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Observation: Networks & Graphs Are Everywhere!
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This Talk: Networks = Graphs



Research Theme: Understand and Utilize Networks ol

Applications

Social Networks Bioinformatics Neuroscience Transportation :

T
Algorithms

Prediction Inference Control Detection
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Where are we?

Network Mining: The

* Who are in the same online community? i

Who is the key to bridge two academic areas?
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Who is the master criminal mind?

Who started a misinformation campaign?

Which items shall we recommend to a user?

* Which gene is most relevant to a given disease? @ " @
e Which webpage is most important? ®
. i . T
Which tweet is likely to go viral: amE
» . o . o & &
* Which transaction looks suspicious? & [«
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- Where are we? =t
Network Mining: The Why & How Questions

* How to ensure the mining is fair?

. qualified unqualified
3| *} (job application) /7~ N\ /7
¥ ‘(\%’ \_/ w [ ]
N\ $ graph mining ::0..00. .o: ° ® ThIS Talk
). algorithm o 0.0 o. ... o.:. ‘.
; ® o o o
e
‘ ' et ® (male): ?% e (male): ?%
e (male): 50% e (female): 50%

e (female): ?% o (female): ?%

Why do two seemingly different users are in the same community?

Why is a particular tweet more likely to go viral than another?

Why does the algorithm "think’ a transaction looks suspicious?

How does an influential researcher bridge two areas?
How do fake review skew the recommendation results?

How do the mining results relate to the input graph topology?
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Roadmap

Motivations

mm) |InFORM: Individual Fairness on Graph Mining

—InFoRM Introduction
—|InFoRM Measures
—InFoRM Algorithms
—|InFoRM Cost

e Some Other Work
 Future Directions

J. Kang, J. He, R. Maciejewski and H. Tong: InFORM: Individual Fairness on Graph Mining. KDD 2020
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Algorithmic Fairness in Machine Learning

 Goal: minimize unintentional discrimination caused by

qualified unqualified

machine learning algorithms o« ¢ o sy et
* Existing Measures 'ﬁ“ﬁ“ﬁ“ﬁ
— Group fairness 'ﬂ“ﬂ‘

* Disparate impact [1]

________________

 Statistical parity [2] d (M%), M(y)) < dy(x,y)
* Equal odds [3] MQ)
, .
— Counterfactual fairness [4] Ty

— Individual fairness [5] &

 Limitation: [ID assumption in traditional machine learning
— Might be violated by the non-IID nature of graph data

[1] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S.. Certifying and Removing Disparate Impact. KDD 2015.
[2] Chouldechova, A., & Roth, A.. The Frontiers of Fairness in Machine Learning. arXiv.

[3] Hardt, M., Price, E., & Srebro, N.. Equality of Opportunity in Supervised Learning. NIPS 2016.
[4] Kusner, M. J., Loftus, J., Russell, C., & Silva, R.. Counterfactual Fairness. NIPS 2017. 7
[5] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.




T
Algorithmic Fairness in Graph Mining

Sensitive
Attributes

lil ‘ . Gender / Ge',?der
Fair Spectral Clustering [1] r— o Xe Occupaton » ¢ :m
— Fairness notion: disparate impact e Age :

Fair Graph Embedding s

Input Graph Embedding  Filters Embedding Discriminators

— Fairwalk [2], compositional fairness constraints [3]
* Fairness notion: statistical parity

— MONET [4]
* Fairness notion: orthogonality of metadata and graph embedding

Fair Recommendation
— Information neural recommendation [5]
* Fairness notion: statistical parity
— Fairness for collaborative filtering [6]

* Fairness notion: four metrics that measure the differences in estimation error
between ground-truth and predictions across protected and unprotected
groups

Observation: all of them focus on group-based fairness!

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
[2] Rahman, T. A., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. [JCAI 2019.
[3] Bose, A. J., & Hamilton, W. L.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.

[4] Palowitch, J., & Perozzi, B.. Monet: Debiasing Graph Embeddings via the Metadata-Orthogonal Training Unit. arXiv.
[5] Kamishima, T., Akaho, S., Asoh, H., & Sakuma, J.. Enhancement of the Neutrality in Recommendation. RecSys 2012 Workshop.
[6] Yao, S., & Huang, B.. Beyond Parity: Fairness Objectives for Collaborative Filtering. NIPS 2017.




InFORM: Individual Fairness on Graph Mining

* Research Questions
Q1. Measures: how to quantitatively measure individual bias?
Q2. Algorithms: how to enforce individual fairness?
Q3. Cost: what is the cost of individual fairness?

J. Kang, J. He, R. Maciejewski and H. Tong: InFORM: Individual Fairness on Graph Mining. KDD 2020
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Graph Mining Algorithms

* Graph Mining: An Optimization Perspective

input graph A mining model w/ parameter 6 mining results Y
'oo, 'oo, '00, minimize

1010103 [(A)Y,0) .
input ) output > [
(= - .
e
— Input:

* Input graph A minimize task-specific
* Model parameters 9 loss function [(A, Y, 8)
— Output: mining results Y

* Examples: ranking vectors, class probabilities, embeddings



Classic Graph Mining Algorithms

Examples of Classic Graph Mining Algorithm

Mining Task Task Specific Loss Function [() Mining Result Y* Parameters
mincr’' (I — A)r + (1 —o)||r — e||? damping factor ¢
PageRank 4 ( r + ( )| |5 PageRank vector r teleportation vector &
min Tr (U'LU
Spectr-al u ( ) eigenvectors U # clusters k
Clustering s.t. U'U=1
n n
A[ll ] lo (_X ’ ]X[lr ],) i i i
LINE (1st) mlnz Z / ( &9 U ) embedding matrix X embeddw_]g dimension d
X i=1j=1 # negative samples b
+bE;_p [log g(=X[j",: IX[i,:]1)]
Gl L [
¥ ranking v N v |
vey e % algorithm e o o s K o U Vem T AR & i
° ° ° gﬁ ! o B ,c): \w—{ =~< @ ' Network
b L ] @r “ : %, :




Roadmap

Motivations

* InFORM: Individual Fairness on Graph Mining
nFORM Introduction

m) InFORM Measures

—InFoRM Algorithms

—InFORM Cost

e Some Other Work
 Future Directions
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Problem Definition: InNFORM Measuresi:’L

Input Graph: A

Node i

* Questions /\T

— How to determine if the mining
results are fair?

— How to quantitatively measure ) ~Node
the overall bias? /b
* Input V-

— Node-node similarity matrix S
* Non-negative, symmetric

I(AY, 6)
— Graph mining algorithm [(A,Y, ) T

minimize

e Loss function I(+) Mining Results: ¥ Similertty inges
* Additional set of parameters 0 : Node i, = ,M\\
— Fairness tolerance parameter € T P N SR S
: DIfE(Y[i,: ], Y[j,:]) < tolerance " =
* Output e Sk \ A
. . . L N 4 ' \,
— binary decision on whether the , fe-q-c0
mining results are fair Nodej\ [\
— individual bias measure o-~.
Bias(Y, S -




cl

Measuring Individual Bias: Formulation

* Principle: similar nodes = similar mining results
 Mathematical Formulation
€
Y[ : 1= Y0 IE < o=
] S[i,J]
— Intuition: if S[i, j] is high, Sl is small = push Y[i,: ] and Y[j, : ] to be more similar
— Observation: Inequality should hold for every pairs of nodes i and j
* Problem: too restrictive to be fulfilled

* Relaxed Criteria: Y7, ™ . ||Y[i, G, : 112S[i, /] = 2Tr(Y'LgY) < me = 6

/'\/ mun
TN\
§ &

Vi,j=1,..,n

00000500




Measuring Individual Bias: Solution

* InFORM (Individual Fairness on Graph Mining)

— Given (1) a graph mining results Y, (2) a symmetric similarity
matrix S and (3) a constant fairness tolerance 6
—Y is individually fair w.r.t. S if it satisfies

)
Tr(Y'LsY) <
— Overall individual bias is Bias(Y,S) = Tr(Y'LgY)

[1] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.
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Lipschitz Property of Individual Fairness

e Connection to Lipschitz Property
— (D4, D,)-Lipschitz property [1]: a function f is (D4, D,)-
Lipschitz if it satisfies
e L is Lipschitz constant
— InFoRM naturally satisfies (D, D)-Lipschitz property as

long as
* fQ@) =Y[i:]
« Di(F ), F(D)) = II¥[i,: 1 = Y[, : W13, Do (i) = =

S[i,Jj]
— Lipschitz constant of InNFORM is €
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* InFORM: Individual Fairness on Graph Mining
nFORM Introduction
nFORM Measures
=) | nFoRM Algorithms
—InFORM Cost

e Some Other Work
 Future Directions
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Problem Definition: InNFORM Algorithms

* Question: how to mitigate the bias ’r
of the mining results? f\ /

* Input < \ :
— Node-node similarity matrix S 9/.7
— Graph mining algorithm [(A, Y, 0)
— Individual bias measure Bias(Y, S) o thn

* Defined in the previous problem (InFORM
Measures)

* Qutput: revised mining results Y~
that minimizes

— Task-specific loss function [(A, Y, 0)
— Individual bias measure Bias(Y, S)

9000000
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Mitigating Individual Bias: How To

e Graph Mining Pipeline
input graph A mining model w/ parameter 0 mining results Y

101010

010101 minimize
DIOTO

I(AY, 0) o
output > [J

a
* Observation: Bias can be introduced/amplified in each

component
— Solution: bias can be mitigated in each part

e Algorithmic Frameworks
— Debiasing the input graph
— Debiasing the mining model mutually complementary
— Debiasing the mining results




Debiasing the Input Graph

* Goal: bias mitigation via a pre-processing strategy

e Intuition: learn a new topology of graph A such that
— A is as similar to the original graph A as possible
— Bias of mining results on A is minimized

° Optimization Problem _ consistency in graph topology
. N 2 !/

min ] = HA A”F +~aTr(Y LS)Q
s.t. Y =argminy [(AY,8)

* Challenge: bi-level optimization
— Solution: exploration of KKT conditions [1, 2]

bias measure

[1] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.
[2] Mei, S., & Zhu, X.. Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine Learners. AAAI 2015.




Debiasing the Input Graph

* Considering the KKT conditions,
min J = [|& - Al[, + aTr(Y'LsY)

s.t. dyl(AY,0)=0
* Proposed Method
(1) Fix A (A = A at initialization), find Y using current A
(2) Fix Y, update A by gradient descent
(3) lterate between (1) and (2)

e Problem: how to calculate gradient w.r.t. A?

[1] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.
[2] Mei, S., & Zhu, X.. Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine Learners. AAAI 2015.




Debiasing the Input Graph

key component to calculate
e Calculating Gradient

ﬂ—2(,’LK—A)+ [T (2\?L o )]
oA AT SOA[i, f]

(6] + (0]), di (0]) if undirected
— —) —dlag|\—=], 1 I
d] B Y g Y undailrecte

— JdA
dA d] .
—, if directed
0A
— Y satisfies BYI(K, Y, H) =0
B < Y \]. . C o > oY
—H= [Tr (ZYLS aK[i,j])] is a matrix with H[i, j] = Tr (ZYLS aK[i,j])

* Question: how to efficiently calculate H?



ol

Instantiation #1: PageRank

Goal: efficiently calculate H for PageRank
Mining Results Y: r = (1 — ¢)Qe

Partial Derivatives H: H = 2cQ’'Lgr
Remarks: Q = (I — cA)~?!

Time Complexity
— Straightforward: 0(n3)
— Ours: 0(my + m, +n) 2¢Q Lsr

|
* my: number of edges in A X
* mg: number of edgesin S —
* n:number of nodes




o

Instantiation #2: Spectral Clustering

Goal: efficiently calculate H for spectral clustering

Mining Results Y: U = eigenvectors with k smallest eigenvalues Alo/w'ra”k

Partial Derivatives H: H = 2 Y . (diag(M; Lgu;u;") 1,50 — M-Lsuiui'l)

Remarks: (4;,u;) = i-th smallest eigenpair, M; = (4;1 — LA)+\
vectorize diag(M;Lgu;u;")

Time Complexity and stack it n times
— Straightforward: O(k?(m + n) + k3n + kn®)
— Ours: O((k +r)(my + n) + k(m, +n) + (k + r)zn)
* k:number of smallest eigenvalues M;Lgu;

* r:number of largest eigenvalues X
* mq: number of edgesin A

* m,:number of edgesin S

* n:number of nodes




Instantiation #3: LINE (1st)

Goal: efficiently calculate H for LINE (1st)
T(A[i,j1+A[j,i])

3/4  3/4
didj +di dj
3/4

— d; = outdegree of node i, T = )., d;

l

Mining Results Y: Y[i,:]Y[j,:]' = log —logh

and b = number of negative samples

Partial Derivatives H: H =[2f (A + A”) o Lg|— Rdiag(BLg) 1,y

Remarks element-wise in?place calculation

vectorize diag(BLg) and

— f() calculates Hadamard inverse, o calculates Hadamard product stack it n times

= B =27 (/4@ %) 4dtu)) + £ (4/4(@/) +d1

Time Complexity stack d 11 times
— Straightforward: 0(n®)
— Ours: O(my + my, +n)
* mq: number of edgesin A
* m,: number of edgesin S
* n:number of nodes

with d*[i] = d

J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang. 2018. Network embedding as matrix factorization: Unifying deepwalk, line, pte, and

node2vec. In WSDM. 459-467
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Debiasing the Mining Model

* Goal: bias mitigation during model optimization

* Intuition: optimizing a regularized objective such that

— Task-specific loss function is minimized
— Bias of mining results as regularization penalty is minimized

Optimization Problem e task-specific loss function
min J =1[(AY,0) + aTr(Y’LSsQ

bias measure

Solution

__Ol(AY,0
— General: solve by (stochastic) gradient descent (AY.9)

6Y

+ 2aLsY

— Task-specific: solve by specific algorithm designed for the graph mining
problem

Advantage
— Linear time complexity incurred in computing the gradient




Debiasing the Mining Model: bail?

Instantiations

* PageRank
— Objective Function: min cr’(I — A)r + (1 — ¢)||r — e||% + ar'Lgr
r
— Solution: r* = ¢ (A — %LS) r +(l—c)e
* PageRank on new transition matrix A — %LS

+ IfLg=1—S5 thenr’ = (Z=A+-—S)r + e

1+a

_c
1+a
* Spectral Clustering
— Objective Function: mUin Tr(U'LoU) + aTr(U'LgU) = Tr(U'Lp44sU)
— Solution: U™ = eigenvectors of L, s With k smallest eigenvalues
* spectral clustering on an augmented graph /A + &S

e LINE (1st)
— Objective Function: maxlog g(x;x;) + bE;rcp. [logg(—xjrxg)] — a||xl- — xj||12:S[i,j]
Xl',Xj
Vi,j=1,..,n

— Solution: stochastic gradient descent




Debiasing the Mining Results

Goal: bias mitigation via a post-processing strategy

Intuition: no access to either the input graph or the graph
mining model

Optimization Problem /consistency of mining results, convex
min ] = IY = Y||4 + aTr(Y'LgY)
— Y is the vanilla mining results bias measure, convex
Solution: (I + aS)Y* =Y
— convex loss function as long as @ = 0 - global optima byg—]
— solve by conjugate gradient (or other linear system solvers)

Advantages
— No knowledge needed on the input graph
— Model-agnostic

=0



Experimental Settings

* Questions:
RQ1. What is the impact of individual fairness in graph mining performance?

RQ2. How effective are the debiasing methods?
RQ3. How efficient are the debiasing methods?

* Datasets: 5 publicly available real-world datasets

Name Nodes Edges
AstroPh 18,772 198,110
CondMat | 23,133 93,497
Facebook | 22,470 171,002
Twitter 7,126 35,324
PPI 3,890 76,584

* Baseline Methods: vanilla graph mining algorithm
e Similarity Matrix: Jaccard index, cosine similarity




Experimental Settings

* Metrics

Metric Definition

Diff — Y* — Yl difference between fair and vanilla graph mining
IYlg results
KL( v || Y ) KL di
= ivergence
Y=l 1Yl
PageRank .
Prec@50 precision
RQ1
NDCG@50 normalized discounted cumulative gain
spectral clustering NMI(Cy~, Cy) normalized mutual information
ROC — AUC(Y*,Y) area under ROC curve
LINE —
F1(Y"Y) F1 score
Tr((Y")' LgY*
RQ2 Reduce =1 — u(l _), > ) degree of reduce in individual bias
Tr(Y'LgY)
RQ3 Running time in seconds running time




Experimental Results

Table 1: Effectiveness results for PageRank. Lower is better in gray columns. Higher is better in the others.

Debiasing the Input Graph

o Ja€Card Indew,_ | { Cosifiec Similatity /7 \
atasets - r
ff KL yec@SO NDCGNO y Reduc§| Time ff Iﬁc@so NDCG@O VReduc Time
Twitch f.109 537x 104/ 1.000 1.000 24.7% \| 564.9 £.299 | 5.41x 10" 0.860 0.899 62.9%N 649.3
PPI 0.185 | 1.90 x 1073 0.920 0.944 43.4% | 584.4 [0.328 | 8.07 x 1073 0.780 0.838 68.7% |\ 636.8
I [ [Débiasing thie Minjhg Model \
Dataset , Jaccard Index | Cosine Similarity \
Diff KL , rec@50 | NDCG@5 educe | |[Tim Diff KL rec@50 | NDCG@5 educe | [Time
Twitch|| | 0.182 | 497 x 10> || 0.940 0.958 62.0% |}16.18 | 0.315 | 1.05x 100 || 0.940 0.957 3.9% | 1273
PPI 0.211 | 4.78 x 10]° 0.920 0.942 50.8% |[10.76 0.280 | 9.56 x 10}° 0.900 0.928 7.5% | §10.50
‘ ebiasing th Minﬂlg Results I
Datasets \ Jaccard Index Cosine Similarity I
Diff KL Prec@50 | NDCG@50y| Reduce J Time \Diff KL Prec@50 | NDCG@50\/ Reduce [/ Time
Twitch | 9.035 | 9.75 x 107 0.980 0.986 33.9% J| 0.033  \.101 | 5.84 X 107 0.940 0.958 44.6% | 0.024
PPI | 045 | 1.22x 197 | \.940 0959/ N 27.0%/] 0.020 | 0M12 | 6.97 x 1977 | Q940 0.958/ |\ 45.0%/] 0.019

N N \JV

N S~ UV

* Obs.: effective in mitigating bias while preserving the performance of the
vanilla algorithm with relatively small changes to the original mining results

— Similar observations for spectral clustering and LINE (1st)
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Problem Definition: InFORM Cost

* Question: how to quantitatively characterize the cost
of individual fairness?

* Input
— Vanilla mining results Y

— Debiased mining results Y™
e Learned by the previous problem (InFORM Algorithms)

e Output: an upper bound of ||Y — Y*||¢

* Debiasing Methods
— Debiasing the input graph
— Debiasing the mining model
— Debiasing the mining results — main focus of this paper

depend on specific graph topology/mining model



Cost of Debiasing the Mining Results

* Given
— A graph with n nodes and adjacency matrix A
— A node-node similarity matrix S
— Vanilla mining results Y
— Debiased mining results Y* = (I + aS)~ 1Y

* If ||S — Al|r = A, we have

I = Y°llp < 20y (& + frank(A) I

e Observation: the cost of debiasing the mining results depends on

— The number of nodes n (i.e. size of the input graph)

— The difference A between A and S
— The rank of A== could be small due to low-rank structures in real-world graphs

=P could be small if A is normalized




Cost of Debiasing the Mining Model: ™|
Case Study on PageRank

* Given
— A graph with n nodes and symmetrically normalized adjacency matrix A
— A symmetrically normalized node-node similarity matrix S
— Vanilla PageRank vector r
— Debiased PageRank vector r* = (I + aS)~1Y

* If ||S — Al|r = A, we have
~ ) 2an
IF — 1|l Sl—C(A+\/mnk(A) )
e Observation: the cost of debiasing PageRank depends on

— The number of nodes n (i.e. size of the input graph)

— The difference A between A and S
— The rank of A === could be small due to low-rank structures in real-world graphs

=P Upper bounded by 1




InFORM Summary

* Problem: InFoRM (individual fairness on graph mining)
— fundamental questions: measures, algorithms, cost R /’*‘

e Solutions: < \
— Measures: Bias(Y,S) = Tr(Y'SY) 9/'7

— Algorithms: debiasing (1) the input graph, (2) the mining model and (3)
the mining reSU|tS input graph mining model mining results

— Cost: the upper bound of ||Y — Y*||¢ ot
inpu ——— ] output
@

Il
« Upper bound on debiasing the mining results - |:> E
—

3
%«

020000400

e Case study on debiasing PageRank algorithm

* Results: effective in mitigating individual bias in the graph mining
results while maintaining the performance of vanilla algorithm

Debiasing the Input Graph
Jaccard Index Cosine Similarity
Diff | NMI | Reduce | Time | Diff | NMI | Reduce | Time
Twitch | 0.031 | 1.000 5.44% 1698 | 0.107 | 1.000 24.5% 1714
PPI 1.035 | 0.914 19.5% 829.3 | 0.933 | 0.849 24.1% 985.1

Datasets

J. Kang, J. He, R. Maciejewski and H. Tong: InFORM: Individual Fairness on Graph Mining. KDD 2020
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Roadmap

/ Motivations
7 InFORM: Individual Fairness on Graph Mining

mm) Some Other Work
—Network Derivative Mining
—Adversarial Multi-Network Mining
—Discerning Edge Influence for Network Embedding
—View Adversarial Network Embedding
—Explainable Networked Prediction
—Data Debugging in Collaborative Filtering

* Future Directions



N2N: Network Derivative Mining {4

Problem Dfn.

Given: (1) a network A, (2) a mining model
L(AY, 8), & (3) a scalar function /();

Find: a derivative network B:
di(y*)

1A subject to V" € argl}lin L(A,)Y.0)

Current Scope

Loss Function £ Learning Results V' | Additional Parameters ¢ Scalar Function ([

Learning Tasks
PageRank vector r damping factor ¢ Hy*) = ||r| f

PageRank Ranking [1] min er'(I— Ajr + (1 - ¢)|r — e[5-

. ) 12 hub vector u
HITS Ranking [10] min [|A - uv'|[; none
i, authority vector v

Spectral Clustening [2] man Tr{ULU) subject to U'U =1 matrix U number of clusters r

user matrix U latent dimensions 1 ) — |[UV2

item matrix 'V regularization parameters A, A, L F
embedding length o . n

T Tt 1Y) = [|[W]|;

random walk length u

- - ! ™12 Ly 2 \
Matrix Completon [11] | [ proja(A — UV')||% 4 Aul|U||[E + -

Node Embedding [12] . log Privi—w, ... embedding matnix W

M. Wang, J. Kang, N. Cao, Y. Xia, W. Fan, H. Tong: Graph Ranking Auditing: Problem Definitions and Fast Solutions. TKDE 2020

J. Kang and H. Tong: N2N: Network Derivative Mining. CIKM 2019
Y. Wang, Y. Yao, H. Tong, F. Xu and J. Lu :Discerning Edge Influence for Network Embedding. CIKM 2019

J. Kang, M. Wang, N. Cao, Y. Xia, W. Fan, and H. Tong: AURORA: Auditing PageRank on Large Graphs. BigData 2018




Problem Dfn.

B Q-Matrix
EEE PageRank

Given: (1) two input attributed networks G, EE+ ey o

and G,; and (2) a multi-network mining task;

NNNNNNNNY

Find: a set of most influential elements:

B Q-Matrix
EEE PageRanl
BN Random

Identify vulnerability
Improve robustness
Render explanability 3 os: JUTAGENICITY

Proposed Method

= Generalized Sylvester Equation for multi-network mining

Multi-network Mining Tasks Function f(-) Network Element Influence for a given mining task f(X)

Random walk graph kernel fX) = q'xvec(X)
Network Alignment fX) =Xor f(X) = vec(X)

Given two attributed networks, G; = {A;,N,} and G, = {A;,N,}, - Edge Influence: the derivative of f(X) w.r.t. this edge,
j(A1(l,])) b e
— Node Influence: the summation of influences of
incident edges,

d
X= Z cM,XT; + B
I=1

Cross-network node similarity fX) =X(s, t)
Subgraph Matching f(X) = argminyg(M, X)
@)= Y IAG)H)
JIA1(,)=1
— Node Attribute Influence: the derivative of f(X) w.r.t.
this attribute,

I(NLGL D) =

M, = NJA,, T, = NiA,. By the Kronecker product property,
vec(ABC) = (CT ® A)vec(B)

x=cNyAx+Db
The closed-form solution is given by x = (I — cN,A,)~'b

= — XN | luti trix aft
mﬁXAf rFrx f(z(;},)_l~|newsou1onmanxa er

~ we perturb the network

s.t. |P| =k =elements in set P af (X)

ANL(, 1)

Q. Zhou, L. Li, N. Cao, L. Ying and H. Tong: Admiring: Adversarial Multi-Network Mining. ICDM 2019
B. Du and H. Tong FASTEN: Fast Sylvester Equation Solver for Graph Mining. KDD2018



View-Adversarial Network Embedding @

Problem Dfn. Overview Framework

Given: a multi-view network ¢ = (V,Ey, E,,..., 7 teatore Exractr F

View

. Discriminator
E ) . . Node Embedding D
k), Fy s

Find: the robust and consistent node

Representation

representations across k different views R
f Node Representation
{xv}vEV E Rd,d << |V| “ —’ Dlscrlz)nhllnator

Real Node

Noise Distribution Representation

Generated Node
Representation

- Accuracy (%)
Methods View Node Classification | Link Prediction

Key ldea
. .
First adversarial game (F, Dg): enhances

the comprehensiveness of the node / o\ nodezvec
:
representation
N\ CraphGAN
: . Retweet 50.21

Second adversarial game (G, Fy, Dy):  aiternatively
.
improves the robustness of the node MNE
representation

VANE-RW 82.89238
VANE-BRW 90.60+2.57 85.36

Table 2: Performance on Twitter-Rugby Dataset

 D.Fu* Z. Xu* B. Li, H. Tong, and J. He: A View-Adversarial Framework for Multi-View Network Embedding. CIKM 2020



Explainable Networked Prediction beA

. . . ||
L]
Goal: explain networked prediction
* Multi-Aspect, Multi-Level Explanation
Training Globally influential |Task specific Test specific
example x* training sample influential training |influential training
R\ (Is (=) sample (I;(x"))  |sample (L5, (x"))
VIB\Y
\).‘“‘ \ . Learning task f; | Globally influential |Task specific Test specific
Wi ‘\g task (I (f) influential influential
‘ _ task(l;(f;)) task(l,g, . ()
1000 2000 Imn?ec 4000 %000 000
Task Network A |Globally influential | Task specific Test specific
Network of Time Series Scientific Impact Forecasting task connections  |influential task influential task
(I (A;p) connections connections
(Is(Aip) (s, (A1)

Key Challenges

Multi-level: Macro, meso, micro

Efficiency: Measure the
influence w/o retraining

Setup on MNIST

Task 1 T Task 3

H\}\Kw‘

Networked Prediction Formulation: T e—

—+ Random

T 1 & T T /
min Z —Z L(fi(xf,6:),yf) + 4 Z z A le: - 6]° sEnmner MEnss=sr SEREES
04,...0T e ng - -

i=1j=1 Fraction of training labels flipped vs. test accuracy Scalability

L. Li, H. Tong, H. Liu: Towards Explainable Networked Prediction. CIKM 2018
1.J. Kang, S. Freitas, H. Yu, Y. Xia, N. Cao, H. Tong: X-Rank: Explainable Ranking in Complex Multi-Layered Networks. CIKM 2018
Q. Zhou, L. Li, N. Cao, N. and H. Tong: Extra: Explaining Team Recommendation in Networks. Recsys 2018




Data Debugging in Collaborative Filtering @

Research Questions: -
Q1. are all ratings helpful in collaborati /_“i_}—* —\
filtering, and if not, —mi-—’d-}_’ L

Q2. how can we mitigate harmful (i.e.,

......................

overly personalized) ones to improve t

Data Split Debugging Stage Aggregation Stage
argmin Lp(©(A — @)),
PCA

st || <K

overall recommendation accuracy? > =

Results
Method

eMF NrMF NoiseCorrection CFDEBUG-full CFDEBUG

0.1%

0.2%
modify  0.5%
ratings 1%

2%
5%
10%

091340
0.9140 o
0.9148 *
091710
0.9198 o
0.9231 *
0.9246 x

09137 o
09137 o
0.9174 x
0.9180 x
0.9218 x
0.9334 x
0.9495 %

0.9126 o
09142 0
0.9146 *
09176 o
0.9226 o
0.9251 =
0.9310

0.9052 o
0.9011 e
0.8943
0.8880 o
0.8812 o
0.8735
0.8695

0.9071 e
0.9037 e
0.8985 e
0.8926 e
0.8876
0.8810
0.8785 e

Long Chen, Yuan Yao, Feng Xu, Miao Xu, Hanghang Tong: Trading Personalization for Accuracy: Data Debugging in Collaborative
Filtering. NeulPS 2020




Roadmap

Motivations
InFORM: Individual Fairness on Graph Mining
Some Other Work

=) Future Directions



NetFair: Fair Network Learning {|

Paradigm Shift:
what/who (Existing) 2 how/why (This Project
Goal: Fair Network Learning, of users ® by users ® for users
o I s

lnterpretatlon y Audltmg | De-biasing
I'o é |understand why -:> E understand how C:> ci A ensure fairness
.f\.

i for all

M wn /Task3 1: HILInterpretatmn Task32 HIL Auditing qask 3.3: HIL De-biasing
§ g . Vlsualrepresentatlon * Sensitivity analysis * Visual de-biasing
£ E * Interactive == :q . Intefpretal_oloe.aq‘dltlng J Proyeoance analysis
(=" analysis l J o= ‘ 1
& o & st / = | /
| @ | X ¢ &

Task 2.1: M-Agnostic Interp
* Model interpretability

* Model fidelity
argmin £(fe, g, T2) + Qg)
get

Task 2.2: Audit Net Learning
e Generic audit FWK
* |nstantiations |

Task 2.3: Debias Net Learning
RO 4 * Bias mitigation
% ' Fa|rness guaranteed FWK

Thrust 2
Algorithms

o | " | 4 N o A /
« w |Task 1.1: Explainer’s Quality Task 1.2: Fairness Measures Task 1.3: Quantify Bias
7 -G:' * RL-based method * Fairness unification * Biased entities
o 8 * Sequential perturbation * Rich 5|_rrlll_a_r|_t|_e§ ______ * Source of bias
'-E -IE folci, G) # folcs, Ici (e)) s:mls:s:)- e <sim(f(A.0.5,).f(A.6, sz))l sim(S1, Sa) — sim(f(S1), f(S2))

o ©
Challenges( For theories: non-lID nature § For algorithms: 3 pairs of tensions | For system: Multi-role users 1
Ry o o

ﬂContext for explanation] Opportunities [Collaborative auditing ] ------ [ Fairness unification ﬂ




Interventionary Network Mining @

B Interventionary network mining
B observatory network mining

Y*= argmin (A, Y, 0)
["=min l(A,Y, 0)

Raw Data Patterns: Y = f(A)

(e.g., text, time series,

image, subgraph, etc.) aY”
or
0A dA
Implications Stability analysis
InFORM Algorithm Learning w/ side info.
(debiasing A, this talk)
Explainable mining Active data CO”eCtiOn
Adversarial mining Debug data (optimal network)

« Key Challenge: How to compute a huge gradient matrix?

* nested opt., implicit computation, scalability, compact representation



