
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 1

Towards Optimal Connectivity on Multi-layered
Networks

Chen Chen, Jingrui He, Nadya Bliss, and Hanghang Tong

Abstract—Networks are prevalent in many high impact domains. Moreover, cross-domain interactions are frequently observed in
many applications, which naturally form the dependencies between different networks. Such kind of highly coupled network systems
are referred to as multi-layered networks, and have been used to characterize various complex systems, including critical infrastructure
networks, cyber-physical systems, collaboration platforms, biological systems and many more. Different from single-layered networks
where the functionality of their nodes is mainly affected by within-layer connections, multi-layered networks are more vulnerable to
disturbance as the impact can be amplified through cross-layer dependencies, leading to the cascade failure to the entire system. To
manipulate the connectivity in multi-layered networks, some recent methods have been proposed based on two-layered networks with
specific types of connectivity measures.
In this paper, we address the above challenges in multiple dimensions. First, we propose a family of connectivity measures (SUBLINE)
that unifies a wide range of classic network connectivity measures. Third, we reveal that the connectivity measures in SUBLINE family
enjoy diminishing returns property, which guarantees a near-optimal solution with linear complexity for the connectivity optimization
problem. Finally, we evaluate our proposed algorithm on real data sets to demonstrate its effectiveness and efficiency.

Index Terms—Network Connectivity, Multi-layered Networks.

F

1 INTRODUCTION

Networks naturally arise from many high impact domains.
Moreover, the cross-domain interactions between networks are
frequently observed in many applications. The resulting inter-
dependent networks naturally form a type of multi-layered net-
works [1], [2], [3], [4]. Critical infrastructure system is a classic
example for multi-layered network as shown in Fig. 1. In this
system, the power stations in the power grid are used to provide
electricity to routers in the autonomous system network (AS
network) and vehicles in the transportation network; while the AS
network in turn is needed to provide communication mechanisms
to keep power grid and transportation network work in order. On
the other hand, for some coal-fired or gas-fired power stations, a
well-functioning transportation network is required to supply fuel
for those power stations. Therefore, the inter-dependent three lay-
ers in the system form a triangular dependency network. Another
example is the organization-level collaboration platform, where
the team network is supported by the social network, connecting
its employee pool, which further interacts with the information
network, linking to its knowledge base. Furthermore, the social
network layer could have an embedded multi-layered structure
(e.g., each of its layers represents a different collaboration type
among different individuals); and so does the information network.
In this application, the different layers form a tree-structured
dependency network rooted on the team network layer.

Different from single-layered networks, multi-layered net-
works are more vulnerable to external attacks because their nodes
can be affected by both within-layer connections and cross-
layer dependencies. That is, even a small disturbance in one
layer/network may be amplified in all its dependent networks
through cross-layer dependencies, and cause cascade failure to the
entire system. For example, when the supporting facilities (e.g.,
power stations) in a metropolitan area are destroyed by natural
disasters like hurricanes or earthquakes, the resulting blackout

• C. Chen, J. He, N. Bliss and H. Tong are with Arizona State University,
Tempe, AZ, 85281, USA.
E-mail: {chen chen, jingrui.he, nadya.bliss, hanghang.tong}@asu.edu

Fig. 1. A simplified example of multi-layered network.

would not only put tens of thousands of people in dark for a
long time, but also paralyze the telecom network and cause a
great interruption on the transportation network. Therefore, it is
of key importance to identify crucial nodes in the supporting
layer/network, whose loss would lead to a catastrophic failure
of the entire system, so that the counter measures can be taken
proactively. On the other hand, accessibility issues extensively
exist in multi-layered network mining tasks. To manipulate the
connectivity in layers with limited accessibility, one can only
operate via the nodes from accessible layers that have large impact
to target layers. Taking the multi-layered network depicted in
Fig. 2(a) for example, assume that the only accessible layer in
the system is the control layer and the goal is to minimize the
connectivity in the satellite communication layer and physical
layer simultaneously under k attacks, the only strategy we could
adopt is to select a set of k nodes from the control layer, whose
failure would cause largest reduction on the connectivity of the
two target layers.

To tackle the connectivity optimization1 problem in multi-
layered networks, great efforts have been made from different
research area for manipulating two-layered interdependent net-

1. In this paper, connectivity optimization problem is defined as minimizing
the connectivity of a target layer by removing a fixed number of nodes in the
control layer (refer to the detailed definition in Section 4).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 2

work systems [1], [2], [4], [5], [6]. Although much progress has
been made, two key challenges have largely remained open. First
(connectivity measures), there does not exist one single network
connectivity measure that is superior to all other measures; but
rather several connectivity measures are prevalent in the literature
(e.g., robustness [7], vulnerability [8], triangle counts). Each of
the existing optimization algorithms on multi-layered networks is
tailored for one specific connectivity measure. It is not clear if an
algorithm designed for one specific connectivity measure is still
applicable to other measures. So how can we design a generic
optimization strategy that applies to a variety of prevalent network
connectivity measures? Second (connectivity optimization), an
optimization strategy tailored for two-layered networks might be
sub-optimal, or even misleading to multi-layered networks, e.g.,
in case we want to simultaneously optimize the connectivity in
multiple layers by manipulating one common supporting layer. On
the theoretic side, the optimality of the connectivity optimization
problem of generic multi-layered networks is largely unknown.

This paper aims to address all these challenges, and the main
contributions can be summarized as

• Connectivity Measures. We unify a family of prevalent
network connectivity measures (SUBLINE), which are in
close relation to a variety of important network parameters
(e.g., epidemic threshold, network robustness, triangle
capacity).

• Connectivity Optimization. We show that for any network
connectivity measures in the SUBLINE family, the connec-
tivity optimization problem with the proposed MULAN
model enjoys the diminishing returns property, which
naturally lends itself to a family of provable near-optimal
optimization algorithms with linear complexity.

• Empirical Evaluations. We perform extensive experiments
based on real data sets to validate the effectiveness and
efficiency of the proposed algorithms.

The rest of the paper is organized as follows: Section 2 pro-
vides the background of multi-layered network model (MULAN).
Section 3 gives the definition of a set of unified connectivity
measures (SUBLINE) and some of its examples. In Section 4, we
define the connectivity optimization problem in multi-layered net-
work and propose its solutions. Section 5 evaluates the proposed
algorithms. Section 6 briefly introduces related work on network
connectivity and multi-layered network. Section 7 concludes the
whole paper.

2 THE MULTI-LAYERED NETWORK MODEL

In this section, we introduce the multi-layered network model that
admits an arbitrary number of layers with arbitrary dependency
structure among different layers. We start with the main symbols
used throughout the paper (Table 1). We use bold upper case letters
for matrices (e.g., A, B), bold lower case letters for column
vectors (e.g., a, b) and calligraphic font for sets (e.g., A, B).
The transpose of a matrix is denoted with a prime, i.e., A′ is the
transpose of matrix A.

With the above notation, we use the following definition of
multi-layered networks as in [9].

Definition 1. A Multi-layered Network Model (MULAN). Given
(1) a binary g × g abstract layer-layer dependency network G,
where G(i, j) = 1 indicates layer-j depends on layer-i (or
layer-i supports layer-j), G(i, j) = 0 means that there is no
direct dependency from layer-i to layer-j; (2) a set of within-
layer adjacency matrices A = {A1, . . . ,Ag}; (3) a set of cross-
layer node-node dependency matrices D, indexed by pair (i, j),

TABLE 1
Main Symbols.

Symbol Definition and Description
A,B the adjacency matrices (bold upper case)
a,b column vectors (bold lower case)
A,B sets (calligraphic)

A(i, j) the element at ith row jth column
in matrix A

A(i, :) the ith row of matrix A
A(:, j) the jth column of matrix A
A′ transpose of matrix A
G the layer-layer dependency matrix
A networks at each layer of MULAN

A = {A1, . . . ,Ag}
D cross-layer node-node dependency matrices
θ, ϕ one to one mapping functions
Γ multi-layered network MULAN

Γ =< G,A,D, θ, ϕ >
Si, Ti, . . . node sets in layer Ai(calligraphic)
Si→j nodes in Aj that depend on nodes S in Ai
N (Si) nodes and cross-layer links that depend on Si
mi, ni number of edges and nodes in layer Ai

λ<A,j>,u<A,j> jth largest eigenvalue (in module) and its
corresponding eigenvector of network A

λA,uA first eigenvalue and eigenvector of network A
C(A) connectivity function of network A
IA(Si) impact of node set Si on network A
I(Si) overall impact of node set Si on MULAN

i, j ∈ [1, . . . , g], such that for a pair (i, j), if G(i, j) = 1,
then D(i,j) is a ni × nj matrix; otherwise D(i,j) = Φ (i.e.,
an empty set); (4) θ is a one-to-one mapping function that
maps each node in layer-layer dependency network G to the
corresponding within-layer adjacency matrix Ai (i = 1, ..., g);
(5) ϕ is another one-to-one mapping function that maps each
edge in G to the corresponding cross-layer node-node dependency
matrix D(i,j). We define a multi-layered network as a quintuple
Γ =< G,A,D, θ, ϕ >.

For simplicity, we restrict the within-layer adjacency matrices
Ai to be simple (i.e., no self-loops), symmetric and binary; and
the extension to the weighted, asymmetric case is straightforward.
In this paper, we require cross-layer dependency network G to
be an un-weighted graph with arbitrary dependency structure.
Notice that compared with the existing pair-wise two-layered
models, MULAN allows a much more flexible and complicated
dependency structure among different layers. For the cross-layer
node-node dependency matrix D(i,j), D(i,j)(s, t) = 1 indicates
that node s in layer i supports node t in layer j.

Fig. 2(a) presents an example of a four-layered network. In this
example, layer-1 (e.g., the control layer) is the supporting layer
(i.e., the root node in the layer-layer dependency network G).
Layer-2 and layer-3 directly depend on layer-1 (e.g., one repre-
sents a communication layer by satellites and the other represents
another communication layer in landlines, respectively), while
layer-4 (e.g., the physical layer) depends on both communication
layers (layer-2 and layer-3). The abstracted layer-layer dependency
network (G) is shown in Fig. 2(b). A = {A1,A2,A3,A4} de-
notes the within-layer adjacency matrices, each of which describes
the network topology in the corresponding layer. In this example,
D is a set of matrices containing only four non-empty matrices:
D(1,2), D(1,3), D(2,4), and D(3,4). For example, D(3,4) describes
the node-node dependency between layer-3 and layer-4. The one-
to-one mapping function θ maps node 1 (i.e., Layer 1) in G to the
within-layer adjacency matrix of layer-1 (A1); and the one-to-one
mapping function ϕ maps edge < 3, 4 > in G to the cross-layer
node-node dependency matrix D(3,4) as shown in Fig. 2(b).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 3

(a) A four-layered network (b) The corrsponding layer-layer dependency network G

Fig. 2. An illustrative example of MULAN model

3 UNIFICATION OF CONNECTIVITY MEASURES

In this section, we present a unified view for a variety of prevalent
network connectivity measures.
3.1 Introducing SUBLINE Family

The key of our unified connectivity measure (referred to as
SUBLINE in this paper) is to view the connectivity of the entire
network as an aggregation over the connectivity measures of its
sub-networks (e.g., subgraphs), that is

C(A) =
∑
π⊆A

f(π) (1)

where π is a subgraph of A. The non-negative function f :
π → R+ maps any subgraph in A to a non-negative real
number and f(φ) = 0 for empty set φ. In other words, we
view the connectivity of the entire network (C(A)) as the sum
of the connectivity of all the subgraphs (f(π)). Based on such
connectivity definition, we further define the impact function of a
given set of nodes S as follows

I(S) = C(A)− C(A \ S) (2)

where A \ S is the residual network after removing node set S
from the original network A.

In multi-layered networks, as the functionality of each node
depends on (1) the well-functioning of its depended node(s) and
(2) its within-layer connections, the impact of node set Si on the
connectivity of layer-j can be quantified as the impact of all its
dependents (either directly or indirectly) on the connectivity of
layer-j (i.e. I(Si→j)). In the example in Fig. 2(a), the impact of
S1 on layer-4 is I(S1→4) = I((S1→2)2→4∪(S1→3)3→4). Based
on eq. (2), we can define the overall impact of node set Si in Ai

on the multi-layered network system as

I(Si) =

g∑
j=1

αjI(Si→j) =

g∑
j=1

αj(C(Aj)− C(Aj \ Si→j))

(3)

where α = [α1, ..., αg]
′ is a g×1 non-negative weight vector that

assigns different weights to different layers in the system, which
is a pre-defined parameter depending on the application task.

It is worth to mention that motifs (defined in [10]) are sub-
networks as well. By setting function f as non-negative constants,
many prevalent network connectivity measures can be reduced to
SUBLINE connectivity measures; and we give three prominent
examples below, including (1) the path capacity; (2) the loop
capacity; and (3) the triangle capacity.

3.2 Example #1: Path Capacity
A natural way to measure network connectivity is through path
capacity, which measures the total (weighted) number of paths in
the network. In this case, the corresponding function f() can be
defined as follows.

f(π) =

{
βlen(π) if π is a valid path of length len(π)

0 otherwise.
(4)

where β is a damping factor between (0, 1/λA) to penalize longer
paths. With such a f() function , the connectivity function C(A)
defined in eq. (1) can be written as

C(A) = 1′(
∞∑
t=1

βtAt)1 = 1′(I− βA)−11 (5)

Remarks. We can also define the path capacity with respect
to a given path length t as C(A) = 1′At1. When t = 1,
C(A) is reduce to the edge capacity (density) of the graph,
which is an important metric for network analysis. On the other
hand, the ‘average’ path capacity (1′At1)1/t of a network con-
verges to the leading eigenvalue of its adjacency matrix, i.e.,
(1′At1)1/t t→∞−−−→ λA, which is an important network vulner-
ability measure in relation to the so-called epidemic threshold [8].
In this case, the impact function of node set S in network A can be
written as I(S) = λA−λA\S , which can be further approximated
by the so-called ‘Shield-value’ score in [8] as follows

IA(S) ≈ Sv(S) =
∑
i∈S

2λAuA(i)
2−

∑
i,j∈S

A(i, j)uA(i)uA(j)

(6)
Thus, the overall impact of set Si on MULAN can be estimated

as

I(Si) =

g∑
j=1

αjSv(Si→j) (7)

3.3 Example #2: Loop Capacity
Another important way to measure network connectivity is
through the loop capacity, which measures the total (weighted)
number of loops in the network. In this case, the corresponding
function f() can be defined as follows.

f(π) =

{
1/len(π)! if π is a valid loop of length len(π)

0 otherwise.
(8)

Then, the connectivity function C(A) can be written as

C(A) =
∞∑
t=1

1

t!
trace(At) =

n∑
i=1

eλ<A,i> (9)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 4

Accordingly, the impact function of a set of nodes S on network
A is

IA(S) =
n∑
i=1

eλ<A,i> −
n∑
i=1

eλ<A\S,i> (10)

and the overall impact of set Si on MULAN can be calculated as

I(S) =

g∑
j=1

αj(

nj∑
i=1

eλ<Aj ,i> −
nj∑
i=1

eλ<Aj\Si→j ,i>) (11)

Remarks. The spectrum of a real network is often skewed.
Thus, instead of computing all the eigenvalues of A, a compu-
tationally much more efficient way is to compute the ‘truncated’
loop capacity by only keeping the top-r largest eigenvalues in
the above equation, i.e., C(A) =

∑r
i=1 e

λ<A,i> . Moreover,
some recent work has suggested to adopt the logarithm of the
truncated loop capacity as an alternative way to measure network
robustness, with several distinctive advantages over the existing
network robustness measures [7].

3.4 Example #3: Triangle Capacity
A localized network connectivity measure is through triangle
capacity, i.e., the total number of triangles in the given network.
In this case, the function f() can be defined as

f(π) =

{
1 if π is a triangle
0 otherwise.

(12)

It has been shown in [11] that the number of triangles in a network
is proportional to the sum of cubic of its eigenvalues. Thus, our
corresponding connectivity function can be expressed as

C(A) =
n∑
i=1

λ3
<A,i> (13)

Then, the impact of node set S on the triangle capacity can be
written as

IA(S) =
n∑
i=1

λ3
<A,i> −

n∑
i=1

λ3
<A\S,i> (14)

and the overall impact of set Si on MULAN is

I(S) =

g∑
j=1

αj(

nj∑
i=1

λ3
<Aj ,i> −

nj∑
i=1

λ3
<Aj\Si→j ,i>

) (15)

Remarks. Similar to the loop capacity, we can use the truncated
triangle capacity by only keeping the top-r eigenvalues to estimate
the number of triangles.

4 CONNECTIVITY OPTIMIZATION

In this section, we first define the connectivity optimization prob-
lem (OPERA) on multi-layered network model (MULAN); then
unveil its major theoretic properties; and last propose a generic
algorithmic framework to solve it.

4.1 OPERA: Problem Statement
We formally define the connectivity optimization problem
(OPERA) on the proposed MULAN model for multi-layered net-
works as follows.

Problem 1. OPERA on MULAN
Given: (1) a multi-layered network Γ =< G,A,D, θ, ϕ >; (2)
a control layer Al; (3) an impact function I(.); and (4) an integer
k as operation budget;
Output: a set of k nodes Sl from the control layer (Al) such that
I(Sl) (the overall impact of Sl) is maximized.

In the above definition, the control layer Al indicates the
sources of the ‘attack’; and the g× 1 vector α indicates the target
layer(s) as well as their relative weights. For instance, in Fig. 2(a),
we can choose layer-1 as the control layer (indicated by the strike
sign); and set α = [0 1 0 1]′, which means that both layer-2 and
layer-4 are the target layers (indicated by the star signs) with equal
weights between them. In this example, once a subset of nodes S
in layer-1 are attacked/deleted (e.g., shaded circle nodes), all the
nodes from layer-2 and layer-3 that are dependent on S (e.g.,
shaded parallelogram and triangle nodes) will be disabled/deleted,
which will in turn cause the disfunction of the nodes in layer-4
(e.g., shaded diamond nodes) that depend on the affected nodes
in layer-2 or layer-3. Our goal is to choose k nodes from layer-1
that have the maximal impact on both layer-2 and layer-4, i.e., to
simultaneously decrease the connectivity C(A2) and C(A4) as
much as possible.

4.2 OPERA: Theory
In this subsection, we present the major theoretical results of
the connectivity optimization problem (OPERA) on multi-layered
networks defined in Problem 1. It says that for any connectiv-
ity function C(A) in the SUBLINE family (eq. (1)), for any
multi-layered network in the MULAN family (Definition 1), the
connectivity optimization problem (OPERA, Problem 1) bears
diminishing returns property.

Let us start with the base case, where there is only one single
input network. In this case, Γ =< G,A,D, θ, ϕ > in Problem
1 degenerates to a single-layered network A, which is both the
control layer as well as the sole control target (i.e., α = 1, and
l = 1). With such a setting, Lemma 1 says that OPERA enjoys the
diminishing returns property, that is, the overall impact function
I(S1) (which in this case degenerates to I(S), i.e., the impact of
the node set S on network A itself) is (a) monotonically non-
decreasing; (b) sub-modular; and (c) normalized.

Lemma 1. Diminishing Returns Property of a Single-layered
Network. Given a simple undirected, un-weighted network A,
for any connectivity function C(A) in the SUBLINE family, the
impact function I(S) is (a) monotonically non-decreasing; (b)
sub-modular; and (c) normalized, where S ⊆ A.

Proof. By the definition of the connectivity function C(A)
(eq. (1)), we have

I(S) =
∑
π⊆A

f(π)−
∑

π⊆A\S

f(π) =
∑

π⊆A, π∩S6=Φ

f(π)

where Φ is the empty set. Apparently, we have I(Φ) = 0
since f(Φ) = 0. In other words, the impact function I(S) is
normalized.

Let I,J ,K be three sets and I ⊆ J . We further define three
sets as follows: S = I ∪ K, T = J ∪ K, R = J \ I .

We have

I(J)− I(I) =
∑

π⊆A, π∩J 6=Φ

f(π)−
∑

π⊆A, π∩I6=Φ

f(π)

=
∑

π⊆A, π∩(J\I)6=Φ

f(π) =
∑

π⊆A, π∩R6=Φ

f(π)

≥ 0

which proves the monotonicity of the impact function I(S).
Let us define another set P = T \ S . We have that P =

(J ∪ K) \ (I ∪ K) = R \ (R ∩ K) ⊆ R = J \ I . Then, we
have

I(T)− I(S) =
∑

π⊆A, π∩P6=Φ

f(π) ≤ I(J)− I(I)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 5

which completes the proof of the sub-modularity of the impact
function I(S).

In order to generalize Lemma 1 to an arbitrary, generic
member in the MULAN family, we first need the following lemma,
which says that the set-ordering relationship in a supporting layer
is preserved through dependency links in all dependent layers of
MULAN.

Lemma 2. Set-ordering Preservation Lemma on DAG. Given
a multi-layered network Γ =< G,A,D, θ, ϕ > with the within-
layer adjacency matrices A = {A1, . . . ,Ag}, and the depen-
dency network G is a directed acyclic graph (DAG). For two node
sets Il,Jl in Al such that Il ⊆ Jl, we have that in any layer
Ai in the system, Il→i ⊆ Jl→i holds, where Il→i and Jl→i are
the node sets in layer Ai that depend on Il and Jl in layer Al

respectively.

Proof. If l = i, we have Jl→i = J ⊆ Il→i = I and Lemma 2
holds.

Second, if layer-i does not depend on layer-l either directly or
indirectly, we have Jl→i = Il→i = Φ, where Φ is an empty set.
Lemma 2 also holds.

If layer-i does depend on layer-l through the layer-layer de-
pendency network G, we will prove Lemma 2 by induction. Let
len(l i) be the maximum length of the path from node l to
node i on the layer-layer dependency network G. Since G is a
DAG, we have that len(l i) is a finite number.

Base Case. Suppose len(l i) = 1, we have that layer-i
directly depends on layer-l. Let Rl = Jl \ Il. We have that

Jl→i = Il→i ∪Rl→i ⊇ Il→i (16)

which complete the proof for the base case where len(l i) = 1.
Induction Step. Suppose Lemma 2 holds for len(l i) ≤ q,

where q is a positive integer. We will prove that Lemma 2 also
holds for len(l i) = q + 1.

Suppose layer-i directly depends on layer-ix (x = 1, ..., d(i),
where d(i) is the in-degree of node i on G). Since G is a DAG,
we have that len(l ix) ≤ q. By the induction hypothesis, given
Il ⊆ Jl, we have that Il→ix ⊆ Jl→ix .

We further have Il→i = ∪x=1,...,d(i) (Il→ix)ix→i.
Let Rl→ix = Jl→ix \ Il→ix for x = 1, . . . , d(i). We have

that

Jl→i = [∪x=1,...,d(i) (Il→ix)ix→i] (17)
∪ [∪x=1,...,d(i) (Rl→ix)ix→i]

= Il→i ∪Rl→i ⊇ Il→i

which completes the proof of the induction step.
Putting everything together, we have completed the proof for

Lemma 2.

Notice that in the proof of Lemma 2, it requires the layer-
layer dependency network G to be a DAG so that the longest
path from the control layer Al to any target layer At is of finite
length. To further generalize it to arbitrary dependency structures,
we need the following lemma, which says that the dependent
paths from control layer to target layer in any arbitrarily structured
dependency network can be reduced to a DAG.

Lemma 3. DAG Dependency Reduction Lemma. Given a
multi-layered network Γ =< G,A,D, θ, ϕ > with arbitrarily
structured layer-layer dependency network G, a control layer
Al, and a target layer At, the dependent paths constructed by
Algorithm 1 can be reduced to a DAG.

Proof. In Algorithm 1, Tarjan Algorithm is first used to find out
all strongly connected components V = {SC1,SC2, . . . ,SCf}
in layer-layer dependency network G. The cross-component de-
pendency edges are denoted as E = {Ei,j}i,j=1,...,f,i 6=j where
< u, v >∈ Ei,j iff G(u, v) = 1 and Au ∈ SCi, Av ∈ SCj .
Based on the node set V and the edge set E , a directed meta graph
G can be constructed where G(u, v) = 1 iff Ei,j 6= φ. The meta
graph G is acyclic. Otherwise, the cycle in G would be merged
into a large strongly connected components by Tarjan Algorithm
at the first place. Suppose the control layer Al and the target layer
At are located in strongly connected component SCi and SCj
respectively, then a set of acyclic paths P from SCi and SCj can
be extracted from G. To show that the dependent paths from Al

to At is DAG, we only need to show that each meta path P ∈ P
can be unfolded into a DAG.

Here we proceed to show how a meta path P can be repre-
sented with a DAG. As the nodes in P are strongly connected
components that contain cycles, and the edges in P contain
corresponding cross-component edges that would not introduce
any cycles, representing P with a DAG can be converted to a
problem of unfolding the cyclic dependent paths in a strongly
connected component into a DAG. As described in Algorithm 4, a
strongly connected componentQ can be partitioned into two parts:
(1) a DAG that contains all acyclic links (denoted as GQ,0) and
(2) links that enclose cycles in Q (denoted as EQ,0). Therefore,
given a strongly connected component Q and a set of dependent
nodes {Tv}Av∈Q in Q, the dependent cycle can be replaced by
a chain of GQ,0’s replicas, where the two adjacent replicas are
linked by EQ,0 until the number of the dependent nodes in the
connected component converges (step 5 to 23 in Algorithm 3). As
the number of dependent nodes keeps increasing in each iteration
and is upper bounded by the total number of nodes in Q, the
repetition is guaranteed to stop at a stable state within finite
iterations. Since GQ,0 is a DAG, the links (EQ,0) between each
replicas {GQ,1, . . . ,GQ,L} would not introduce any cycle, the
resulting graph GQ is also a DAG. Therefore, the dependent paths
constructed by Algorithm 1 from Al and At can be represented
as a DAG.

A complete DAG reduction algorithm is summarized from
Algorithm 1 to 4.

Algorithm 1 DAG Reduction Algorithm
Input: (1) A multi-layered network Γ, (2) a control layer Al, (3)

a set of node Sl in layer Al and (4) a target layer At

Output: (1) a DAG GD that contains all the dependent paths
from Sl in layer Al to At and (2) Sl→t.

1: find out all strongly connected components in G as V ←
{SC1,SC2, . . . ,SCf} with Tarjan Algorithm2

2: set E ← {Ei,j}i,j=1,...,f , where < u, v >∈ Ei,j iff
G(u, v) = 1 and Au ∈ SCi, Av ∈ SCj

3: construct meta graph G from V s.t. G(i, j) = 1 iff Ei,j 6= φ
4: SCi ← connected component that contains Al

5: SCj ← connected component that contains At

6: find out all paths P from SCi to SCj in G
7: initialize GD ← φ, Sl→t = φ
8: for each path P in P do
9: [GP

D,SPl→t]← unfoldPath(P,G,Sl,Γ,V, E)
10: GD ← GD ∪GP

D, Sl→t ← Sl→t ∪ SPl→t
11: end for
12: return [GD , Sl→t]

2. A widely used strongly connect component detection algorithm in [12].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 6

In Algorithm 1, step 1 runs Tarjan Algorithm [12] to find out
all the strongly connected components in layer-layer dependency
network G. Step 2 collects all cross-component edges into set E .
In the following step, a meta graph G is constructed based on V
and E . In step 4 and 5, the connected components that contain
control layer and target layer are located (SCi and SCj). Step 6
finds out all meta paths from SCi to SCj . In step 7, the final DAG
GD and dependent node set Sl→t are initialized as empty sets.
From step 8 to step 11, the DAG GP

D and dependent node set SPl→t
for each path P in P are calculated by function unfoldPath, and
are used to update GD and Sl→t in step 10.

To illustrate how Algorithm 1 works, we present a simple
example in Fig. 3. In the example, the dependency network G
contains three layers, where A1 is the control layer and A3 is the
target layer. Specifically, A2 is a dependent layer of A1; while A2

and A3 are inter-dependent to each other. The toy example has
two strongly connected components {SC1,SC2} and one cross-
component edge set E1,2 = {< 1, 2 >}. The meta graph G is a
link graph with just two nodes.

Fig. 3. A cyclic dependency multi-layered network.

In Algorithm 2, the first connected component Q is initialized
as the connected component that contains control layer Al in step
2, the dependent nodes are initialized as Sl from step 5 to 8 and
the root layer R is initialized as the control layer Al. From step
10 to 36, the DAG GP

Q and the final dependent nodes in Q are
calculated by function unfoldSC in line 11; GP

Q is then added
to the final DAG GP

D via cross-component links Ei′′q ,iq from step
15 to 17. The initial dependent nodes for the next connected
component SCi′q are computed through cross-component links
Eiq,i′q from step 27 to 29. Step 30 is used to pick a root layer
with non-empty dependent node set for SCi′q .

Algorithm 3 is used to unfold a strongly connected component
into a DAG. In step 1, the input connected component Q is
partitioned into a DAG GQ,0 and a set of cycle links EQ,0. In
step 2, the DAG GQ is initialized by GQ,1, which is a replica of
GQ,0. From step 5 to 23, the algorithm keeps appending replicas
of GQ,0 (GQ,c+1) onto GQ (step 8 to 16) until no new nodes are
added to the dependent node set {Tv}Av∈Q (step 17-19).

For the example in Fig. 3, SC1 is unfolded as G1 with one
node A1

1 in Fig. 4. The initial dependent node set T2 for layer
A2 can be calculated through E1,2 as T1→2. For SC2, it is first
partitioned into a DAG G2,0 and a cycle edge set E2,0 = {<
A3,A2 >} as shown in Fig. 3. Suppose that the dependent node
set in SC2 converges in L2 iterations, then the DAG for SC2

can be presented with L2 replicas of G2,0 linked by edges {<
Ac

3,A
c+1
2 >}c=1,...,L2−1 as shown in Fig. 4. Putting all together,

the final DAG GD can be constructed by linking A1
1 in G1 with

{Ax
2}x=1,...,L2

in G2.
Algorithm 4 is used to partition a strongly connected com-

ponent Q into a DAG GQ and an edge set EQ,0 that contains
all cycle edges. The basic idea is to use Breadth-First-Search
algorithm to traverse all the edges in the graph. In step 1 and
2, GQ,0 and EQ,0 are initialized as Q and φ respectively. For

Algorithm 2 UnfoldPath: Construct DAG from meta path
Input: (1) A meta path P = SCi → . . . → SCj , (2) a meta

graph G, (3) a set of nodes Sl in Al ∈ SCi, (4) a multi-
layered network Γ, (5) all strongly connected components V
and (6) all cross-component edges E

Output: (1) a DAG GP
D and (2) SPl→t.

1: append φ to the end of meta path P
2: set Q = SCi
3: iq ← index of connected component Q in meta graph G
4: i′′q ← −1
5: for each layer Av in Q do
6: initialize Tv ← φ
7: end for
8: Tl ← Tl ∪ Sl
9: set root R← Al

10: while true do
11: [GP

Q, {SPl→v}Av∈Q]←
unfoldSC(Q, {Tv}Av∈Q,R)

12: if i′′q = −1 then
13: GP

D ← GP
Q

14: else
15: for each < u, v >∈ Ei′′q ,iq do

16: link layer A
Li′′q
u ∈ GP

D to layers {Ax
v}x=1,...,Liq

∈
GP
Q

17: end for
18: end if
19: Q′ ← Q.successor()
20: if Q′ = φ then
21: break
22: else
23: i′q ← index of Q′ in meta graph G
24: for each layer Av in Q′ do
25: initialize Tv ← φ
26: end for
27: for each edge < u, v >∈ Eiq,i′q do
28: Tv ← Tv ∪ (SPl→u)u→v
29: end for
30: R ← Ar , where Ar is a randomly picked layer from

Q′ with Tr 6= φ
31: Q ← Q′
32: i′′q ← iq
33: iq ← i′q
34: end if
35: end while
36: return GP

D , SPl→t

Fig. 4. Constructed DAG for Fig. 3.

each edge < Au,Av > in Q, if Av appears in Au’s ancestor list
Lu, then < Au,Av > would be removed from GQ,0 and added

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 7

Algorithm 3 UnfoldSC: Construct DAG from strongly connected
component
Input: (1) A strongly connected component Q, (2) a set of initial

nodes for each layer {Tv}Av∈Q, (3) a root layer R
Output: (1) a DAG GQ (2) {Sl→v}Av∈Q.

1: extract DAG and cycle edges [GQ,0, EQ,0] ←
extractDAG(Q,R)

2: set GQ,1 ← GQ,0, denote the layers in GQ,1 as {A1
v}

3: set c← 1
4: initialize GQ ← GQ,1
5: while true do
6: {T cv }Av∈Q ← dependents of {Tv}Av∈Q in GQ,c
7: update {Tv}Av∈Q ← {Tv ∪ T cv }Av∈Q
8: set GQ,c+1 ← GQ,0, layers in GQ,c+1 are denoted as

{Ac+1
v }

9: extend GQ ← GQ ∪GQ,c+1

10: for each edge < u, v >∈ EQ,0 do
11: Tu→v ← all dependents of Tu in layer Av

12: if Tu→v * Tv then
13: add edge < Ac

u,A
c+1
u > to GQ

14: update Tv ← Tv ∪ Tu→v
15: end if
16: end for
17: if no edge added between GQ,c and GQ,c+1 then
18: remove GQ,c+1 from GQ
19: break
20: else
21: c← c+ 1
22: end if
23: end while
24: return [GQ, {Tv}Av∈Q]

Algorithm 4 ExtractDAG: extract DAG from strongly connected
component
Input: (1) A strongly connected component Q and (2) a root

layer R in the connected component
Output: (1) a DAG GQ,0 (2) edge set EQ,0 that contains all

cycle edges.
1: initialized GQ,0 ← Q
2: initialized EQ,0 ← φ
3: for each layer Av ∈ Q do
4: initialize its ancestor list Lv ← φ
5: end for
6: initialize a queue T ← φ
7: T .enqueue(R)
8: while T 6= φ do
9: Au ← T .dequeue()

10: for each dependent layer Av of A do
11: if Av ∈ Lu then
12: remove edge < Au,Av > from GQ,0
13: EQ,0 ← EQ,0∪ < Au,Av >
14: else
15: T .enqueue(Av)
16: Lv ← Lv ∪ Lu ∪ {Au}
17: end if
18: end for
19: end while
20: return [GQ,0, EQ,0]

to EQ,0 (step11 to 13).
The algorithms used in Lemma 3 together with Lemma 2

guarantee that set-ordering preservation property also holds in

multi-layered networks with arbitrarily structured dependency
graph G.

Now, we are ready to present our main theorem as follows.

Theorem 1. Diminishing Returns Property of MULAN. For
any connectivity function C(A) in the SUBLINE family (eq. (1))
and any multi-layered network in the MULAN family (Definition
1); the overall impact of node set Sl in the control layer l, I(Sl) =∑g
i=1 αiI(Sl→i), is (a) monotonically non-decreasing; (b) sub-

modular; and (c) normalized.

Proof. We first prove the sub-modularity of function I(Sl). Let
Il,Jl,Kl be three node sets in layer Al and Il ⊆ Jl. Define the
following two sets as: Sl = Il ∪ Kl and Tl = Jl ∪ Kl. We have
that

I(Sl)− I(Il) =

g∑
i=1

αiI(Sl→i)−
g∑
i=1

αiI(Il→i) (18)

=

g∑
i=1

αi(I(Sl→i)− I(Il→i))

I(Tl)− I(Jl) =

g∑
i=1

αiI(Tl→i)−
g∑
i=1

αiI(Jl→i) (19)

=

g∑
i=1

αi(I(Tl→i)− I(Jl→i))

∀i = 1, . . . , g, it is obvious that Sl→i = Il→i ∪ Kl→i, Tl→i =
Jl→i∪Kl→i. By Lemma 2, we have Il→i ⊆ Jl→i. Furthermore,
by the sub-modularity of I(Si) on Ai (Lemma 1), we have that

I(Sl→i)− I(Il→i) ≥ I(Tl→i)− I(Jl→i)

Since for ∀i, we have αi ≥ 0. Therefore
g∑
i=1

αi(I(Sl→i)−I(Il→i)) ≥
g∑
i=1

αi(I(Tl→i)−I(Jl→i)) (20)

Putting eq. (18), (19) and (20) together, we have that

I(Sl)− I(Il) ≥ I(Tl)− I(Jl)

which completes the proof that I(Sl) is sub-modular.
Notice that the connectivity function C(A) in the SUBLINE

family is monotonically non-decreasing. By eq. (18), we have that

I(Sl)− I(Il) =

g∑
i=1

αi(C(Ai \ Il)− C(Ai \ Sl)) ≥ 0

which completes the proof that I(Sl) is monotonically non-
decreasing.

Finally, notice that for each dependent layer, the impact
function I(Si) is normalized (Lemma 1); and for i = 1, . . . , g,
Φl→i = Φ (an empty set). Therefore we have that I(Φ) = 0. In
other words, I(Sl) is also normalized.

4.3 OPERA: Algorithms and Analysis
In this subsection, we introduce our algorithm to solve OPERA
(Problem 1), followed by some analysis in terms of the optimiza-
tion quality as well as the complexity.
A Generic Solution Framework. Finding out the global op-
timal solution for Problem 1 by a brute-force method would
be computationally intractable, due to the exponential enumera-
tion. Nonetheless, the diminishing returns property of the impact
function I(.) (Theorem 1) immediately lends itself to a greedy
algorithm for solving OPERA with any connectivity function in

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 8

Algorithm 5 OPERA: A Generic Solution Framework
Input: (1) A multi-layered network Γ, (2) a control layer Al, (3)

an overall impact function I(Sl) and (4) an integer k
Output: a set of k nodes S from the control layer Al.

1: initialize S to be empty
2: for each node v0 in layer Al do
3: calculate margin(v0)← I(v0)
4: end for
5: find v = argmaxv0margin(v0) and add v to S
6: set margin(v)← −1
7: for i = 2 to k do
8: set maxMargin← −1
9: for each node v0 in layer Al do

10: /*an optional ‘if’ for lazy eval.*/
11: if margin(v0) > maxMargin then
12: calculate margin(v0)← I(S ∪ {v0})− I(S)
13: if margin(v0) > maxMargin then
14: set maxMargin← margin(v0) and v ← v0

15: end if
16: end if
17: end for
18: add v to S and set margin(v)← −1
19: end for
20: return S

the SUBLINE family and arbitrary member in the MULAN family,
as summarized in Algorithm 5.

In Algorithm 5, step 2-4 calculate the impact score
I(v0) (v0 = 1, 2, ...) for each node in the control layer Al. Step 5
selects the node with the maximum impact score. In each iteration
in step 7-19, we select one of the remaining (k− 1) nodes, which
would make the maximum marginal increase in terms of the cur-
rent impact score (step 12, margin(v0) = I(S ∪{v0})− I(S)). In
order to further speed-up the computation, the algorithm admits an
optional lazy evaluation strategy (adopted from [13]) by activating
an optional ‘if’ condition in Step 11.

Note that it is easy to extend Algorithm 5 to the sce-
nario where we have multiple control layers. Suppose Al =
{Al1 ,Al2 , . . . ,Alx} is a set of control layers, to select best k
nodes from Al, we only need to scan over all the nodes in Al in
step 2 and step 9 respectively, and pick the highest impact node
from the entire candidate set in step 5 and 18. Consequently, the
resulting set S returned from the algorithm would contain the k
highest impact nodes over Al.
Algorithm Analysis. Here, we analyze the optimality as well
as the complexity of Algorithm 5, which are summarized in
Lemma 4-6. According to these lemmas, our proposed Algorithm
1 leads to a near-optimal solution with a linear complexity.

Lemma 4. Near-optimality. Let Sl and S̃l be the sets selected
by Algorithm 5 and the brute-force algorithm, respectively. Let
I(Sl) and I(S̃l) be the overall impact of Sl and S̃l. Then I(Sl) ≥
(1− 1/e)I(S̃l).

Proof. As proved in Theorem 1, the overall impact function
I(S) (S ⊆ Al) is monotonic, sub-modular and normalized.
Using the property of such functions in [14], we have I(Sl) ≥
(1− 1/e)I(S̃l).

Lemma 5. Time complexity. Let h(ni,mi, |Sl→i|) be the time to
compute the impact of node set Sl on layer i. The time complexity
for selecting S of size k from the control layer Al is upper
bounded by O(k(|N (Al)|+ nl

∑g
i=1 h(ni,mi, |Sl→i|))) where

N (Al) denotes the nodes and cross-layer links in Γ that depends
on Al.

Proof. The greedy algorithm with lazy evaluation strategy needs
to iterate over all the nodes in layer Al for k time. At each
time, the worst case is that we need to evaluate the marginal
increase for all unselected nodes in Al. The overall complexity
of finding dependents of every nodes in Al is equal to the size
of the sub-system that rooted on Al, which is |N (Al)|. And
for each unselected node, finding out its current impact to the
system as shown in step 3 and step 12 can be upper bounded
by the complexity of

∑g
i=1 h(ni,mi, ni) + g because there are

at most g non-zero weighted layers that depends on Al. Taking
these all together, the complexity of selecting set S from Al

with Algorithm 5 isO(k[|N (Al)|+nl
∑g
i=1 h(ni,mi, |Sl→i|)]),

where |N (Al)| is upper bounded by N + L, which is the sum
of total number of nodes and total number of dependency links
in Γ. If given that function h is linear to ni,mi and |Sl→i|, as
|Sl→i| is upper bounded by ni, and nl can be viewed as a constant
compared to N,M and L, it is easy to see that the complexity of
the algorithm is linear to N , M and L.

Remarks. Lemma 5 implies a linear time complexity of the
proposed OPERA algorithm wrt the size of the entire multi-layered
network (N + M + L), where N,M,L are the total number of
nodes, the total number of within-layer links and the total number
of cross-layer links in Γ under the condition that the function h is
linear wrt ni,mi and |Sl→i|. This condition holds for most of the
network connectivity measures in the SUBLINE family, e.g., the
path capacity, the truncated loop capacity and the triangle capacity.
To see this, let us take the most expensive truncated loop capacity
as an example. The time complexity for calculating truncated loop
capacity in a single network is O(mr + nr2), where r is the
number of eigenvalues used in the calculation and it is often
orders of magnitude smaller compared with m and n. On the
other hand, we have |N (Al)| ≤ N + L. Therefore, the overall
time complexity for selecting set S of size k from control layer Al

is upper bounded by O(k(N + L + nl
∑g
i=1(mir + nir

2))) =
O(k(N +L+nl(rM + r2N))) = O(k(L+nl(rM + r2N))).

Lemma 6. Space complexity. Let w(ni,mi, |Sl→i|) be a func-
tion of ni, mi and |Sl→i| that denotes the space cost to compute
I(Sl→i). The space complexity of Algorithm 5 is O(N +M +L)
under the condition that the function w is linear wrt ni, mi and
|Sl→i|.

Proof. As defined in 5, N,M,L are the total number of nodes,
total number of within-layer links and total number of cross-layer
links in Γ. Then storing multi-layered network Γ would take a
space ofO(N+M+L). In Algorithm 5, it takesO(nl) to save the
marginal increase vector (margin) and O(k) to save result S . As
space for computing I(Sl→i) can be reused for each layer i, then
computing I(Sl→i) is bounded by argmaxiw(ni,mi, |Sl→i|).
If function w is linear wrt ni, mi and |Sl→i|, then the space
complexity of Algorithm 5 is of O(N + M + L + k + nl) +
O(argmaxi(ni)) +O(argmaxi(mi)) = O(N +M + L).

Remarks. The condition that the function w is linear wrt ni, mi

and |Sl→i| holds for most of the network connectivity measures
in the SUBLINE family, which in turn implies a linear space
complexity for the proposed OPERA algorithm. Again, let us take
the truncated loop capacity connectivity as an example. Storing
the input MULAN (Γ) takes O(N +M +L) in space. The space
cost to calculate the truncated loop capacity in a single-layered
network is O(m + nr), where r is the number of eigenvalues

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 9

used for the computation. Again, r is usually a much smaller
number compared with m and n, and thus is considered as a
constant. Therefore, the overall space complexity for OPERA with
the truncated loop capacity is O(N +M + L).

5 EXPERIMENTAL RESULTS

In this section, we empirically evaluate the proposed OPERA
algorithms. All experiments are designed to answer the following
two questions:

• Effectiveness: how effective are the proposed OPERA algo-
rithms at optimizing the connectivity measures (defined in
the proposed SUBLINE family) of a multi-layered network
(from the proposed MULAN family)?

• Efficiency: how fast and scalable are our algorithms?

5.1 Experimental Setup
Data Sets Summary. We perform the evaluations on four appli-
cation domains, including (D1) a multi-layered Internet topol-
ogy at the autonomous system level (MULTIAS); (D2) critical
infrastructure networks (INFRANET); (D3) a social-information
collaboration network (SOCINNET); and (D4) a biological CTD
(Comparative Toxicogenomics Database) network [15] (BIO).
For the first two domains, we use real networks to construct
the within-layer networks (i.e., A in the MULAN model) and
construct one or more cross-layer dependency structures based
on real application scenarios (i.e., G and D in the MULAN
model). For the data sets in SOCINNET and BIO domains, both
the within-layer networks and cross-layer dependency networks
are based on real connections. A summary of these data sets is
shown in Table 2. We will present the detailed description of each
application domains in Subsection 5.2.

TABLE 2
Data Sets Summary.

Data Sets Application Domains # of Layers # of Nodes # of Links
D1 MULTIAS 2∼4 5,929∼24,539 11,183∼50,778
D2 INFRANET 3 19,235 46,926
D3 SOCINNET 2 63,501∼124,445 13,097∼211,776
D4 BIO 3 35,631 253,827

Baseline Methods. To our best knowledge, there is no existing
method which can be directly applied to the connectivity optimiza-
tion problem (Problem 1) of the MULAN model. We generate the
baseline methods using two complementary strategies, including
forward propagation (‘FP’ for short) and backward propagation
(‘BP’ for short). The key idea behind the forward propagation
strategy is that an important node in control layer might have
more impact on its dependent networks as well. On the other hand,
for the backward propagation strategy, we first identify important
nodes in the target layer(s), and then trace back to its supporting
layer(s) through the cross-layer dependency links (i.e., D). For
both strategies, we need a node importance measure. In our eval-
uations, we compare three different measures, including (1) node
degree; (2) pagerank measure [16]; and (3) Netshield values [8]. In
addition, for comparison purpose, we also randomly select nodes
either from the control layer (for the forward propagation strategy)
or from the target layer(s) (for the backward propagation strategy).
Altogether, we have eight baseline methods (four for each strategy,
respectively), including (1) ‘Degree-FP’, (2) ‘PageRank-FP’, (3)
‘Netshield-FP’, (4) ‘Rand-FP’, (5) ‘Degree-BP’, (6) ‘PageRank-
BP’, (7) ‘Netshield-BP’, (8) ‘Rand-BP’.

OPERA Algorithms and Variants. We evaluate three prevalent
network connectivity measures, including (1) the leading eigen-
value of the (within-layer) adjacency matrix, which relates to the
epidemic threshold of a variety of cascading models; (2) the loop
capacity (LC), which relates to the robustness of the network;

and (3) the triangle capacity (TC), which relates to the local
connectivity of the network. As mentioned in Section 3, both the
loop capacity and the triangle capacity are members of the SUB-
LINE family. Strictly speaking, the leading eigenvalue does not
belong to the SUBLINE family. Instead, it approximates the path
capacity (PC), and the latter (PC) is a member of the SUBLINE
family. Correspondingly, we have three instances of the proposed
OPERA algorithm (each corresponding to one specific connectivity
measures) including ‘OPERA-PC’, ‘OPERA-LC’, and ‘OPERA-
TC’. Recall that there is an optional lazy evaluation step (step
11) in the proposed OPERA algorithm, thanks to the diminishing
returns property of the SUBLINE connectivity measures. When
the leading eigenvalue is chosen as the connectivity function, such
diminishing returns property does not hold any more. To address
this issue, we introduce a variant of OPERA-PC as follows. At
each iteration, after the algorithm chooses a new node v (step
18, Algorithm 1), we (1) update the network by removing all the
nodes that depend on node v, and (2) update the corresponding
leading eigenvalues and eigenvectors. We refer to this variant as
‘OPERA-PC-Up’. For each of the three connectivity measures, we
run all four OPERA algorithms.

Machines and Repeatability. All the experiments are per-
formed on a machine with 2 processors Intel Xeon 3.5GHz with
256GB of RAM. The algorithms are programmed with MATLAB
using single thread. All the data sets used in this paper are publicly
available. We will open source all the codes after the paper is
accepted.

5.2 Effectiveness Results

D1 - MULTIAS. This data set contains the Internet topology
at the autonomous system level. The data set is available at
http://snap.stanford.edu/data/. It has 9 different network snapshots,
with 633 ∼ 13, 947 nodes and 1, 086 ∼ 30, 584 edges. In our
evaluations, we treat these snapshots as the within-layer adjacency
matrices A. For a given supporting layer, we generate the cross-
layer node-node dependency matrices D by randomly choosing
3 nodes from its dependent layer as the direct dependents for
each supporting node. For this application domain, we have ex-
perimented with different layer-layer dependency structures (G),
including a three-layered line-structured network, a three-layered
tree-structured network, a four-layered diamond shaped network
and a three-layered cyclic network. As the experimental results in
the first three networks follows similar pattern, we only present
the results on diamond shaped network and cyclic network in
Fig. 5 and 6 due to page limits. Overall, the four instances of
the proposed OPERA algorithm perform better than the baseline
methods. Among the baseline methods, the backward propagation
methods are better than the forward propagation methods under
acyclic dependency networks (5). This is because the length of the
back tracking path on the dependency network G (from the target
layer to the control layer) is short. Therefore, compared with other
baseline methods, the node set returned from the BP strategy is
able to affect more important nodes in the target layer. While for
the cyclic dependency network in Fig. 6, the back tracking path is
elongated by the cycle. Then the nodes selected by BP strategy are
not guaranteed to affect more important nodes in the target layer
than FP strategy.
D2 - INFRANET. This data set contains three types of critical
infrastructure networks, including (1) the power grid, (2) the com-
munication network; and (3) the airport networks. The power grid
is an undirected, un-weighted network representing the topology
of the Western States Power Grid of the United State [17]. It
has 4,941 nodes and 6,594 edges. We use one snapshot from the
MULTIAS data set as the communication network with 11,461

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 10

Fig. 5. Evaluations on the MULTIAS data set, with a four-layered diamond-shaped dependency network. The connectivity change vs. budget. Larger
is better. All the four instances of the proposed OPERA algorithm (in red) outperform the baseline methods.

Fig. 6. Evaluations on the MULTIAS data set, with a three-layered cyclic dependency network. The connectivity change vs. budget. Larger is better.
Three out of four instances of the proposed OPERA algorithm (in red) outperform the baseline methods.

nodes and 32,730 edges. The airport network represents the
internal US air traffic lines between 2,649 airports and has 13,106
links (available at http://www.levmuchnik.net/Content/Networks/
NetworkData.html). We construct a triangle-shaped layer-layer
dependency network G (see the icon of Fig. 7) based on the
following observation. The operation of an airport depends on both
the electricity provided by the power grid and the Internet support
provided by the communication network. In the meanwhile, the
full-functioning of the communication network depends on the
support of power grid. We use similar strategy as in MULTIAS to
generate the cross-layer node-node dependency matrices D. The
results are summarized in Fig. 7. Again, the proposed OPERA
algorithms outperform all the baseline methods. Similar to the
MULTIAS network, the back tracking path from the airport layer
to the power grid layer is also very short. Therefore, the backward
propagation strategies perform relatively better than other baseline
methods. In addition, we change the density of the cross-layer
node-node dependency matrices and evaluate its impact on the
optimization results in Fig. 8. We found that (1) across differ-
ent dependency densities, the proposed OPERA algorithms still
outperform the baseline methods; and (2) when the dependency
density increases, the algorithms lead to a larger decrease of the
corresponding connectivity measures with the same budget.
D3 - SOCINNET. This data set contains three types of social-
information networks [18], including (1) a co-authorship network;
(2) a paper-paper citation network; and (3) a venue-venue citation
network. Different from the previous two data sets, two types of
cross-layer node-node dependency links naturally exist in this
data set, including who-writes-which paper, and which venue-
publishes-which paper. In our experiment, we use the papers
published between year 1990 to 1992. In total, there are 62,602
papers, 61,843 authors, 899 venues, 10,739 citation links, 201,037
collaboration links, 2,358 venue citation links, 126,242 author-
paper cross-layer links, and 62,602 venue-paper cross-layer links.

We evaluate the proposed algorithms in two scenarios with this

data set, including (1) an author-paper two-layered network; and
(2) a venue-paper two-layered network. For both scenarios, we
choose the paper-paper citation network as the target layer. Fig. 9
presents the results on the author-paper two-layered network. We
can see that three out of four OPERA algorithms outperform all
the baseline methods in all the three cases. OPERA-PC does not
perform as well as the remaining three OPERA instances due to the
gap between the leading eigenvalue and the actual path capacity.
However, the issue can be partially addressed with OPERA-PC-Up
by introducing an update step. Among the baseline methods, the
backward propagation strategy is better since the target layer is
directly dependent on the control layer, which makes it possible
to trace back the high-impact authors given the set of high-impact
papers. The poor performance of the forward propagation methods
implies that a socially active author does not necessarily have high-
impact papers. The results on the venue-paper network is similar
as shown in Fig. 10. Different from the author-paper network, the
backward propagation strategies perform worse than the forward
propagation strategies. This is probably due to the fact that not all
the important (high-impact) papers appear in the important (high-
impact) venues.

D4 - BIO. This data set contains three types of biological
networks [15] including (1) a chemical similarity network with
6,026 chemicals, 69,109 links; (2) a gene similarity network with
25,394 genes, 154,167 links; and (3) a disease similarity network
with 4,256 diseases, 30,551 links. The dependencies between
those layers depict which chemical-affects-which gene, which
chemical-treats-which disease, and which gene-associates-which
disease relations, each of which contains 53,735, 19,771 and 1,950
dependency links respectively. The evaluation results are as shown
in Fig. 11. Despite the fact that the proposed OPERA algorithms
outperform all other baseline methods, there are two interesting
observations that worth to be mentioned. First is that the impact of
chemical nodes on disease networks become saturated at a small
budge value for all connectivity measures, which implies that only

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 11

Fig. 7. Evaluations on the INFRANET data set, with a three-layered triangle-shaped dependency network. The connectivity change vs. budget.
Larger is better. All the four instances of the proposed OPERA algorithm (in red) outperform the baseline methods.

Fig. 8. ∆λ wrt K. Change the average number of dependents between Power Grid and AS from 5, 10 to 15 (left to right)

Fig. 9. Evaluations on the SOCINNET data set, with a two-layered author-paper dependency network. The connectivity change vs. budget. Larger
is better. Three out-of four proposed OPERA algorithms (in red) outperform the baseline methods.

Fig. 10. Evaluations on the SOCINNET data set, with a two-layered venue-paper dependency network. The connectivity change vs. budget. Larger
is better. Three out-of four proposed OPERA algorithms (in red) outperform the baseline methods.

a few chemicals are effective in treating most of the diseases in the
given data set. Second, the ineffectiveness of forward propagation
methods indicates that chemicals with various compounds (high
within-layer centrality nodes) may have little effects in disease
treatment.

5.3 Efficiency Results

Fig. 12 presents the scalability of the proposed OPERA algorithms.
We can see that all four instances of OPERA scale linearly

with respect to the size of the input multi-layered network (i.e.,
N + M + L), which is consistent with the complexity analysis
in Subsection 4.3. The wall-clock time for OPERA-PC-Up is the
longest compared with the remaining three instances, due to the
additional update step.

6 RELATED WORK

In this section, we review the related work, which can be catego-
rized into two groups: (a) network connectivity optimization, and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 12

Fig. 11. Evaluations on the BIO data set, with a three-layered triangle-shaped dependency network. The connectivity change vs. budget. Larger is
better. Three out-of four proposed OPERA algorithms (in red) outperform the baseline methods.

Fig. 12. Wall-clock time vs. the size of input networks. The proposed OPERA algorithms scale linearly wrt (N +M + L).

(b) multi-layered network analysis.
Network Connectivity Optimization. Connectivity is a fun-

damental property of networks, and has been a core research
theme in graph theory and mining for decades. Depending on the
specific applications, many network connectivity measures have
been proposed in the past. Examples include the size of giant con-
nected component (GCC), graph diameter, the mixing time [19],
the vulnerability measure [20], the epidemic thresholds [21],
the natural connectivity [22] and the number of triangles in the
network, each of which often has its own, different mathematical
definitions. In [10], Milo et al. showed that network motifs are the
simple building blocks of complex networks; and network motifs
are essentially different patterns of subgraph structures. Partially
inspired by this discovery, we find that many network connectivity
measures can be expressed as the aggregation of the connectivity
of its subgraph structures, which leads to a unified viewpoint of
some prevalent network connectivity measures (Section 3).

From algorithm’s perspective, network connectivity optimiza-
tion aims to maximize or minimize the corresponding connec-
tivity measures by manipulating the underlying topology (e.g.,
add/remove nodes/links). Earlier work, either explicitly or implic-
itly, assumes that nodes/links with higher centrality scores would
have a greater impact on network connectivity. This assumption
has led to many research efforts on finding good node/link cen-
trality measures (or node/link importance measure in general) .
Some widely used centrality measures include shortest path based
centrality [23], PageRank [16], HITS [24], coreness score [25],
local Fiedler vector centrality [26] and random walks based cen-
trality [27]. Different from those node centrality oriented methods,
some recent work aims to take one step further by collectively
finding a subset of nodes/links with the highest impact on the
network connectivity measure. For example, Tong et al. [8], [28],
[29], [30] proposed both node-level and edge-level manipulation
strategies to optimize the leading eigenvalue of the network, which
is the key network connectivity measure behind a variety of
cascading models. In [7], Chan et al. further generalized these
strategies to manipulate the network robustness measure through
the truncated loop capacity [22]. Another important aspect of

network connectivity optimization problem lies in the network
dynamics. Chen et al. proposed an efficient online algorithm
to track some important network connectivity measures (e.g.,
the leading eigenvalue, the robustness measure) on a temporal
dynamic network in [31], [32].

Multi-Layered Network Analysis. Multi-layered networks
have been attracting a lot of research attention in recent years.
Different models have been proposed to formulate the multi-
layered network data structure. In [33], multi-layered networks are
represented as a high-order tensor, which is coupled by a second-
order within-layer networks tensor and a second-order cross-layer
dependency tensor. While in [34], the corresponding data structure
is represented as a quadruplet M = {VM , EM , V,L}, in which
each distinct nodes in V can appear in multiple elementary layers
in L = {L1, . . . , Ld}. Then, VM ⊆ V ×L1×. . .×Ld represents
the nodes in each layer, and EM = VM × VM represents both
within-layer and cross-layer links in the entire system. In [9],
the model is simplified into a pair M = (G, C), where G gives
all the within-layer networks and C provides all the cross-layer
dependencies. Different from the above models, the formulation
used in our paper gives more emphasis on the abstracted depen-
dency network structure G, which makes it easier to unravel the
impact path for a set of nodes from a given layer. In [35], Kivela
et al. presented a comprehensive survey on different types of
multi-layered networks, which include multi-modal networks [36],
multi-dimensional networks [37], multiplex networks [38] and
interdependent networks [1]. The problem addressed in this paper
is most related to the interdependent networks. In [3] and [39],
the authors presented an in-depth introduction on the fundamental
concepts of interdependent, multi-layered networks as well as the
key research challenges. In a multi-layered network, the failure of
a small number of the nodes might lead to catastrophic damages
on the entire system as shown in [1] and [40]. In [1], [2], [4], [5],
[6], different types of two-layered interdependent networks were
thoroughly analyzed. In [39], Gao et al. analyzed the robustness
of multi-layered networks with star- and loop-shaped dependency
structures. Similar to the robustness measures in [41], most of
the current works use the size of GCC (giant connected compo-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 13

nent) in the network as the evaluation standard [42], [43], [44].
Nonetheless, the fine-granulated connectivity details might not be
captured by the GCC measure. To address the above issues, Chen
et al. generalized a set of classic network connectivity measures
into a unified framework and proposed an efficient algorithm to
optimize the connectivity in more general structured multi-layered
networks [45]. In [46], De Domenico et al. proposed a method to
identify versatile nodes in multi-layered networks by evaluating
their eigenvector centrality and pagerank centrality. The selected
versatile nodes are fundamentally different from our high impact
nodes in three aspects. First is that their centrality measures can
not capture the collective impact of a node set on the network.
Second is that our proposed network connectivity is directly
related to only within-layer links, while cross-layer dependency is
the trigger for connectivity changes. The two types of links should
be treated differently rather than mixed up for a unified centrality
calculation. Last, the globally crucial nodes in the entire system
may not be able to provide an optimal solution to minimized the
connectivity in specific target layer(s). On the other hand, existing
works assume that the observed cross-layer dependencies in multi-
layered networks are complete, which is not the case in real-
world applications due to noise, limited accessibility, etc. In [47],
a collaborative filtering based method is proposed to infer the
missing cross-layer dependencies in multi-layered network. Other
remotely related studies include cross-network ranking [48] and
clustering [49], [50] in multi-layered networks, and multi-view
data analysis [51], [52], [53].

7 CONCLUSION

In this paper, we study the connectivity optimization problem on
multi-layered networks (OPERA). Our main contributions are as
follows. First, we unify a family of prevalent network connectivity
measures (SUBLINE). Second, we prove that for any network
connectivity measures in the SUBLINE family, the connectivity
optimization problem with the MULAN model enjoys the dimin-
ishing returns property, which naturally lends itself to a family of
provable near-optimal algorithms with linear complexity. Finally,
we conduct extensive empirical evaluations on real network data,
which validate the effectiveness and efficiency of the proposed
algorithms.

ACKNOWLEDGMENTS

This material is supported by the National Science Foundation
under Grant No. IIS1017415, by the Army Research Labora-
tory under Cooperative Agreement Number W911NF-09-2-0053,
by Defense Advanced Research Projects Agency (DARPA) un-
der Contract Number W911NF-11-C-0200 and W911NF-12-C-
0028, by National Institutes of Health under the grant number
R01LM011986, Region II University Transportation Center under
the project number 49997-33 25.

The content of the information in this document does not nec-
essarily reflect the position or the policy of the Government, and
no official endorsement should be inferred. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

REFERENCES

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin,
“Catastrophic cascade of failures in interdependent networks,” Nature,
vol. 464, no. 7291, pp. 1025–1028, 2010.

[2] J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, “Networks formed
from interdependent networks,” Nature physics, vol. 8, no. 1, pp. 40–48,
2012.

[3] S. M. Rinaldi, J. P. Peerenboom, and T. K. Kelly, “Identifying, under-
standing, and analyzing critical infrastructure interdependencies,” Con-
trol Systems, IEEE, vol. 21, no. 6, pp. 11–25, 2001.

[4] A. Sen, A. Mazumder, J. Banerjee, A. Das, and R. Compton, “Multi-
layered network using a new model of interdependency,” arXiv preprint
arXiv:1401.1783, 2014.

[5] R. Parshani, S. V. Buldyrev, and S. Havlin, “Interdependent networks:
Reducing the coupling strength leads to a change from a first to second
order percolation transition,” Physical review letters, vol. 105, no. 4, p.
048701, 2010.

[6] J. Shao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, “Cascade of failures
in coupled network systems with multiple support-dependent relations,”
arXiv preprint arXiv:1011.0234, 2010.

[7] H. Chan, L. Akoglu, and H. Tong, “Make it or break it: manipulating
robustness in large networks,” in Proceedings of 2014 SIAM International
Conference on Data Mining. SIAM, 2014, pp. 325–333.

[8] H. Tong, B. A. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos,
and D. H. Chau, “On the vulnerability of large graphs,” in Data Mining
(ICDM), 2010 IEEE 10th International Conference on. IEEE, 2010, pp.
1091–1096.

[9] S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-
Gardenes, M. Romance, I. Sendina-Nadal, Z. Wang, and M. Zanin, “The
structure and dynamics of multilayer networks,” Physics Reports, vol.
544, no. 1, pp. 1–122, 2014.

[10] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex networks,”
Science, vol. 298, no. 5594, pp. 824–827, 2002.

[11] C. E. Tsourakakis, “Fast counting of triangles in large real networks with-
out counting: Algorithms and laws,” in Data Mining, 2008. ICDM’08.
Eighth IEEE International Conference on. IEEE, 2008, pp. 608–617.

[12] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal
on computing, vol. 1, no. 2, pp. 146–160, 1972.

[13] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in Proceed-
ings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2007, pp. 420–429.

[14] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of ap-
proximations for maximizing submodular set functionsi,” Mathematical
Programming, vol. 14, no. 1, pp. 265–294, 1978.

[15] A. P. Davis, C. J. Grondin, K. Lennon-Hopkins, C. Saraceni-Richards,
D. Sciaky, B. L. King, T. C. Wiegers, and C. J. Mattingly, “The
comparative toxicogenomics database’s 10th year anniversary: update
2015,” Nucleic acids research, vol. 43, no. D1, pp. D914–D920, 2015.

[16] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: Bringing order to the web,” Stanford Digital
Library Technologies Project, Tech. Rep., 1998, paper SIDL-
WP-1999-0120 (version of 11/11/1999). [Online]. Available: http:
//dbpubs.stanford.edu/pub/1999-66

[17] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-
worldnetworks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[18] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” in Proceedings
of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2008, pp. 990–998.

[19] M. Jerrum and A. Sinclair, “Conductance and the rapid mixing prop-
erty for markov chains: the approximation of permanent resolved,” in
Proceedings of the twentieth annual ACM symposium on Theory of
computing. ACM, 1988, pp. 235–244.

[20] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of
complex networks,” Nature, vol. 406, no. 6794, pp. 378–382, 2000.

[21] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos, “Epi-
demic thresholds in real networks,” ACM Transactions on Information
and System Security (TISSEC), vol. 10, no. 4, p. 1, 2008.

[22] W. Jun, M. Barahona, T. Yue-Jin, and D. Hong-Zhong, “Natural connec-
tivity of complex networks,” Chinese Physics Letters, vol. 27, no. 7, p.
078902, 2010.

[23] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, pp. 35–41, 1977.

[24] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
in ACM-SIAM Symposium on Discrete Algorithms, 1998.

[25] J. Moody and D. R. White, “Social cohesion and embeddedness: A
hierarchical conception of social groups,” American Sociological Review,
pp. 1–25, 2003.

[26] P.-Y. Chen and A. O. Hero, “Local fiedler vector centrality for detection
of deep and overlapping communities in networks,” in Acoustics, Speech
and Signal Processing (ICASSP), 2014 IEEE International Conference
on. IEEE, 2014, pp. 1120–1124.

[27] M. E. Newman, “A measure of betweenness centrality based on random
walks,” Social networks, vol. 27, no. 1, pp. 39–54, 2005.

[28] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos,
“Gelling, and melting, large graphs by edge manipulation,” in Pro-
ceedings of the 21st ACM international conference on Information and
knowledge management. ACM, 2012, pp. 245–254.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, SEPTEMBER 2016 14

[29] C. Chen, H. Tong, B. A. Prakash, C. E. Tsourakakis, T. Eliassi-
Rad, C. Faloutsos, and D. H. Chau, “Node immunization on
large graphs: Theory and algorithms,” IEEE Trans. Knowl. Data
Eng., vol. 28, no. 1, pp. 113–126, 2016. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2015.2465378

[30] C. Chen, H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos,
and C. Faloutsos, “Eigen-optimization on large graphs by edge
manipulation,” TKDD, vol. 10, no. 4, p. 49, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2903148

[31] C. Chen and H. Tong, “Fast eigen-functions tracking on dynamic graphs,”
in Proceedings of the 2015 SIAM International Conference on Data
Mining. SIAM, 2015.

[32] ——, “On the eigen-functions of dynamic graphs: Fast tracking and
attribution algorithms,” Statistical Analysis and Data Mining: The
ASA Data Science Journal, pp. n/a–n/a, 2016. [Online]. Available:
http://dx.doi.org/10.1002/sam.11310

[33] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno,
M. A. Porter, S. Gómez, and A. Arenas, “Mathematical formulation of
multilayer networks,” Physical Review X, vol. 3, no. 4, p. 041022, 2013.

[34] R. J. Sánchez-Garcı́a, E. Cozzo, and Y. Moreno, “Dimensionality reduc-
tion and spectral properties of multilayer networks,” Physical Review E,
vol. 89, no. 5, p. 052815, 2014.

[35] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and
M. A. Porter, “Multilayer networks,” Journal of Complex Networks,
vol. 2, no. 3, pp. 203–271, 2014.

[36] L. S. Heath and A. A. Sioson, “Multimodal networks: Structure and
operations,” Computational Biology and Bioinformatics, IEEE/ACM
Transactions on, vol. 6, no. 2, pp. 321–332, 2009.

[37] M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, and D. Pedreschi,
“Foundations of multidimensional network analysis,” in Advances in
Social Networks Analysis and Mining (ASONAM), 2011 International
Conference on. IEEE, 2011, pp. 485–489.

[38] F. Battiston, V. Nicosia, and V. Latora, “Structural measures for multiplex
networks,” Physical Review E, vol. 89, no. 3, p. 032804, 2014.

[39] J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, “Robustness of
a network of networks,” Physical Review Letters, vol. 107, no. 19, p.
195701, 2011.

[40] A. Vespignani, “Complex networks: The fragility of interdependency,”
Nature, vol. 464, no. 7291, pp. 984–985, 2010.

[41] C. M. Schneider, A. A. Moreira, J. S. Andrade, S. Havlin, and H. J.
Herrmann, “Mitigation of malicious attacks on networks,” Proceedings
of the National Academy of Sciences, vol. 108, no. 10, pp. 3838–3841,
2011.

[42] M. Parandehgheibi and E. Modiano, “Robustness of interdependent
networks: The case of communication networks and the power grid,” in
Global Communications Conference (GLOBECOM), 2013 IEEE. IEEE,
2013, pp. 2164–2169.

[43] D. T. Nguyen, Y. Shen, and M. T. Thai, “Detecting critical nodes
in interdependent power networks for vulnerability assessment.” IEEE
Trans. Smart Grid, vol. 4, no. 1, pp. 151–159, 2013.

[44] A. Bernstein, D. Bienstock, D. Hay, M. Uzunoglu, and G. Zussman,
“Power grid vulnerability to geographically correlated failuresanaly-
sis and control implications,” in INFOCOM, 2014 Proceedings IEEE.
IEEE, 2014, pp. 2634–2642.

[45] C. Chen, J. He, N. Bliss, and H. Tong, “On the connectivity of multi-
layered networks: Models, measures and optimal control,” in Data
Mining (ICDM), 2015 IEEE International Conference on. IEEE, 2015,
pp. 715–720.

[46] M. De Domenico, A. Solé-Ribalta, E. Omodei, S. Gómez, and A. Arenas,
“Ranking in interconnected multilayer networks reveals versatile nodes,”
Nature communications, vol. 6, 2015.

[47] C. Chen, H. Tong, L. Xie, L. Ying, and Q. He, “FASCINATE:
fast cross-layer dependency inference on multi-layered networks,” in
Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, August 13-17, 2016, 2016, pp. 765–774. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2939784

[48] J. Ni, H. Tong, W. Fan, and X. Zhang, “Inside the atoms: ranking on
a network of networks,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 1356–1365.

[49] ——, “Flexible and robust multi-network clustering,” in Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2015, pp. 835–844.

[50] R. Liu, W. Cheng, H. Tong, W. Wang, and X. Zhang, “Robust multi-
network clustering via joint cross-domain cluster alignment,” in Data
Mining (ICDM), 2015 IEEE International Conference on. IEEE, 2015,
pp. 291–300.

[51] J. Li, X. Hu, L. Wu, and H. Liu, “Robust unsupervised feature selection
on networked data,” in Proceedings of SIAM International Conference
on Data Mining. SIAM, 2016.

[52] C. Xu, D. Tao, and C. Xu, “A survey on multi-view learning,” arXiv
preprint arXiv:1304.5634, 2013.

[53] D. Zhou, J. He, K. S. Candan, and H. Davulcu, “Muvir: multi-view rare
category detection.”

Chen Chen Chen Chen is a PhD student in
School of Computing, Informatics and Decision
Systems Engineering at Arizona State Univer-
sity. She received her bachelor’s degree and
master’s degree in computer science from Bei-
hang University and New York University in 2011
and 2013, respectively. Her research interests
include large scale data mining in graphs and
real-world network analysis.

Jingrui He Jingrui He is an assistant profes-
sor in the School of Computing, Informatics and
Decision Systems Engineering at Arizona State
University. She received her PhD in Computer
Science from Carnegie Mellon University. She
joined ASU in 2014 and directs the Statistical
Learning Lab (STAR Lab). Her research focuses
on heterogeneous machine learning, rare cat-
egory analysis, semi-supervised learning and
active learning, with applications in healthcare,
social network analysis, semiconductor manu-

facturing, etc. She is the recipient of the NSF CAREER Award in 2016,
IBM Faculty Award in 2015 and 2014 respectively, and has published
more than 60 refereed articles. She has served on the organizing
committee/senior program committee of many conferences, including
ICML, KDD, IJCAI, SDM, ICDM, etc. She is also the author of the book
on Analysis of Rare Categories (Springer-Verlag, 2012).

Nadya Bliss Nadya T. Bliss is the Director of the
Global Security Initiative (GSI) at Arizona State
University. Before joining ASU in 2012,Nadya
spent 10 yearsat MIT Lincoln Laboratory,most
recently as the founding Group Leader of the
Computing and Analytics Group. In 2011, Nadya
was awarded the inaugural MIT Lincoln Labora-
tory Early Career Technical Achievement Award.
Nadya received bachelor and master degrees
in Computer Science from Cornell University, a
PhD in Applied Mathematics for the Life and

Social Sciences from Arizona State University, and is a Senior Member
of IEEE.

Hanghang Tong Hanghang Tong is currently
an assistant professor as School of Computing,
Informatics and Decision Systems Engineering
at Arizona State University. Before that, he was
an assistant professor at Computer Science De-
partment, City College, City University of New
York, a research staff member at IBM T.J. Wat-
son Research Center and a Post-doctoral fellow
in Carnegie Mellon University. He received his
M.Sc and Ph.D. degree from Carnegie Mellon
University in 2008 and 2009, both majored in

Machine Learning. His research interest is in large scale data mining
for graphs and multimedia. He has received several awards, including
best paper award in CIKM 2012, SDM 2008 and ICDM 2006. He has
published over 80 referred articles and more than 20 patents. He has
served as a program committee member in top data mining, databases
and artificial intelligence venues.

