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ABSTRACT
Recent years have witnessed the pivotal role of Graph Neural Net-

works (GNNs) in various high-stake decision-making scenarios

due to their superior learning capability. Close on the heels of the

successful adoption of GNNs in different application domains has

been the increasing societal concern that conventional GNNs of-

ten do not have fairness considerations. Although some research

progress has been made to improve the fairness of GNNs, these

works mainly focus on the notion of group fairness regarding dif-

ferent subgroups defined by a protected attribute such as gender,

age, and race. Beyond that, it is also essential to study the GNN

fairness at a much finer granularity (i.e., at the node level) to en-

sure that GNNs render similar prediction results for similar indi-

viduals to achieve the notion of individual fairness. Toward this

goal, in this paper, we make an initial investigation to enhance the

individual fairness of GNNs and propose a novel ranking based

framework—REDRESS. Specifically, we refine the notion of individ-

ual fairness from a ranking perspective, and formulate the ranking

based individual fairness promotion problem. This naturally ad-

dresses the issue of Lipschitz constant specification and distance

calibration resulted from the Lipschitz condition in the conventional

individual fairness definition. Our proposed framework REDRESS

encapsulates the GNN model utility maximization and the ranking-

based individual fairness promotion in a joint framework to enable

end-to-end training. It is noteworthy mentioning that REDRESS

is a plug-and-play framework and can be easily generalized to

any prevalent GNN architectures. Extensive experiments on multi-

ple real-world graphs demonstrate the superiority of REDRESS in

achieving a good balance between model utility maximization and

individual fairness promotion. Our open source code can be found

here: https://github.com/yushundong/REDRESS.
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1 INTRODUCTION
Graph structured data is ubiquitous in today’s increasingly con-

nected world. Examples include social networks, biological net-

works, knowledge graphs, and critical infrastructure systems, to

name a few. To gain deep insights from these graphs, a plethora

of sophisticated graph mining algorithms have been developed in

the past few decades [1, 11, 30, 37]. Among these efforts, Graph

Neural Networks (GNNs) have emerged as a promising learning par-

adigm recently and demonstrated superior learning performance

in diverse settings [12, 19, 35], which makes GNNs play an in-

creasingly important role in various high-stake decision-making

scenarios, e.g., credit scoring [32], recommendation [9], and medi-

cal diagnosis [9]. Nevertheless, close on the heels of the successful

adoption of GNNs in various real-world scenarios has been the

increasing societal concerns that these algorithms often do not

have the fairness consideration, resulting in discriminatory actions

toward specific groups or populations [2, 7, 14, 24]. For example,

there is a growing practice of credit scoring using social network

information [38], in which graph neural networks have become a

de facto solution [13, 36]. Although these practices have shown to

broaden opportunities for a larger portion of the population, they

still yield unfair decisions for people in certain protected groups

(e.g., low-income people) [7, 24].

To date, a wide spectrum of fairness measures has been devel-

oped to quantify and mitigate the bias of underlying learning al-

gorithms [8, 22, 29, 41]. Existing fairness measures can be mainly

divided into group fairness measures and individual fairness mea-
sures [24]. On the one hand, group fairness ensures that members of

different protected groups (e.g., gender, race, and income) bear sim-

ilar outcome statistics regarding model predictions [10, 14, 14, 40].

On the other hand, individual fairness scrutinizes potential bias and

discrimination at a much finer granularity, and ensures similar indi-

viduals should yield similar prediction outcomes [8, 41]. Although

much progress has been made in the field of algorithmic fairness,

the studies of fairness issues in graph mining algorithms are fairly
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Figure 1: (a) Outcome distance for all instance pairs. (b) Lip-
schitz condition sanity check for pairs (𝑢1, 𝑢4) and (𝑢2, 𝑢4).

recent. Specifically, in the context of graph representation learning,

a vast majority of existing works focus on the notion of group

fairness, aiming to learn node embeddings that are independent of

any protected attributes [3, 4, 29]. However, as graph data is natu-

rally heterogeneous, different data modalities (i.e., graph structure

and node attributes) are often coupled together. Thus bias and dis-

crimination can exist in various shapes and formats. In this regard,

beyond the notion of group fairness regarding protected attributes,

it is also desired to dig into the atomic components of graphs (i.e., a

node) to ensure that graph representation learning renders similar

results for similar individuals—in achieving individual fairness.
Despite the fundamental importance of achieving individual fair-

ness for graph mining algorithms, the related studies are still in

their infancy. In this work, we make an initial investigation to en-

hance the individual fairness of graph neural networks for decision-

making. However, it remains a daunting problem mainly because of

the following challenges: (1) Constraint Formulation. Formulat-

ing proper constraints to improve individual fairness is non-trivial.

Traditionally, given a pair of instances, such constraint is achieved

via the Lipschitz condition
1
[8, 17]. Nevertheless, the Lipschitz con-

stant is often hard to be specified due to distance metric difference

between the input and outcome space. (2) Distance Calibration.
The absolute distance comparison in the Lipschitz condition fails to

calibrate the differences between different instances. For example in

Fig. 1, on the one hand for instance𝑢1, instance𝑢4 is the closest one

to it in the outcome space. However, the distance between them

violates the Lipschitz condition and thus we do not impose the

individual fairness constraint between them (although we should

since 𝑢1 is much closer to 𝑢4 than other instances). On the other

hand for 𝑢2, although 𝑢4 is the second farthest one to it, Lipschitz

condition is still satisfied and individual fairness constraint is im-

posed (in fact we may not need to do that since 𝑢2 is much further

to 𝑢4 than 𝑢2, 𝑢5, and 𝑢6). (3) End-to-End Learning Paradigm.
A major advantage of GNNs over traditional unsupervised graph

embedding algorithms is their end-to-end learning mechanism, i.e.,

the node embeddings are tailored for specific downstream learning

1
Given a pair of instance 𝑥 and 𝑦, their distance in the outcome space is upper bounded

by their distance in the input space such that 𝐷 (𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝐿𝑑 (𝑥, 𝑦) , where
𝑓 (.) maps instances to the output space, and 𝐿 is the Lipschitz constant. 𝐷 (., .) and
𝑑 (., .) are two functions that measure the distance of instances in the output space

and input space, respectively.

Table 1: Symbols and descriptions.

Symbols Definitions or Descriptions
M backbone GNN model

G input graph

A adjacency matrix of graph G
X node feature matrix of graph G
Y ground truth of downstream learning task

Ŷ prediction of downstream learning task

SG oracle pairwise similarity matrix

SŶ pairwise similarity matrix from Ŷ
𝑛 number of nodes

𝑑 number of node features

𝑙 layer number in the backbone GNN model

tasks. In this regard, how to incorporate the individual fairness con-

straint seamlessly into the learning process without jeopardizing its

end-to-end paradigm is another challenge that needs to be tackled.

In this paper, to tackle these challenges, we propose a princi-

pled framework REDRESS (short for Ranking basEd inDividual

faiRnESS) to promote the individual fairness of graph neural net-

works. Specifically, to tackle the first two challenges, we refine the

definition of individual fairness from a ranking perspective, and

formulate the individual fairness constraint as “for each instance
𝑢𝑖 , the two ranking lists of other instances (based on their distances
to 𝑢𝑖 ) in the input space and outcome space should be as similar as
possible". As such, we can avoid the delicate distance comparison

between two different distance metrics in the Lipschitz condition,

and the relative ranking comparison can also naturally alleviate the

issue of uncalibrated distance. To tackle the third challenge, two

optimization modules are encapsulated in REDRESS to improve

model utility and individual fairness, respectively. To fit into the

end-to-end training process, the two optimization modules are de-

signed to adapt to the gradient-based optimization techniques. The

main contributions of this paper can be summarized as follows.

• Problem Formulation. We study a novel problem of pro-

moting individual fairness for graph neural networks from

a ranking perspective.

• Algorithmic Design.We address the limitations of existing

individual fairness constraints and propose a novel plug-and-

play framework to mitigate the individual biases without

jeopardizing the utility of underlying graph neural networks.

• Experimental Evaluations. We perform comprehensive

experimental evaluations on real-world datasets to demon-

strate the superiority of our proposed framework in terms

of both bias mitigation and model utility maximization.

2 PROBLEM STATEMENT
In this section, we firstly present the notations used throughout

this paper. Then we introduce the definition of individual fairness
from a ranking perspective, followed by the problem formulation of

promoting ranking based individual fairness of GNNs.
Notations. We use bold uppercase letters (e.g., S), bold lowercase

letters (e.g., s), and normal lowercase letters (e.g., 𝑠) to denote ma-

trices, vectors and scalars, respectively. Also, for any matrix, e.g., S,
we represent its 𝑖-th row as s𝑖 , its (𝑖 , 𝑗 )-th entry as S𝑖 𝑗 or 𝑠𝑖 𝑗 , and its

transpose as S⊤. For any scalar, | · | is the absolute value operator.



Let G = (A, X) be an input graph, where A ∈ R𝑛×𝑛 denotes the

adjacency matrix of the graph and X ∈ R𝑛×𝑑 denotes the matrix

for node features (𝑛 nodes and 𝑑 node features). Y and Ŷ represent

the ground truth and predictions for a specific downstream task,

respectively. For example, if the downstream task is node classifica-
tion, Y ∈ {0, 1}𝑛×𝑐 and Ŷ ∈ R𝑛×𝑐 are the ground truth and predicted
class membership matrix (𝑐 classes), respectively.

To tackle the aforementioned challenges of Constraint Formula-
tion and Distance Calibration, we refine the definition of individual

fairness from a ranking perspective (Definition 1)
2
. We follow sim-

ilar settings in [17, 21, 22], where the oracle pairwise similarity

matrix SG is given apriori (e.g., assigned by specialists in [22]).

Definition 1. Individual fairness from a ranking perspec-
tive. Given the oracle pairwise similarity matrix SG of the input
graph G, and the similarity matrix SŶ among instances in the out-
come space (defined upon a similarity metric), we say the predictions
are individually fair if for each instance 𝑖 , the two ranking lists that
encode the relative order of other instances (ranked based on the sim-
ilarity between instance 𝑖 and other instances in descending order)
from SG and SŶ are consistent with each other.

Example:Given a graphGwith five nodes, suppose the ranking list

that encodes the similarity between node 𝑢1 and other nodes from

SG is {𝑢4, 𝑢3, 𝑢2, 𝑢5}, we say the predictions are are individually fair
for node 𝑢1 if the ranking list that encodes the similarity between

𝑢1 and other nodes from SŶ is also {𝑢4, 𝑢3, 𝑢2, 𝑢5}.
Based on Definition 1, we formulate the problem of promoting

ranking based individual fairness of GNNs as follows.

Problem 1. Promoting ranking based individual fairness
of GNNs. Given an input graph G, a backbone GNN model M (e.g.,
GCN [19]), the ground truth Y and the predictions Ŷ corresponding to
a specific downstream task (e.g., node classification), oracle pairwise
similarity matrix SG from G, and pairwise similarity matrix SŶ
obtained from Ŷ, our goal is to promote the individual fairness of each
node in the graph G according to Definition 1 without jeopardizing
the utility of the model predictions (i.e., making Ŷ close to Y).

3 THE PROPOSED FRAMEWORK—REDRESS
In this section, we firstly introduce the overall structure of the

proposed framework REDRESS. Then details of utilitymaximization

and individual fairness promotion are presented, followed by the

overall objective function formulation for training.

3.1 Overall Framework Structure
As the main focus of this work is to promote the individual fair-

ness of GNNs during the decision-making process while maximally

preserve the utility of the underlying learning models, we formu-

late these two desiderata as two separate modules and encapsulate

them together with the GNN backbone into an end-to-end learn-

ing framework—REDRESS. The overall architecture of REDRESS

is shown in Fig. 2. Essentially, it consists of three key parts: GNN

backbone model, utility maximization (Module 1), and individual

fairness promotion (Module 2).

2
For the ease of presentation convenience, we use similarity measures instead of

distance metrics. Similarity measure can be considered as an inverse distance metric.
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Figure 2: An illustration of the proposedREDRESS structure.
Module 1 and 2 is utilized for model utility maximization
and individual fairness promotion, respectively.

• GNN backbone model. It provides a basic GNN architec-

ture for downstream learning tasks. Some prevalent choices

include GCN [19], GAE [20], and SGC [39].

• Utility maximization. To maximize the utility of the back-

bone model for a specific learning task, this module aims to

minimize the prediction loss of the corresponding task.

• Individual fairness optimization. To relieve the individ-

ual bias toward fair decision-making, this module enforces

the similarity ranking lists from SŶ and SG of each instance

to be consistent according to Definition 1.

3.2 GNN Backbone Model
Acting as the backbone of the proposed framework, the GNNmodel

takes the input G and outputs Ŷ as the predictions for a specific

downstream learning task. The basic operation of GNN between

𝑙-th and (𝑙 + 1)-th layer can be summarized as

h(𝑙+1)𝑣 = 𝜎 (COMBINE(h(𝑙)𝑣 , 𝑓 ({h(𝑙)𝑢 : 𝑢 ∈ N (𝑣)}))), (1)

where h(𝑙)𝑣 and h(𝑙+1)𝑣 represent the embedding of node 𝑣 at 𝑙-th

and (𝑙 + 1)-th layer, respectively. For a graph with node feature

matrix X, h(0)𝑣 can be initialized as the input node feature x𝑣 .N(𝑣)
indicates the neighbor set of node 𝑣 according to the adjacency

matrix A. 𝑓 (.) denotes the aggregating function, e.g., weighted sum.

COMBINE(.) indicates the combining function for output of 𝑓 (.)

and h(𝑙)𝑣 , which combines the representation from the centering

node and the representations of its neighbors. 𝜎(.) represents the

activation function (e.g., ReLU). Denote the output of the last GNN

layer as matrix Z ∈ R𝑛×𝑐 , then the predictions Ŷ of GNN can then

be obtained as softmax(Z) ∈ R𝑛×𝑐 for node classification [19] and

sigmoid(Z⊤Z) ∈ R𝑛×𝑛 for link prediction [20].

3.3 Model Utility Maximization
To maximize the utility of the backbone GNN model in advancing

downstream learning tasks, we need to enforce the predictions

Ŷ to be closer to the ground truth Y. To this end, a loss function

corresponding to the specific learning task should be defined in

Module 1 between Y and Ŷ. For example, for the node classification
and the link prediction tasks, the corresponding cross-entropy loss
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Figure 3: An illustrative example of the relative ranking or-
der comparison for our proposed framework.
can be used to quantify the utility of the GNN model

L
utility

= −
∑

(𝑖, 𝑗) ∈T
Y𝑖 𝑗 lnŶ𝑖 𝑗 . (2)

Here T represents the (node, class) tuple set for training nodes in

the node classification task and (node, node) tuple set for the vertices
of training edges in the link prediction task. The utility maximization

can be achieved by minimizing the cross-entropy loss in Equ. (2). It

should be noted that for this module, gradient-based optimization

techniques can be directly applied for end-to-end training as the

loss function is differentiable w.r.t. the model parameters.

3.4 Individual Fairness Promotion
As mentioned above, this module aims to promote the ranking

based individual fairness for GNN such that for each node, the two

ranking lists obtained from the oracle similarity matrix SG and the

outcome similarity matrix SŶ are consistent with each other. Since

the ranking list from the oracle similarity matrix SG is fixed, and SŶ
is derived from the prediction outcome Ŷ via certain similarity met-

ric, the ranking list from SŶ should be optimized via learning more

appropriate Ŷ—we refer it as ranking optimization. One straightfor-
ward solution to achieve this goal is to derive two ranking lists from

SG and SŶ for each node, then define a loss function to quantify

the difference between these two ranking lists. After that, we can

combine the loss function over all nodes together and minimize

the overall loss for a better Ŷ that can promote individual fairness.

However, such a straightforward solution is often impractical as

the ranking operations for the ranking lists will make the overall

loss function not differentiable (w.r.t. the GNN model parameters)

anymore, in a way the prevalent gradient-based optimization tech-

niques cannot be directly applied. In other words, there is a gap

between the involvement of ranking operations pertaining to Defi-

nition 1 and the need for gradient-based optimization techniques.

To bridge the gap, we propose a novel ranking optimization strategy

and we will elaborate more details in the following part.

3.4.1 Ranking Optimization. As mentioned above, minimizing the

difference between two ranking lists (for each node) from SŶ and

SG with gradient-based optimization techniques is difficult because

of the non-differentiable ranking operations. Instead of formulating

the loss based on ranking lists, here we propose a new loss formu-

lation directly upon the outcome similarity matrix SŶ and oracle

similarity matrix SG . Since the new loss formulation does not rely

on the ranking lists, gradient-based optimization techniques can

then be applied. The new loss formulation is based on a probabilistic

approach inspired by [28]. For each node, the new loss formulation

will enforce the relative order of each node pair decided by SŶ and

that decided by SG to be consistent. More specifically, for each node

𝑢𝑖 , if it is with higher similarity value to 𝑢 𝑗 than 𝑢𝑚 in SŶ (i.e.,

𝑠𝑖, 𝑗 > 𝑠𝑖,𝑚 , 𝑖 ≠ 𝑗 ≠𝑚, where 𝑠𝑖, 𝑗 denotes the (𝑖, 𝑗)-th entry of SŶ),
then it should also be with higher similarity value to 𝑢 𝑗 than 𝑢𝑚 in

the oracle similarity matrix SG (i.e., 𝑠𝑖, 𝑗 > 𝑠𝑖,𝑚 , 𝑖 ≠ 𝑗 ≠ 𝑚, where

𝑠𝑖, 𝑗 denotes the (𝑖, 𝑗)-th entry of SG ). In other words, the loss aims

to penalize the node pairs whose relative similarity order are not

consistent across the predicted similarity matrix SŶ and the oracle

similarity matrix SG (as shown in Fig. 3). We then introduce the

details of the loss formulation below.

To illustrate the formulation of the loss function, we take the

loss computation of the node pair (𝑢 𝑗 , 𝑢𝑚) centered on node 𝑢𝑖 as

an example. For node 𝑢𝑖 , we define 𝑃 𝑗,𝑚 (𝑠𝑖, 𝑗 , 𝑠𝑖,𝑚) as the predicted
probability that the node 𝑢𝑖 is more similar to node 𝑢 𝑗 than to node

𝑢𝑚 . Here 𝑠𝑖, 𝑗 and 𝑠𝑖,𝑚 represent the similarity score between node

pairs (𝑢𝑖 , 𝑢 𝑗 ) and (𝑢𝑖 , 𝑢𝑚) from the outcome similarity matrix SŶ,
respectively. To formulate it as a probability score between 0 and 1,

we make use of the sigmoid function:

𝑃 𝑗,𝑚 (𝑠𝑖, 𝑗 , 𝑠𝑖,𝑚) = 1

1 + 𝑒−𝛼 (𝑠𝑖,𝑗−𝑠𝑖,𝑚) , (3)

where 𝛼 here is a scalar. Accordingly, define the known probability

that the node 𝑢𝑖 is more similar to node 𝑢 𝑗 than to node 𝑢𝑚 as

𝑃 𝑗,𝑚 (𝑠𝑖, 𝑗 , 𝑠𝑖,𝑚), which can be formulated as follows:

𝑃 𝑗,𝑚 (𝑠𝑖, 𝑗 , 𝑠𝑖,𝑚) =


1, 𝑠𝑖, 𝑗 > 𝑠𝑖,𝑚,

0.5, 𝑠𝑖, 𝑗 = 𝑠𝑖,𝑚,

0, 𝑠𝑖, 𝑗 < 𝑠𝑖,𝑚 .

(4)

Here 𝑠𝑖, 𝑗 and 𝑠𝑖,𝑚 denote the similarity between node pairs (𝑢𝑖 , 𝑢 𝑗 )

and (𝑢𝑖 , 𝑢𝑚) from the oracle similarity matrix SG , respectively. To
promote individual fairness via ranking optimization, it is necessary

to quantify and minimize the difference between the predicted

probability distribution and the known one. Here, we make use

of cross-entropy loss for the difference quantification between the

two distributions. For example, the cross-entropy loss of node pair

(𝑢 𝑗 , 𝑢𝑚) centered on 𝑢𝑖 can be expressed as

L 𝑗,𝑚 (𝑖) = −𝑃 𝑗,𝑚 log𝑃 𝑗,𝑚 − (1 − 𝑃 𝑗,𝑚)log(1 − 𝑃 𝑗,𝑚) . (5)

Then, the total loss function over all node pairs centered on node

𝑢𝑖 can be formulated as

L
fairness

(𝑖) =
∑
𝑗,𝑚

L 𝑗,𝑚 (𝑖) , (6)

where 𝑖 ≠ 𝑗 ≠𝑚. Byminimizing the above loss function, the relative

order of all node pairs (centered on node 𝑢𝑖 ) decided by SŶ will be

enforced to be consistent with the corresponding order decided by

SG . When the loss of all nodes is aggregated and minimized, the

ranking based individual fairness can be achieved.



3.4.2 Training Facilitation. Minimizing Equ. (6) for node 𝑢𝑖 re-

quires the ranking of all other nodes centered on node 𝑢𝑖 being

optimal (i.e., the ranking follows a descending order according to

the similarity score from SG ). This is usually hard to achieve, es-

pecially for graphs with a large number of nodes. Consequently,

for each node 𝑢𝑖 , we propose to focus on the ranking optimiza-

tion of the top-𝑘 nodes given by the outcome similarity matrix

SŶ. This strategy is motivated by the basic principle of individual

fairness [8], which is only emphasizing the outcome of “similar

people" to be similar. Motivated by existing research on learning to

rank [28], we achieve this goal by developing a simple but effective

approach. Specifically, we define 𝑧
@𝑘 (·, ·) as the similarity metric

(e.g., 𝑁𝐷𝐶𝐺@𝑘 [16] or 𝐸𝑅𝑅@𝑘 [5]) between the top-𝑘 ranking list

derived from SG and the predicted top-𝑘 ranking list derived from

SŶ for each node. For the loss of each node pair given by Equ. (5),

we scale the loss term by the absolute value change of 𝑧
@𝑘 if the

ranking positions of the corresponding node pair 𝑢 𝑗 and 𝑢𝑚 in the

predicted ranking list are swapped. Then the loss for each node 𝑢𝑖
can be presented as

L
fairness

(𝑖) =
∑
𝑗,𝑚

L 𝑗,𝑚 (𝑖) |Δ𝑧
@𝑘 |𝑗,𝑚 , (7)

where 𝑖 ≠ 𝑗 ≠ 𝑚. To illustrate the computation of |Δ𝑧
@𝑘 |𝑗,𝑚 ,

we take 𝑘 = 4, 𝑖 = 1, 𝑗 = 4 and 𝑚 = 2 as an example. Assume

the top-4 ranking of node 𝑢1 with other nodes in SŶ is
ˆList𝑢𝑖 =

{𝑢4, 𝑢3, 𝑢2, 𝑢5}, and the corresponding ranking in SG is List𝑢𝑖 =

{𝑢4, 𝑢3, 𝑢5, 𝑢2}. Then the |Δ𝑧
@𝑘 |4,2 corresponding to node pair (𝑢4,

𝑢2) centered on node𝑢1 is |𝑧@𝑘 (List𝑢1
, ˆList𝑢1

) −𝑧
@𝑘 (List𝑢1

, ˆList′𝑢1

) |.
Here

ˆList′𝑢1

= {𝑢2, 𝑢3, 𝑢4, 𝑢5}, i.e., ˆList𝑢1
with the positions of node

𝑢2 and 𝑢4 swapped. With such method, the ranking optimization

will be enforced to focus more on the top-𝑘 nodes for each node 𝑢𝑖 .

Here, 𝑘 is often specified as a very number (𝑘 ≪ 𝑛).

Besides, |Δ𝑧
@𝑘 |𝑗,𝑚 is always zero if neither node 𝑢 𝑗 nor 𝑢𝑚 is

from the top-𝑘 nodes of𝑢𝑖 according to SŶ. Consequently, this strat-
egy also reduces the time complexity from O(𝑛·

(𝑛−1
2

)
) = O(𝑛3)

to O(𝑛·
(𝑛−1
1

) (𝑘
1

)
) = O(𝑛2𝑘) for the total loss computation. Nev-

ertheless, the time complexity of O(𝑛2𝑘) is still expensive for the
training on large graphs. To further reduce the time complexity,

here we constrain that both nodes in the pair (𝑢 𝑗 , 𝑢𝑚) are from the

top-𝑘 ranked nodes of 𝑢𝑖 according to SŶ. Then the total fairness

loss can be formulated as

L
fairness

=
∑
𝑖

∑
𝑗,𝑚:𝑗,𝑚∈K (𝑖)

L 𝑗,𝑚 (𝑖) |Δ𝑧
@𝑘 |𝑗,𝑚 , (8)

where 𝑖 ≠ 𝑗 ≠𝑚, andK(𝑖) represents the top-𝑘 ranked node set for

node 𝑢𝑖 . In this way, the computational complexity can be further

reduced from O(𝑛2𝑘) to 𝑂 (𝑛·
(𝑘
2

)
) = 𝑂 (𝑛𝑘2), which facilitates the

training process of REDRESS.

3.5 Overall Objective Function
Now we have L

utility
for the model utility maximization (formu-

lated in Section 3.3), and L
fairness

for the model individual fairness

promotion (formulated in Section 3.4). Then the overall objective

function of the proposed framework REDRESS can be attained by

combining the two formulations together:

L
total

= L
utility

+ 𝛾L
fairness

. (9)

Here 𝛾 is a tunable hyperparameter controlling the strength of indi-

vidual fairness constraint. For training of the proposed framework,

the gradient-based techniques can be directly adopted to minimize

the total objective function L
total

.

4 EXPERIMENTAL EVALUATIONS
In this section, we first introduce the adopted downstream learning

tasks and the used datasets. Then we present the experimental set-

tings and the implementation details. At last, we show the empirical

evaluation results of REDRESS.

4.1 Downstream Tasks and Datasets
Downstream Tasks. To assess the performance of our proposed

framework REDRESS, we choose thewidely adopted semi-supervised
node classification task [19, 36, 39] and link prediction task [20, 26]

as the downstream learning tasks. Both of these two tasks are of

high practical significance in many areas.

Datasets. To comprehensively explore how REDRESS promotes

the individual fairness of GNNs from a ranking perspective, we

adopt three different real-world datasets for each of the chosen

downstream task. Specifically, for the semi-supervised node classi-
fication task, we adopt one citation network (ACM [33]) and two

co-authorship networks (Co-author-CS and Co-author-Phy [31]

from the KDDCup 2016 challenge). For the link prediction task, three
social networks (BlogCatalog [34], Flickr [15], and Facebook [23])

are used for evaluation. All of these datasets are publicly available.

For citation networks, each node represents a paper, and an edge

between two nodes denotes the citation relationship between two

papers. For co-author networks, nodes represent authors, and an

edge between two nodes indicates that the linked two authors have

co-authored a paper together. Node attributes of both citation and

co-author networks are generated by the bag-of-words model based

on the abstract of the published paper. For social networks, each

node represents a user, and links represent the corresponding in-

teractions between users. The attributes here are constructed by

the profiles or descriptions of users. Here, CS and Phy are short for

the datasets Co-author-CS and Co-author-Phy, respectively. The

detailed statistics of these datasets are shown in Table 2.

4.2 Experiment Settings
GNN Backbone Models. As mentioned previously, our proposed

REDRESS is a plug-and-play framework which can be easily gen-

eralized to any prevalent GNN architectures. Hence, we choose

two different backbone GNN architectures for each downstream

learning task in our experiments. For the semi-supervised node
classification task, Graph Convolutional Network (GCN) [19] and

Simplifying Graph Convolutional Network (SGC) [39] are adopted

as our backbones. For the link prediction task, GCN and Variational

Graph Auto-Encoders (GAE) [20] are employed.

Oracle Similarity Matrix. Following the settings of [17, 21, 22],

the oracle similarity matrix SG of the input graph G is a given apri-

ori. In practice, the oracle similarity matrix is often problem-specific



Table 2: Detailed statistics of the used datasets for node clas-
sification (short as NC) and link prediction (short as LP).

Dataset # Nodes # Edges # Features # Classes

NC
ACM 16,484 71,980 8,337 9

CS 18,333 81,894 6,805 15

Phy 34,493 247,962 8,415 5

LP
BlogCatalog 5,196 171,743 8,189 N/A

Flickr 7,575 239,738 12,047 N/A

Facebook 4,039 88,234 1,406 N/A

and is determined by humans. To show the generalization capa-

bility of REDRESS in handling different types of oracle similarity

matrix, we construct two different types of oracle similarity matrix

from the feature perspective and the structural perspective. From

the feature perspective, we compute the cosine similarity between

input node features as the SG ; while from the structural perspective,

we compute the Jaccard similarity between node pairs as the SG .
For the outcome similarity matrix SŶ, we utilize the cosine distance,
which is the most widely adopted distance metric to measure node

pair similarity in the embedding space.

Baselines. To demonstrate the superiority of our proposed ranking-

based individual fairness framework, we compare REDRESS with

the following individual fairness promotion approaches on top of

the backbone GNN models. It should be noted that the existing

group fairness graph embedding methods (such as [3, 29]) cannot

be used for comparison as they achieve fairness for subgroups

determined by specific protected attributes while we focus on the

notion of individual fairness without such protected attributes.

• PFR [22]: PFR aims to learn fair representations to achieve

the notion of individual fairness. It has demonstrated to

outperform traditional approaches such as [14, 21, 41] on

individual fairness promotion. Since PFR can be considered

as a pre-processing strategy and is not tailored for graph

data, we employ it on the input node features to generate

a new fair node feature representation and feed it into the

backbone GNN models for learning.

• InFoRM [17]: InFoRM is a recently proposed individual

fairness framework for conventional graph mining tasks

(e.g., PageRank, Spectral Clustering) based on the Lipschitz

condition. Here, we adapt InFoRM to different backbone

GNN models by combing its individual fairness promotion

loss and the unity loss of the backbone GNN model together,

and then optimize the final loss in an end-to-end manner.

Evaluation Metrics. For model utility evaluation, we adopt clas-

sification accuracy (𝐴𝐶𝐶) and area under receiver operating char-

acteristic curve (𝐴𝑈𝐶) for the node classification task and the link

prediction task, respectively. For individual fairness evaluation,

we adopt two widely used ranking metrics 𝑁𝐷𝐶𝐺@𝑘 [16] and

𝐸𝑅𝑅@𝑘 [5] to measure the similarity between the ranking list from

SŶ (outcome similarity matrix) and SG (oracle similarity matrix)

for each node. The average value of 𝑁𝐷𝐶𝐺@𝑘 and 𝐸𝑅𝑅@𝑘 across

all nodes
3
are reported. 𝑘 = 10 is adopted for quantitative perfor-

mance comparison, but different choices of 𝑘 are also studied. The

quantitative performance and corresponding discussion based on

𝐸𝑅𝑅@𝑘 is provided in the Appendix.

3
all nodes in the test set for node classification and all nodes for link prediction

4.3 Implementation Details
REDRESS is implemented in Pytorch [27]. For all GNN backbones

adopted in our experiments (i.e., GCN
4
, SGC

5
and GAE

6
), we uti-

lize their released implementations. We set the learning rate of all

experiments as 0.01 for both the node classification task and the

link prediction task. For GCN and SGC based models, the layer and

hidden unit number is set as 2 and 16, respectively. For GAE based

models, we set the graph convolutional layer number as 3, with

the two hidden unit number being 32 and 16. For the training of

REDRESS in all experiments, we set 𝛾 and 𝑘 in the loss function

as 1 and 10, respectively. All models are optimized with Adam op-

timizer [18]. For both of the two downstream tasks, datasets are

randomly shuffled, and only training data is visible for all models.

More details, including dataset split and hyper-parameter settings,

are provided in the Appendix.

4.4 Effectiveness of REDRESS
In this section, we perform experiments on real-world networks to

validate the effectiveness of the proposed REDRESS framework. In

particular, we aim to answer the following research questions:

• RQ1:Howwell can REDRESS balance the GNNmodel utility

and individual fairness compared with other baselines?

• RQ2: How will the individual fairness promotion hyperpa-

rameter 𝛾 affect the performance of REDRESS?

• RQ3: How will the choice of parameter 𝑘 affect the perfor-

mance of REDRESS?

RQ1: Performance on Balancing Utility and Fairness. First,
we investigate the effectiveness of the proposed REDRESS frame-

work by comparing its performance on balancing the model utility

and individual fairness against state-of-the-art alternatives. For gen-

eralization purpose, the performance of REDRESS is compared with

other baselines under different settings of oracle similarity matrices

(i.e., feature similarity and structure similarity) and different GNN

backbones (i.e., GCN, SGC, and GAE). Quantitative results for the

node classification task and the link prediction task are shown in Ta-

ble 3 and Table 4, respectively. In these two tables, higher 𝐴𝐶𝐶 and

𝐴𝑈𝐶 represents better performance on model utility, and higher

𝑁𝐷𝐶𝐺@10 indicates better performance on individual fairness. We

can make the following observations from these two tables:

• From the perspective of model utility (i.e., 𝐴𝐶𝐶 in node clas-

sification and 𝐴𝑈𝐶 in link prediction), our proposed frame-

work REDRESS provides competitive performance compared

with other state-of-the-art baselines. Besides, our proposed

framework REDRESS achieves better utility performance

compared with the vanilla GNN backbones in some cases.We

conjecture that this is partly because the individual fairness

promotion term plays the role of regularization to prevent

over-fitting of the backbone GNN models.

• From the perspective of ranking based individual fairness,

our framework outperforms all baseline methods in all cases

with different levels of improvement w.r.t. the fairness evalu-

ationmetric𝑁𝐷𝐶𝐺@10. This verifies the effectiveness of the

individual fairness promotion of our proposed framework

4
https://github.com/tkipf/pygcn

5
https://github.com/Tiiiger/SGC

6
https://github.com/tkipf/gae



Table 3: Node classification results on ACM, Co-author-CS (CS) and Co-author-Phy (Phy) datasets. BB represents the backbone
GNN model. Vanilla denotes the vanilla GNN. All values are reported in percentage. The relative improvement of each entry
compared with the corresponding backbone performance is denoted in the parentheses. Best performance is marked in bold.

BB Model Feature Similarity Structural Similarity
Utility: ACC Fairness: NDCG@10 Utility: ACC Fairness: NDCG@10

ACM

GCN

Vanilla 72.49 ± 0.6 ( — ) 47.33 ± 1.0 ( — ) 72.49 ± 0.6 ( — ) 25.42 ± 0.6 ( — )

InFoRM 68.03 ± 0.3 (−6.15%) 39.79 ± 0.3 (−15.9%) 69.13 ± 0.5 (−4.64%) 12.02 ± 0.4 (−52.7%)
PFR 67.88 ± 1.1 (−6.36%) 31.20 ± 0.2 (−34.1%) 69.00 ± 0.7 (−4.81%) 23.85 ± 1.3 (−6.18%)

REDRESS (Ours) 71.75 ± 0.4 (−1.02%) 49.13 ± 0.4 (+3.80%) 72.03 ± 0.9 (−0.63%) 29.09 ± 0.4 (+14.4%)

SGC

Vanilla 68.40 ± 1.0 ( — ) 55.75 ± 1.1 ( — ) 68.40 ± 1.0 ( — ) 37.18 ± 0.6 ( — )

InFoRM 68.81 ± 0.5 (+0.60%) 48.25 ± 0.5 (−13.5%) 66.71 ± 0.6 (−2.47%) 28.33 ± 0.6 (−23.8%)
PFR 67.97 ± 0.7 (−0.62%) 34.71 ± 0.1 (−37.7%) 67.78 ± 0.1 (−0.91%) 37.15 ± 0.6 (−0.08%)

REDRESS (Ours) 67.16 ± 0.2 (−1.81%) 58.64 ± 0.4 (+5.18%) 67.77 ± 0.4 (−0.92%) 38.95 ± 0.1 (+4.76%)

CS

GCN

Vanilla 90.59 ± 0.3 ( — ) 50.84 ± 1.2 ( — ) 90.59 ± 0.3 ( — ) 18.29 ± 0.8 ( — )

InFoRM 88.66 ± 1.1 (−2.13%) 53.38 ± 1.6 (+5.00%) 87.55 ± 0.9 (−3.36%) 19.18 ± 0.9 (+4.87%)
PFR 87.51 ± 0.7 (−3.40%) 37.12 ± 0.9 (−27.0%) 86.16 ± 0.2 (−4.89%) 11.98 ± 1.3 (−34.5%)

REDRESS (Ours) 90.70 ± 0.2 (+0.12%) 55.01 ± 1.9 (+8.20%) 89.16 ± 0.3 (−1.58%) 21.28 ± 0.3 (+16.4%)

SGC

Vanilla 87.48 ± 0.8 ( — ) 74.00 ± 0.1 ( — ) 87.48 ± 0.8 ( — ) 32.36 ± 0.3 ( — )

InFoRM 88.07 ± 0.1 (+0.67%) 74.29 ± 0.1 (+0.39%) 88.65 ± 0.4 (+1.34%) 32.37 ± 0.4 (+0.03%)
PFR 88.31 ± 0.1 (+0.94%) 48.40 ± 0.1 (−34.6%) 84.34 ± 0.3 (−3.59%) 28.87 ± 0.9 (−10.8%)

REDRESS (Ours) 90.01 ± 0.2 (+2.89%) 76.60 ± 0.1 (+3.51%) 89.35 ± 0.1 (+2.14%) 34.24 ± 0.2 (+5.81%)

Phy

GCN

Vanilla 94.81 ± 0.2 ( — ) 34.83 ± 1.1 ( — ) 94.81 ± 0.2 ( — ) 1.57 ± 0.1 ( — )

InFoRM 89.33 ± 0.8 (−5.78%) 31.25 ± 0.0 (−10.3%) 94.46 ± 0.2 (−0.37%) 1.77 ± 0.0 (+12.7%)
PFR 89.74 ± 0.5 (−5.35%) 24.16 ± 0.4 (−30.6%) 87.26 ± 0.2 (−7.96%) 1.20 ± 0.1 (−23.6%)

REDRESS (Ours) 94.63 ± 0.7 (−0.19%) 43.64 ± 0.5 (+25.3%) 93.94 ± 0.3 (−0.92%) 1.93 ± 0.1 (+22.9%)

SGC

Vanilla 94.45 ± 0.2 ( — ) 49.63 ± 0.1 ( — ) 94.45 ± 0.2 ( — ) 3.61 ± 0.1 ( — )

InFoRM 92.01 ± 0.1 (−2.58%) 43.87 ± 0.2 (−11.6%) 94.27 ± 0.3 (−0.19%) 3.64 ± 0.0 (+0.83%)
PFR 89.74 ± 0.3 (−4.99%) 28.54 ± 0.1 (−42.5%) 89.73 ± 0.3 (−5.00%) 2.62 ± 0.1 (−27.4%)

REDRESS (Ours) 94.30 ± 0.1 (−0.16%) 53.40 ± 0.1 (+7.60%) 93.94 ± 0.2 (−0.54%) 4.03 ± 0.0 (+11.6%)

REDRESS. PFR and InFoRM do not improve 𝑁𝐷𝐶𝐺@10 in

some cases due to the fact that their algorithms are not de-

signed for ranking based individual fairness optimization.

• From the perspective of balancing the model utility and in-

dividual fairness, our framework achieves both competitive

model utility performance and superior individual fairness

promotion in all cases compared with other baselines. Based

on such observations, we argue that our framework achieves

better performance on balancing the model utility and indi-

vidual fairness compared with other alternatives.

RQ2: Influence of Individual Fairness Promotion Hyperpa-
rameter 𝛾 . In our framework, the strength of individual fairness

promotion is controlled by hyperparameter 𝛾 as defined in Equ. (9).

To explore how 𝛾 affects the performance of REDRESS, we vary it

among {1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4} and report the

performance on utility and individual fairness within fixed training

epochs. Due to space limit, here we only present the results from

(a) ACM with SGC backbone based on Jaccard similarity, and (b)

Facebook with GAE backbone based on cosine similarity as Fig.

(4). We can make the following observations (we also have similar

observations in other datasets):

• When 𝛾 is relatively small (e.g., smaller than 1e-1 for ACM

and 1e-2 for Facebook), the individual fairness constraint

makes little difference to the performance of REDRESS on

the model utility and 𝑁𝐷𝐶𝐺@10 for both tasks.

• When 𝛾 is a modest value (e.g., between 1e-1 and 1e1 for

ACM or between 1e-2 and 1 for Facebook), 𝑁𝐷𝐶𝐺@10 can

be improved with little sacrifice on 𝐴𝐶𝐶 or 𝐴𝑈𝐶 . In other

words, an appropriate 𝛾 helps to achieve better individual

fairness performance without jeopardizing the model utility

(a) ACM (b) Facebook

Figure 4: Study on individual fairness constraint strength:
(a) REDRESS with SGC backbone and Jaccard similarity on
ACM; (b) REDRESS with GAE backbone and cosine similar-
ity on Facebook.

compared with the vanilla SGC and GAE. This shows that

REDRESS achieves a proper balance between promoting

individual fairness and maintaining the model utility.

• When 𝛾 is relatively large (e.g., larger than 1e1 for ACM

and 1 for Facebook), 𝐴𝐶𝐶 and 𝐴𝑈𝐶 will be affected by the

strength of individual fairness promotion. At the same time,

𝑁𝐷𝐶𝐺@10 also drops as 𝛾 gets larger. This is because when

𝛾 falls in this area, the top-10 ranked nodes are far from op-

timal, and individual fairness promotion module can hardly

achieve better performance within fixed epochs.

RQ3: Influence of the Choice of 𝑘 . At last, we investigate what
the performance of REDRESS will be like under different choices

of 𝑘 . We also present the model utility and individual fairness

performance of REDRESS on: (a) ACM with SGC backbone based

on Jaccard similarity, and (b) Facebook with GAE backbone based

on cosine similarity in Fig. (5). Here we vary 𝑘 among {2, 5, 10,

20, 50, 100}. Based on the tendencies presented, we can make the

following observations (similar observations in other datasets).



Table 4: Link prediction results on BlogCatalog (Blog), Flickr and Facebook (FB) datasets. BB represents the backbone GNN
model. Vanilla denotes the vanilla GNN. All values are reported in percentage. The relative improvement of each entry com-
pared with the corresponding backbone performance is denoted in the parentheses. Best performance is marked in bold.

BB Model Feature Similarity Structural Similarity
Utility: AUC Fairness: NDCG@10 Utility: AUC Fairness: NDCG@10

Blog

GCN

Vanilla 85.87 ± 0.1 ( — ) 16.73 ± 0.1 ( — ) 85.87 ± 0.1 ( — ) 32.47 ± 0.5 ( — )

InFoRM 79.85 ± 0.6 (−7.01%) 15.57 ± 0.2 (−6.93%) 84.00 ± 0.1 (−2.18%) 26.18 ± 0.3 (−19.4%)
PFR 84.25 ± 0.2 (−1.89%) 16.37 ± 0.0 (−2.15%) 83.88 ± 0.0 (−2.32%) 29.60 ± 0.4 (−8.84%)

REDRESS (Ours) 86.49 ± 0.8 (+0.72%) 17.66 ± 0.2 (+5.56%) 86.25 ± 0.3 (+0.44%) 34.62 ± 0.7 (+6.62%)

GAE

Vanilla 85.72 ± 0.1 ( — ) 17.13 ± 0.1 ( — ) 85.72 ± 0.1 ( — ) 41.99 ± 0.4 ( — )

InFoRM 80.01 ± 0.2 (−6.66%) 16.12 ± 0.2 (−5.90%) 82.86 ± 0.0 (−3.34%) 27.29 ± 0.3 (−35.0%)
PFR 83.83 ± 0.1 (−2.20%) 16.64 ± 0.0 (−2.86%) 83.87 ± 0.1 (−2.16%) 35.91 ± 0.4 (−14.5%)

REDRESS (Ours) 84.67 ± 0.9 (−1.22%) 18.19 ± 0.1 (+6.19%) 86.36 ± 1.5 (+0.75%) 43.51 ± 0.7 (+3.62%)

Flickr

GCN

Vanilla 92.20 ± 0.3 ( — ) 13.10 ± 0.2 ( — ) 92.20 ± 0.3 ( — ) 22.35 ± 0.3 ( — )

InFoRM 91.39 ± 0.0 (−0.88%) 11.95 ± 0.1 (−8.78%) 91.73 ± 0.1 (−0.51%) 23.28 ± 0.6 (+4.16%)
PFR 91.91 ± 0.1 (−0.31%) 12.94 ± 0.0 (−1.22%) 91.86 ± 0.2 (−0.37%) 19.80 ± 0.4 (−11.4%)

REDRESS (Ours) 91.38 ± 0.1 (−0.89%) 13.58 ± 0.3 (+3.66%) 92.67 ± 0.2 (+0.51%) 28.45 ± 0.5 (+27.3%)

GAE

Vanilla 89.98 ± 0.1 ( — ) 12.77 ± 0.0 ( — ) 89.98 ± 0.1 ( — ) 23.58 ± 0.2 ( — )

InFoRM 88.76 ± 0.7 (−1.36%) 12.07 ± 0.1 (−5.48%) 91.51 ± 0.2 (+1.70%) 15.78 ± 0.3 (−33.1%)
PFR 90.30 ± 0.1 (+0.36%) 12.12 ± 0.1 (−5.09%) 90.10 ± 0.1 (+1.33%) 20.46 ± 0.3 (−13.2%)

REDRESS (Ours) 89.45 ± 0.5 (−0.59%) 14.24 ± 0.1 (+11.5%) 89.52 ± 0.3 (−0.51%) 29.83 ± 0.2 (+26.5%)

FB

GCN

Vanilla 95.60 ± 1.7 ( — ) 23.07 ± 0.2 ( — ) 95.60 ± 1.7 ( — ) 16.55 ± 1.1 ( — )

InFoRM 90.26 ± 0.1 (−5.59%) 23.23 ± 0.3 (+0.69%) 96.66 ± 0.6 (+1.11%) 15.18 ± 0.7 (−8.28%)
PFR 87.11 ± 1.2 (−8.88%) 21.83 ± 0.2 (−5.37%) 94.87 ± 1.9 (−0.76%) 19.53 ± 0.5 (+18.0%)

REDRESS (Ours) 96.49 ± 1.6 (+0.93%) 29.60 ± 0.1 (+28.3%) 92.66 ± 0.4 (−3.08%) 27.73 ± 1.1 (+67.5%)

GAE

Vanilla 98.54 ± 0.0 ( — ) 26.75 ± 0.1 ( — ) 98.54 ± 0.0 ( — ) 27.03 ± 0.1 ( — )

InFoRM 90.50 ± 0.4 (−8.16%) 22.77 ± 0.2 (−14.9%) 95.03 ± 0.1 (−3.56%) 15.38 ± 0.2 (−43.1%)
PFR 96.91 ± 0.1 (−1.65%) 23.52 ± 0.1 (−12.1%) 98.28 ± 0.0 (−0.26%) 22.89 ± 0.3 (−15.3%)

REDRESS (Ours) 95.98 ± 1.5 (−2.60%) 28.43 ± 0.3 (+6.28%) 94.07 ± 1.7 (−4.54%) 33.53 ± 0.2 (+24.0%)

(a) ACM (b) Facebook

Figure 5: Study on 𝑘 choices: (a) REDRESS with SGC back-
bone and Jaccard similarity onACM; (b) REDRESSwithGAE
backbone and cosine similarity on Facebook.

• As 𝑘 goes larger, REDRESS achieves larger improvement on

𝑁𝐷𝐶𝐺@10. This proves that larger 𝑘 brings better optimiza-

tion effectiveness on individual fairness promotion.

• Model utility performance is barely influenced when 𝑘 gets

larger. This implies REDRESS achieves a proper balance be-

tween maintaining the model utility and promoting individ-

ual fairness under different choices of 𝑘 in the optimization.

In practice, a modest 𝑘 (e.g., 20 for ACM and 10 for Facebook)

achieves best balancing performance.

5 RELATEDWORK
In this section, we briefly present the related works on two aspects:

(1) individual fairness; (2) fairness in graphs.

Individual Fairness. Dwork et al. [8] first argue that only empha-

sizing group fairness regarding protected attributes can barely treat

each individual user in a fair manner, and propose the definition of

individual fairness: similar individuals should be treated similarly. In
their work, Lipschitz condition is utilized as the distance constrain

for instance pairs between the input and outcome of the decision-

making model. Zemel et al. [41] propose to emphasize the balance

between the decision-making model utility and individual fairness.

Individual fairness is promoted in their work via sharing the map-

ping function from the model input to corresponding outcome over

all individuals. Lahoti et al. [21] point out that most individual fair-

ness works are limited within binary classification problems. They

firstly extend the problem setting to multi-class, and improve the

model performance on individual fairness via learning low-rank

representations for individuals in a model-agnostic way. Another

work from Lahoti et al. [22] specifies similar individual pairs by

human experts before training, and only emphasize the individual

fairness optimization over these pre-assigned pairs. Different from

these mentioned works, we define individual fairness from a rank-

ing perspective, and promote individual fairness via ranking-based

optimization. To the best of our knowledge, we are the first to define

and promote individual fairness from the ranking perspective.

Fairness in Graphs.Graph structured data has become ubiquitous

in various high-impact areas. Nevertheless, most previous efforts

achieving fairness in graphs focus on group fairness. Basically,

group fairness emphasizes that all demographic groups (defined

by sensitive features) should receive their fair share of interest.

Among previous works, Rahman et al. [29] achieve the first-of-its-

kind study to realize graph embedding learning with group fairness

considerations. A modified random walk algorithm is proposed to

ensure that the minority (according to sensitive features) bears the

same appearing probability in the walk compared with other demo-

graphic groups. Bose et al. [3] propose to disentangle the learned

embeddings from the sensitive features with an adversarial learning

framework. A similar adversarial approach is also adopted by Dai

et al. [6] for debiasing graph mining results. Palowitch et al. [25]

promote group fairness via ensuring that the node embeddings are

trained on a hyperplane orthogonal to sensitive features. Buyl et



al. [4] disentangle the node embedding from sensitive features via

enforcing the prior distribution to encode sensitive information

as strongly as possible. Different from group fairness, individual

fairness is much less studied on graphs. Kang et al. [17] propose to

reduce bias in all three stages of a graph mining pipeline (i.e., pre-

processing, processing, and post-processing [4]). However, their

framework is mainly for plain networks and does not allow end-to-

end training. To our best knowledge, we are the first to study the

individual fairness issue of GNNs based on attributed networks.

6 CONCLUSION
Due to the superior learning capability, GNNs have been widely

adopted to handle graph-structured data for various decision-making

scenarios. However, leaving more and more decisions and judg-

ments to GNNs raises societal concerns as the GNNs often do not

have fairness considerations. Although some recent works have

aimed to improve the fairness of GNNs for certain subgroups de-

fined by a protected attribute, the fairness notion of GNNs at a much

finer granularity (i.e., individual fairness) remains under-explored.

To promote individual fairness, existing studies often need to rely

on the Lipschitz condition to guarantee similar individuals have

similar outcomes. In this paper, we argue the conventional defini-

tion of individual fairness based on the Lipschitz condition may

have some potential issues w.r.t. the subtle Lipschitz constant and

the uncalibrated distance metrics. Thus, we refine the definition of

individual fairness from a ranking perspective, such that for each

individual, the two ranking lists that encode its similarity with other

individuals in the input space and output space are consistent with

each other. To achieve this goal, we develop a novel plug-and-play

framework REDRESS, which encapsulates the GNN model utility

optimization and ranking-based individual fairness optimization in

a joint framework and enables end-to-end training. To demonstrate

the effectiveness of our proposed framework REDRESS, we present

empirical evaluations on different real-world graphs under two

downstream tasks. The experimental results imply that REDRESS

outperforms the state-of-the-art individual fairness promoting ap-

proaches without jeopardizing the prediction performance. Besides,

REDRESS is not only restricted on GNNs but can be extended onto

other graph mining models and tasks, which is for future works.
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A APPENDIX
A.1 Reproducibility
In this section, we present the details of the implementation of

REDRESS and other baselines as the supplement to Section 4.3.

Experimental Settings on Datasets. For node classification task,

for all three datasets, we utilize the split rate for training set and

validation set as 5% and 10%, respectively. The rest nodes are utilized

as the test data. For link prediction task, we randomly mask 2.5%

and 5% edges for all three datasets as the positive sampled edges in

validation set and test set. Same number of negative edges are also

randomly generated for validation and test set. For all experiments,

datasets are randomly shuffled before training, and only training

data is visible for all models. Feature dimensions of all datasets are

reduced to 200 using PCA from sklearn package to reduce the time

complexity of computing cosine similarity.

Implementation of REDRESS. The proposed framework RE-

DRESS is implemented in Pytorch and the code can be found here:

https://github.com/Anonymoussubmissionpurpose/REDRESS. All

models including REDRESS is trained with Adam optimizer, with

the learning rate being 0.01. 𝛾 is set as 1 for both downstream tasks.

We inherit the hyper-parameter settings (e.g., hidden unit number)

of the corresponding GNN backbone for REDRESS throughout our

experiments, and only search for the optimal value of 𝛼 and epoch

number. Search space of 𝛼 is between 1e-5 and 1e-1, and specific

hyper-parameter values can be referred to our open source code. Ex-

perimental results are reported on both 𝑁𝐷𝐶𝐺@𝑘 and 𝐸𝑅𝑅@𝑘 . We

choose 𝑘 = 10 for quantitative experimental results presentation,

but verification based on different 𝑘 choices is also provided.

Implementation of Baselines. For all baselines, we vary the

epoch number from 200 to 600 and the optimal performances on

balancing the model utility and individual fairness promotion are

reported in this paper. Here we introduce the implementation of

all baselines as follows.

• GNN Backbones. For all GNN backbones, we utilize their

released public code. It should be noted that the released

source code of GAE is based on Tensorfllow. For fair compar-

ison, we adapt GAE model to Pytorch based on the released

source code. We set the layer and hidden unit number for

all GCN and SGC based models (including the vanilla model

baseline) as 2 and 16, respectively. The graph convolutional

layer number of all GAE based models is set as 3, with two

hidden unit number being 32 and 16. ReLU is assigned as the

activation function between graph convolutional layers in

GCN and SGC. Sigmoid function is utilized as the activation

function of the inner product output of GAE.

• PFR. For PFR, we re-implement the feature pre-processing

algorithm based on the original paper in Python. The cor-

responding feature pre-processing debiasing algorithm re-

quires two weighted different similarity matrices as input

in their original paper. In our experiments, we utilize the

weighted sum of the oracle similarity matrix SG and adja-

cency matrix A as the corresponding pre-processing algo-

rithm input. The weights of the two matrices are adjusted

between 0 and 1 with the weights sum being 1.

• InFoRM. For InFoRM, we compute the individual fairness

loss term defined in their original paper and add it onto the

vanilla GNN loss function for minimization. We also adjust

the weight of the individual fairness loss term in our ex-

periments. To achieve comparable model utility (i.e., node

classification𝐴𝐶𝐶 and link prediction𝐴𝑈𝐶) with other mod-

els, we search the weight of the individual fairness loss term

between 1e-11 and 2e-7.

Packages Required for Implementations. Key packages and

their corresponding versions that we utilized for our implementa-

tions are listed as follows.

• Python == 3.8

• torch == 1.4.0

• cuda == 10.1

• numpy == 1.18.2

• tensorboard == 2.4.0

• scipy == 1.4.1

• networkx == 2.1

• scikit-learn == 0.19.2

A.2 Supplementary Experimental Results
Supplementary quantitative performance of REDRESS and other

alternatives based on ERR (Expected Reciprocal Rank) are also

provided in Table 5 and Table 6 for node classification and link pre-

diction task, respectively. Similar to section 4.4, the performance of

REDRESS is also compared with other baselines under different set-

tings of oracle similarity matrix (i.e., feature similarity and structure

similarity) and different GNN backbones (i.e., GCN, SGC, and GAE).

It should be noted that higher 𝐴𝐶𝐶 and 𝐴𝑈𝐶 represents better

performance on model utility, and higher 𝐸𝑅𝑅@10 indicates better

performance on individual fairness. We can make the following

observations from the two tables:

• From the perspective of model utility (i.e., 𝐴𝐶𝐶 in node clas-

sification and 𝐴𝑈𝐶 in link prediction), REDRESS provides

competitive performance compared with other state-of-the-

art baselines. Besides, similar to the 𝑁𝐷𝐶𝐺@10 based exper-

iments (Table 3 and Table 4), better utility performance from

REDRESS can also be found compared with the vanilla GNN

backbones. This further verifies that the individual fairness

promotion term plays the role of regularization to prevent

over-fitting of the backbone GNN models.

• From the perspective of ranking based individual fairness,

our framework outperforms all baseline methods in all cases

with different levels of improvement w.r.t. the fairness evalu-

ation metric 𝐸𝑅𝑅@10. Considering that similar observation

can also be found in 𝑁𝐷𝐶𝐺@10 based experiments as in

Table 3 and Table 4, the generalization ability of REDRESS

on individual fairness promotion can be further verified.

• From the perspective of balancing the model utility and

individual fairness, our framework achieves both competi-

tive model utility performance and superior individual fair-

ness promotion in all 𝐸𝑅𝑅@10 based cases compared with

other baselines. Similar observation can also be found in

𝑁𝐷𝐶𝐺@10 based experiments as in Table 3 and Table 4.

Based on these observations, we argue that our framework

generally achieves better performance on balancing themodel

utility and individual fairness compared with other alterna-

tives under different ranking similarity metrics.

https://github.com/Anonymoussubmissionpurpose/REDRESS


Table 5: Node classification results on ACM, Co-author-CS (CS) and Co-author-Phy (Phy) datasets. BB represents the backbone
GNN model. Vanilla denotes the vanilla GNN. All values are reported in percentage. The relative improvement of each entry
compared with the corresponding backbone performance is denoted in the parentheses. Best performance is marked in bold.

BB Model Feature Similarity Structural Similarity
Utility: ACC Fairness: ERR@10 Utility: ACC Fairness: ERR@10

ACM

GCN

Vanilla 72.49 ± 0.6 ( — ) 75.70 ± 0.6 ( — ) 72.49 ± 0.6 ( — ) 37.55 ± 0.4 ( — )

InFoRM 67.65 ± 1.0 (−6.68%) 73.49 ± 0.5 (−2.92%) 65.91 ± 0.2 (−9.07%) 19.96 ± 0.6 (−46.8%)
PFR 68.48 ± 0.6 (−5.53%) 76.28 ± 0.1 (+0.77%) 70.22 ± 0.7 (−3.13%) 36.54 ± 0.4 (−2.69%)

REDRESS (Ours) 73.46 ± 0.2 (+1.34%) 82.27 ± 0.1 (+8.68%) 71.87 ± 0.4 (−0.86%) 43.74 ± 0.0 (+16.5%)

SGC

Vanilla 68.40 ± 1.0 ( — ) 80.06 ± 0.1 ( — ) 68.40 ± 1.0 ( — ) 45.95 ± 0.3 ( — )

InFoRM 67.96 ± 0.5 (−0.64%) 75.63 ± 0.5 (−5.53%) 66.16 ± 0.6 (−3.27%) 39.79 ± 0.1 (−13.4%)
PFR 67.69 ± 0.4 (−1.04%) 76.80 ± 0.1 (−4.07%) 66.69 ± 0.3 (−2.50%) 46.99 ± 0.5 (+2.26%)

REDRESS (Ours) 66.51 ± 0.3 (−2.76%) 82.32 ± 0.3 (+2.82%) 67.10 ± 0.7 (−1.90%) 49.02 ± 0.2 (+6.68%)

CS

GCN

Vanilla 90.59 ± 0.3 ( — ) 80.41 ± 0.1 ( — ) 90.59 ± 0.3 ( — ) 26.69 ± 1.3 ( — )

InFoRM 88.37 ± 0.9 (−2.45%) 80.63 ± 0.6 (+0.27%) 87.10 ± 0.9 (−3.85%) 29.68 ± 0.6 (+11.2%)
PFR 87.62 ± 0.2 (−3.28%) 76.26 ± 0.1 (−5.16%) 85.66 ± 0.7 (−5.44%) 19.80 ± 1.4 (−25.8%)

REDRESS (Ours) 90.06 ± 0.5 (−0.59%) 83.24 ± 0.2 (+3.52%) 89.81 ± 0.2 (−0.86%) 32.42 ± 1.6 (+21.5%)

SGC

Vanilla 87.48 ± 0.8 ( — ) 90.58 ± 0.1 ( — ) 87.48 ± 0.8 ( — ) 43.28 ± 0.2 ( — )

InFoRM 87.31 ± 0.5 (−0.19%) 90.64 ± 0.1 (+0.07%) 88.21 ± 0.9 (+0.83%) 43.37 ± 0.1 (+0.21%)
PFR 87.95 ± 0.2 (+0.54%) 79.85 ± 0.2 (−11.8%) 86.93 ± 0.1 (−0.63%) 38.83 ± 0.8 (−10.3%)

REDRESS (Ours) 90.48 ± 0.2 (+3.43%) 92.03 ± 0.1 (+1.60%) 90.39 ± 0.1 (+3.33%) 45.81 ± 0.0 (+5.85%)

Phy

GCN

Vanilla 94.81 ± 0.2 ( — ) 73.25 ± 0.3 ( — ) 94.81 ± 0.2 ( — ) 2.58 ± 0.1 ( — )

InFoRM 88.67 ± 0.7 (−6.48%) 73.80 ± 0.6 (+0.75%) 94.68 ± 0.2 (−0.14%) 2.45 ± 0.1 (−5.04%)
PFR 88.79 ± 0.2 (−6.35%) 73.32 ± 0.4 (+0.10%) 89.69 ± 1.0 (−5.40%) 1.67 ± 0.1 (−35.3%)

REDRESS (Ours) 93.71 ± 0.1 (−1.16%) 80.23 ± 0.1 (+9.53%) 93.91 ± 0.4 (−0.95%) 3.22 ± 0.3 (+24.8%)

SGC

Vanilla 94.45 ± 0.2 ( — ) 77.48 ± 0.2 ( — ) 94.45 ± 0.2 ( — ) 4.50 ± 0.1 ( — )

InFoRM 92.06 ± 0.2 (−2.53%) 75.13 ± 0.4 (−3.03%) 94.27 ± 0.1 (−0.19%) 4.44 ± 0.0 (−1.33%)
PFR 87.39 ± 1.2 (−7.47%) 73.42 ± 0.2 (−5.24%) 89.16 ± 0.3 (−5.60%) 3.41 ± 0.2 (−24.2%)

REDRESS (Ours) 94.81 ± 0.2 (+0.38%) 79.57 ± 0.2 (+2.70%) 94.54 ± 0.1 (+0.10%) 4.98 ± 0.1 (+10.7%)

Table 6: Link prediction results on BlogCatalog (Blog), Flickr and Facebook (FB) datasets. BB represents the backbone GNN
model. Vanilla denotes the vanilla GNN. All values are reported in percentage. The relative improvement of each entry com-
pared with the corresponding backbone performance is denoted in the parentheses. Best performance is marked in bold.

BB Model Feature Similarity Structural Similarity
Utility: AUC Fairness: ERR@10 Utility: AUC Fairness: ERR@10

Blog

GCN

Vanilla 85.87 ± 0.1 ( — ) 67.95 ± 0.1 ( — ) 85.87 ± 0.1 ( — ) 38.63 ± 0.2 ( — )

InFoRM 80.14 ± 0.1 (−6.67%) 68.55 ± 0.1 (+0.88%) 83.68 ± 0.0 (−2.55%) 34.26 ± 0.9 (−11.3%)
PFR 83.65 ± 0.0 (−2.59%) 68.04 ± 0.3 (+0.13%) 84.72 ± 0.1 (−1.34%) 37.28 ± 0.4 (−3.49%)

REDRESS (Ours) 83.90 ± 0.2 (−2.29%) 72.83 ± 0.2 (+7.18%) 86.44 ± 0.0 (+0.66%) 42.16 ± 0.1 (+9.14%)

GAE

Vanilla 85.72 ± 0.1 ( — ) 67.92 ± 0.1 ( — ) 85.72 ± 0.1 ( — ) 44.23 ± 0.2 ( — )

InFoRM 81.87 ± 0.1 (−4.49%) 68.36 ± 0.4 (+0.65%) 82.50 ± 0.1 (−3.76%) 33.98 ± 0.5 (−23.2%)
PFR 83.49 ± 0.1 (−2.60%) 67.89 ± 0.0 (−0.04%) 84.31 ± 0.1 (−1.64%) 39.89 ± 0.2 (−9.81%)

REDRESS (Ours) 85.30 ± 1.5 (−0.49%) 69.62 ± 0.4 (+2.50%) 85.77 ± 2.0 (+0.06%) 47.44 ± 0.3 (+7.26%)

Flickr

GCN

Vanilla 92.20 ± 0.3 ( — ) 70.39 ± 0.1 ( — ) 92.20 ± 0.3 ( — ) 38.44 ± 0.5 ( — )

InFoRM 91.28 ± 0.0 (−1.00%) 72.17 ± 0.0 (+2.53%) 92.24 ± 0.0 (+0.04%) 39.03 ± 0.4 (+1.53%)
PFR 92.43 ± 0.2 (+0.25%) 71.36 ± 0.2 (+1.38%) 92.06 ± 0.2 (−0.15%) 37.29 ± 0.7 (−2.99%)

REDRESS (Ours) 87.89 ± 0.4 (−4.67%) 73.90 ± 0.3 (+4.99%) 91.39 ± 0.0 (−0.88%) 44.82 ± 0.5 (+16.6%)

GAE

Vanilla 89.98 ± 0.1 ( — ) 70.34 ± 0.2 ( — ) 89.98 ± 0.1 ( — ) 36.98 ± 0.3 ( — )

InFoRM 90.56 ± 1.4 (+0.64%) 71.54 ± 0.1 (+1.71%) 91.55 ± 0.2 (+1.74%) 35.58 ± 0.4 (−3.79%)
PFR 90.44 ± 0.2 (+0.51%) 71.65 ± 0.2 (+1.86%) 90.09 ± 0.2 (+0.12%) 33.89 ± 0.3 (−8.36%)

REDRESS (Ours) 93.06 ± 0.3 (+3.42%) 72.41 ± 0.2 (+2.94%) 87.96 ± 0.4 (−2.24%) 44.00 ± 0.1 (+19.0%)

FB

GCN

Vanilla 95.60 ± 1.7 ( — ) 61.52 ± 0.5 ( — ) 95.60 ± 1.7 ( — ) 32.18 ± 1.7 ( — )

InFoRM 90.66 ± 0.0 (−5.17%) 61.49 ± 0.2 (−0.05%) 94.65 ± 1.3 (−0.99%) 30.03 ± 1.7 (−6.68%)
PFR 89.85 ± 2.0 (−6.01%) 62.02 ± 0.3 (+0.81%) 92.30 ± 0.5 (−3.45%) 30.62 ± 1.8 (−4.85%)

REDRESS (Ours) 95.99 ± 1.9 (+0.41%) 64.08 ± 0.1 (+4.16%) 92.93 ± 0.8 (−2.79%) 43.74 ± 1.5 (+35.9%)

GAE

Vanilla 98.54 ± 0.0 ( — ) 63.19 ± 0.1 ( — ) 98.54 ± 0.0 ( — ) 42.17 ± 0.4 ( — )

InFoRM 92.80 ± 0.1 (−5.83%) 62.29 ± 0.0 (−1.42%) 94.75 ± 0.2 (−3.85%) 31.93 ± 0.6 (−24.3%)
PFR 96.85 ± 0.1 (−1.72%) 61.71 ± 0.1 (−2.34%) 98.18 ± 0.1 (−0.37%) 39.04 ± 0.3 (−7.42%)

REDRESS (Ours) 95.10 ± 0.7 (−3.49%) 64.40 ± 0.7 (+1.91%) 92.35 ± 0.3 (−6.28%) 44.54 ± 0.3 (+5.62%)
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