evolutionary relationships
 - Human aging

Knowledge Base
- Knowledge completion

Security
- Modeling adversarial activities
Bioinformatics – Knowledge Transfer

• Motivations:
 • Traditional methods are based on sequence alignment
 • Network data and sequence data provide complementary insights
 • Restricting to sequences may limit knowledge transfer

• Network alignment to identify functional orthologs
 • Benefits: insightful for knowledge of aging and other biological processes.

Knowledge Transfer – Evolutionary Relationships Discovery

• Goal: using network alignment to guide biological knowledge transfer
 • From well-studied species to less well-studied species

• Methods:
 • GRAAL and H-GRAAL: focused on phylogenetic tree inference based on metabolic networks
 • MI-GRAAL:
 • Used these PPI network data to infer evolutionary relationships
 • Considered five herpesviruses based on their network similarities.
Knowledge Transfer – Human Aging Discovery

• Motivations:
 • Susceptibility to diseases increases with age
 • Important to study molecular mechanisms behind aging and aging-associated diseases

• Traditional methods:
 • Transferring knowledge from well-studied species to human between conserved sequence regions

• Network alignment-based methods:
 • MI-GRAAL and IsoRankN: align well known aging-related network parts of one species to known aging-related network parts of other species

Overview of Part II

Part II: Network Alignment Applications

Social Analysis
- User identity linkage
- Recommendation
 - Friends
 - Products
- Information diffusion

Bioinformatics
- Identify functional orthologs and knowledge transfer
 - Evolutionary relationships
 - Human aging

Knowledge Base
- Knowledge completion

Security
- Modeling adversarial activities
Knowledge Completion

• Goal: to complete a triple \((h, r, t)\) when one of \(h, r, t\) is missing

• Application scenario by entity alignment:
 • Two sets of triplets (i.e., KGs) for training
 • One set of triplets for testing
 • Two training KGs can be aligned

• Methods:
 • Basically can be any KG alignment methods
 • ITransE/IPTransE for example

ITransE – Experimental Results

• Effectiveness of ITransE for knowledge completion

<table>
<thead>
<tr>
<th>Metric</th>
<th>Mean Rank Raw</th>
<th>Mean Rank Filter</th>
<th>Hits@10 Raw</th>
<th>Hits@10 Filter</th>
<th>Relation Prediction Mean Rank Raw</th>
<th>Relation Prediction Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTransE (LT)</td>
<td>240.8</td>
<td>131.3</td>
<td>36.4</td>
<td>47.3</td>
<td>37.2</td>
<td>36.9</td>
</tr>
<tr>
<td>MTransE (TB)</td>
<td>851.3</td>
<td>759.7</td>
<td>9.4</td>
<td>10.8</td>
<td>293.7</td>
<td>293.4</td>
</tr>
<tr>
<td>TransE</td>
<td>246.1</td>
<td>131.6</td>
<td>42.5</td>
<td>54.3</td>
<td>55.9</td>
<td>55.6</td>
</tr>
<tr>
<td>TransE + Aux</td>
<td>232.8</td>
<td>121.5</td>
<td>43.3</td>
<td>54.9</td>
<td>50.1</td>
<td>49.8</td>
</tr>
<tr>
<td>ITransE (SA)</td>
<td>209.2</td>
<td>101.0</td>
<td>44.2</td>
<td>55.1</td>
<td>19.8</td>
<td>19.6</td>
</tr>
<tr>
<td>PTransE</td>
<td>213.0</td>
<td>97.2</td>
<td>50.9</td>
<td>72.1</td>
<td>2.33</td>
<td>1.96</td>
</tr>
<tr>
<td>PTransE + Aux</td>
<td>206.3</td>
<td>80.4</td>
<td>52.7</td>
<td>80.7</td>
<td>2.34</td>
<td>1.93</td>
</tr>
<tr>
<td>IPTransE (SA)</td>
<td>197.5</td>
<td>70.6</td>
<td>53.0</td>
<td>80.8</td>
<td>2.03</td>
<td>1.62</td>
</tr>
</tbody>
</table>

Observation: By successfully leveraging the auxiliary information (i.e., second KG by alignment), ITransE and IPTransE perform better than other baseline methods.
Overview of Part II

Part II: Network Alignment Applications

Social Analysis
- User identity linkage
- Recommendation
 - Friends
 - Products
- Information diffusion

Bioinformatics
- Identify functional orthologs and knowledge transfer
 - Evolutionary relationships
 - Human aging

Knowledge Base
- Knowledge completion

Security
- Modeling adversarial activities
Security – Modeling Adversarial Activities

• Background:
 • Networks are natural structure to model adversarial activities
 • Smuggling
 • Illegal arm dealing
 • Illicit drug production
 • But such activities are often embedded in different domains

MAA – Challenges

• Domain heterogeneity
 • Communication networks
 • Phone call, emails, text, etc.
 • People who call each other may unlikely text often
 • Similarly, email network is structurally distinct from phone call network

• Spatial-temporal challenge
 • Relations contain much spatial-temporal information
 • Who calls whom at which location and at what time

• Very large-scale networks
MAA – Approaches

• Any scalable network alignment methods
 • w/o attribute: only based on connections
 • w/ attribute: view spatial-temporal information as attributes

• Encode temporal information:
 • Count # of connections in certain time window
 • Values at all time windows form node attributes
 • Can be used as attribute-based prior similarity matrix
 • And/or as the attributes in attributed alignment methods (e.g., FINAL)
RoadMap

• Motivations and Background ✓
• Part I: Recent Network Alignment Algorithms ✓
• Part II: Network Alignment Applications ✓
• Part III: Future Research Directions
Big Network Alignment – 4Vs

• 4V characteristics also hold for networks
Big Network Alignment – Volume

• Real-world networks are very large-scale
 • Facebook, Instagram, Twitter have billions of users

• **Challenge:** most of existing methods have at least $O(n^2)$ complexity
 • Some recent consistency-based and embedding-based methods reduce the complexity to linear
 • Complexity may be even larger if we handle multiple networks collectively

• **Question:** how to efficiently do network alignment?

• **Possible directions:** (1) leverage approximation techniques, (2) parallelizable algorithm
Big Network Alignment – Variety

• Real-world networks have rich information
 • Node/edge attributes, text descriptions, temporal information
• Methods exist to handle attribute information
 • But few can handle temporal relation information
 • Who called whom at what time, etc.
• **Question:** how to better incorporate side-information into network alignment?

• **Possible directions:** heterogeneous network alignment, temporal network alignment, etc.
Big Network Alignment – Variety

• Network heterogeneity
 • Networks to be aligned carry different types of information
 • Even same user may behave differently in different networks

• Existing methods explicitly or implicitly build upon consistency assumptions
 • But network heterogeneity may easily violate this assumption

• Questions:
 • How to align different types of networks (e.g., LinkedIn vs. FB)?
 • How to adaptively control consistency assumption?

• Possible directions: Deep learning methods that are highly learnable.
Big Network Alignment – Velocity

- Networks are dynamically changing over time.
- Dynamic network alignment
 - Simple solution: run from scratch at each timestamp
 - Limitation: time consuming; can’t capture dynamics
- Questions:
 - How to efficiently handle alignment over dynamic networks?
 - How to leverage the dynamics (e.g., smoothness)?
- Possible directions:
 - Matrix approximation to avoid unnecessary re-computations.
 - Dynamic network embedding-based alignment methods.
Big Network Alignment – Veracity

• Real-world networks are often noisy and incomplete.
 • Missing connections
 • Missing nodes
 • Missing attribute information

• Existing methods:
 • Jointly solve network alignment and link prediction
 • Benefit: if handled properly, they mutually benefit each other

• **Challenge:** error propagation
 • If alignment or imputed edges are not correct, the performance will be hurt.
Adversarial Network Alignment

• Improve the alignment effectiveness and robustness
• Noise/adversarial attacks can mislead alignment

Rewiring attacks

\[G_1 \] \[G_2 \]
Adversarial Network Alignment

• **Background:**
 - Existing adversarial attacks on network alignment are based on derivative-based importance score
 - But no work exits on adversarial defense

• **Challenge:**
 - Compared to adversarial attack/defense in single network, multiple networks may further complicate the defense process.

• **Possible direction:**
 - Graph neural network-based adversarial learning on network alignment
Integrated Network Alignment

• Explainable network alignment
 • **Background**: there exist explainable network mining tasks
 • Network embedding
 • Graph neural networks
 • Ranking, clustering, etc.

• **Problem goal:**
 • Explain why two nodes should be aligned or not

• **Possible directions:**
 • Extend explainable network embedding to embedding-based network alignment
Integrated Network Alignment

• Fair network alignment
 • Background:
 • Fairness has been studied recently in many machine learning and data mining tasks
 • Fairness in graphs has attracted attentions very recently, but for single network
 • Problem goal:
 • To debias the network alignment
 • Possible direction:
 • Extend fairness in single network mining to multiple networks first, then combine the specific objective of network alignment
Summary

• Background and motivation
 • Network alignment aims to find node correspondence across networks
 • A key step to many mining tasks across multiple networks

• Recent network alignment algorithms
 • Pairwise network alignment
 • Collective network alignment
 • Higher-order network alignment
 • Other related tasks

• Network alignment applications

• Future directions
References

References

References

