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ABSTRACT

Reasoning is a fundamental capability for harnessing valuable in-
sight, knowledge and patterns from knowledge graphs. Existing
work has primarily been focusing on point-wise reasoning, includ-
ing search, link prediction, entity prediction, subgraph matching
and so on. This paper introduces comparative reasoning over knowl-
edge graphs, which aims to infer the commonality and inconsis-
tency with respect to multiple pieces of clues. We envision that
the comparative reasoning will complement and expand the ex-
isting point-wise reasoning over knowledge graphs. In detail, we
develop KompaRe, the first of its kind prototype system that pro-
vides comparative reasoning capability over large knowledge graphs.
We present both the system architecture and its core algorithms,
including knowledge segment extraction, pairwise reasoning and
collective reasoning. Empirical evaluations demonstrate the efficacy
of the proposed KompaRe.

CCS CONCEPTS

• Information systems applications → Data mining; • Arti-
ficial intelligence → Knowledge representation and reason-

ing; • Computing methodologies→ Machine learning.
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1 INTRODUCTION

Since its birth in 1980s [33] and especially its re-introduction by
Google in 2012, knowledge graph has received more and more
attentions, penetrating in a multitude of high-impact applications.
To name a few, in fact checking, knowledge graph provides the
vital background information about real-world entities and help a
human fact checker corroborate or refute a claim [24]; in question
answering, a question can be naturally formulated as a query graph,
and the Q/A problem thus becomes the classic subgraph matching
problem [12]; in recommender systems, knowledge graph offers
the auxiliary information to improve the recommendation quality
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and/or explainability [36]; in computer vision, knowledge graph
can be used to pre-optimize the model to boost its performance [8].
A fundamental enabling capability underlying these applications
(and many more) lies in reasoning, which aims to identify errors
and/or infer new conclusions from existing data [4]. The newly
discovered knowledge through reasoning provides valuable input
of these down stream applications, and/or can be used to further
enrich the knowledge graph itself.

Most, if not all, of the existing work on knowledge graph reason-
ing belongs to the point-wise approaches, which perform reasoning
w.r.t. a single piece of clue (e.g., a query). For example, in knowledge
graph search [32], it returns the most relevant concepts for a given
entity; in link prediction [14], given the ‘subject’ and the ‘object’ of
a triple, it predicts the relation; in fact checking [22], given a claim
(e.g., represented as a triple of the knowledge graph), it decides
whether it is authentic or falsified; in subgraph matching [3], given
a query graph, it finds exact or inexact matching subgraphs.

In this paper, we introduce comparative reasoning over knowl-
edge graph, which aims to infer the commonality and/or the incon-
sistencywith respect tomultiple pieces of clues (e.g., multiple claims
about a news article). We envision that the comparative reasoning
will complement and expand the existing point-wise reasoning over
knowledge graphs. This is because comparative reasoning offers a
more complete picture w.r.t. the input clues, which in turn helps the
users discover the subtle patterns (e.g., inconsistency) that would
be invisible by point-wise approaches. Figure 1 gives an example
to illustrate the power of comparative reasoning. Suppose there is
a multi-modal news article and we wish to verify its truthfulness.
To this end, two query graphs are extracted from the given news,
respectively. One query graph contains all the information from
the text, and the other contains the information from the image. If
we perform point-wise reasoning to check each of these two query
graphs separately, both seem to be true. However, if we perform
reasoning w.r.t. both query graphs simultaneously, and by com-
parison, we could discover the subtle inconsistency between them
(i.e., the different air plane types, the difference in maximum flying
distances). In addition, comparative reasoning can also be used in
knowledge graph expansion, integration and completion.

To be specific, we develop KompaRe, the first of its kind proto-
type system that provides comparative reasoning capability over
large knowledge graphs. A common building block of comparative
reasoning is knowledge segment, which is a small connection sub-
graph of a given clue (e.g., a triple or part of it) to summarize its
semantic context. Based on that, we present core algorithms to en-
able both pairwise reasoning and collective reasoning. The key idea
is to use influence function to discover a set of important elements
in the knowledge segments. Then, the overlapping rate and the
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Figure 1: An illustrative example of using comparative reasoning for semantic incon-

sistency detection. Source of the image at the top-left: [6].
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Figure 2: KompaRe architecture.

transferred information amount of these important elements will
help reveal commonality and inconsistency.

The main contributions of the paper are
• Problem Definition. We introduce comparative reasoning
over knowledge graphs, which complements and expands
the existing point-wise reasoning capabilities.

• Prototype Systems and Algorithms.We develop the first
of its kind prototype1 for knowledge graph comparative
reasoning, together with a suite of core enabling algorithms.

• Empirical Evaluations. We perform extensive empirical
evaluations to demonstrate the efficacy of KompaRe.

2 KOMPARE OVERVIEW

A - Architecture and Main Functions. The architecture of Kom-
paRe is shown in Figure 2 . Generally speaking, there are three key
components in KompaRe, including (1) offline mining, (2) online
reasoning and (3) User Interface (UI).
(1) Offline Mining. There are two main offline functions supported
by KompaRe, including predicate entropy calculation and predicate-
predicate similarity calculation.2 These functions provide funda-
mental building blocks for KompaRe’s online reasoning capabilities.
For example, the predicate-predicate similarity will be used in both
edge-specific knowledge segment extraction (Subsection 3.2) and
subgraph-specific knowledge segment extraction (Subsection 3.3).
(2) Online Reasoning. In the online reasoning phase, KompaRe sup-
ports a variety of reasoning functions which are summarized in
Table 1. First, it supports point-wise reasoning, which returns a
small connection subgraph (referred to as ‘knowledge segment’ in
this paper) for a single piece of clue provided by the user (f1 to f3 in
Table 1). For example, if the given clue is a single entity, KompaRe
finds a semantic subgraph to summarize the context of the given
entity in the underlying knowledge graph; if the given clue is a
single triple, KompaRe finds a connection subgraph to summarize
the semantic proximity from the ‘subject’ of the triple to its ‘object’;

1The developed methods have been integrated into a knowledge graph reasoning
system [20]. A video demo can be found at https://github.com/lihuiliullh/KompaRe.
2KompaRe also contains other offline mining algorithms, e.g. TransE [2]. We omit the
details of these algorithms due to the space limit.

if the given clue is a subgraph, KompaRe finds a semantic match-
ing subgraph where each edge of the query graph corresponds to
a knowledge segment between the two matching nodes. Second,
based on these point-wise reasoning functions, KompaRe further
supports comparative reasoning (f4 and f5 in Table 1), which iden-
tifies both the commonality and the potential inconsistency w.r.t.
multiple pieces of clues provided by the user. In addition, KompaRe
also supports a number of common knowledge reasoning tasks,
e.g., top-k query (i.e., given an entity, find the top-k most relevant
entities), link prediction, subgraph matching, etc.
(3) User Interface (UI). KompaRe provides a user friendly interface
to visualize the point-wise and/or comparative reasoning results.
Basically, the interface supports three primary functions, including
(i) function selection, where the user can select different kind of
functions in Table 1 on the web page; (ii) query input, where the
user can input various queries on the web page (e.g,. node, edge
and query graph); and (iii) visualization, where KompaRe visualizes
the reasoning results, and the user further modify their queries
accordingly. The UI is implemented by HTML, Javascript and D3.js.
B - Key Challenges. There are several challenges to implement
KompaRe which are listed below. First (C1 - challenge for point-
wise reasoning), although there exists rich algorithms and tools
to extract connection subgraphs on weighted graphs [10, 15, 30],
they do not directly apply to knowledge graphs whose edges en-
code semantic relationship between different nodes. Second (C2 -
challenges for comparative reasoning), different from point-wise
reasoning which focuses on a single piece of clue, comparative rea-
soning aims to infer the commonality and/or the inconsistency w.r.t.
multiple clues. Take knowledge graph based fact checking as an
example. Even if each clue/claim could be true, we might still fail
to detect the inconsistency between them without appropriately
examining different clues/claims together. Third (C3 - scalability), a
common challenge to both point-wise and comparative reasoning
is how to support real-time or near real-time system response over
large knowledge graphs.

3 KOMPARE BASICS

In this section, we introduce three basic functions in our KompaRe
system, including f1, f2 and f3 in Table 1. These three functions,

https://github.com/lihuiliullh/KompaRe


Table 1: Summary of major functions in our system.

Name Input Output Key techniques

f1 A single query node A node-specific knowledge segment Predicate entropy
f2 A single query edge An edge-specific knowledge segment Predicate-predicate similarity
f3 A query graph A subgraph-specific knowledge segment Semantic subgraph matching (Edge-Table)

f4 Two or more query edges Commonality and inconsistency Pairwise comparative reasoning (influence function,
overlapping rate, transferred information)

f5 A query graph Commonality and inconsistency Collective comparative reasoning (influence function,
overlapping rate, transferred information)

all of which belong to point-wise reasoning methods, form the basis
of the comparative reasoning that will be introduced in the next
section. Generally speaking, given a clue (e.g., a node, a triple or a
query graph) from the user, we aim to extract a knowledge segment
from the knowledge graph, which is formally defined as follows.

Definition 1. Knowledge Segment (KS for short) is a connec-
tion subgraph of the knowledge graph that describes the semantic
context of a piece of given clue (i.e., a node, a triple or a query graph).

When the given clue is a node or an edge/triple, there exist rich
algorithms to extract the corresponding knowledge segment3 on
weight graphs (e.g., a social network). To name a few, PageRank-
Nibble [1] is an efficient local graph partition algorithm for extract-
ing a dense cluster w.r.t. a seed node; K-simple shortest paths based
method [10] or connection subgraph [7], [15] can be used to extract
a concise subgraph from the source node of the querying edge to
its target node. However, these methods do not directly apply to
knowledge graphs because the edges (i.e., predicates) of a knowl-
edge graph have specific semantic meanings (e.g., types, relations).
To address this issue, we seek to convert the knowledge graph to
a weighted graph by designing (1) a predicate entropy measure
for node-specific knowledge segment extraction (Subsection 3.1),
and (2) a predicate-predicate similarity measure for edge-specific
knowledge segment extraction (Subsection 3.2), respectively.

When the given clue itself is a subgraph (Subsection 3.3), we
propose to extract a graph. We would like to point out that se-
mantic matching subgraph extraction is similar to but bears subtle
difference from the traditional subgraph matching problem [21].
In subgraph matching, it aims to find a matching edge or path for
each pair of matching nodes if they are required to be connected by
the query graph; whereas in semantic subgraph matching, we aim
to find a small connection subgraph (i.e., an edge-specific knowl-
edge segment) for each pair of matching nodes that are required
to be connected according to the query subgraph. In other words,
a subgraph-specific knowledge segment consists of multiple inter-
linked edge-specific knowledge segments (i.e., one edge-specific
knowledge segment for each edge of the input query subgraph). We
envision that the subgraph-specific knowledge segment provides
richer semantics, including both the semantics for each edge of
the query graph and the semantics for the relationship between
different edges of the input query graph. An example of semantic
matching subgraph is given in the third column of Figure 3.

3.1 Node-specific Knowledge Segment

PageRank-Nibble [1] is a local graph partitioning algorithm to
find a dense cluster near a seed node (i.e., the query node) on a

3It is worth pointing out that the extracted knowledge segment itself provides a
powerful building block for several existing knowledge graph reasoning tasks, e.g.
multi-hop method [11], minimum cost maximum flow method [24], etc.

weighted graph. It calculates the approximate PageRank vector
with running time independent of the graph size. By sweeping over
the PageRank vector, it finds a cut with a small conductance to
obtain the local partition. In order to apply PageRank-Nibble to
find node-specific knowledge segment, we propose to convert the
knowledge graph into a weighted graph by predicate entropy.

To be specific, we treat each predicate in the knowledge graph
as a random variable. The entropy of the predicates offers a natu-
ral way to measure its uncertainty and thus can be used to quan-
tify the importance of the corresponding predicate. For example,
some predicates have a high degree of uncertainty, e.g., livesIn,
isLocatedIn, hasNeighbor, actedIn. This is because, in knowl-
edge graph, different persons usually have different numbers of
neighbors, and different actors may act in different movies. A pred-
icate with high uncertainty indicates that it is quite common which
offers little specific semantics of the related entity, and thus it should
have low importance. On the other hand, some predicates have a
low degree of uncertainty, e.g., isPresident, isMarriedTo. This
is because only one person can be the president of a given country
at a time, and for most of persons, they marry once in life. Such a
predicate often provides very specific semantics about the corre-
sponding entity and thus it should have high importance. Based on
this observation, we propose to use predicate entropy to measure
the predicate importance as follows.

We treat each entity and all the predicates surrounding it as the
outcome of an experiment. In this way, we could obtain different
distributions for different predicates. Let i denote a predicate in
the knowledge graph, and D denote the maximal out-degree of
a node. For a given node, assume it contains d out links whose
label is i , we have 0 ≤ d ≤ D. Let Vd

i denote the node set which
containsd out links with label i , E denote the entropy, and Pdi denote
the probability of a node having d out links with label/predicate
i . The entropy of a given predicate i can be computed as E(i) =∑D
d=1 −P

d
i log(P

d
i ), where P

d
i =

|Vd
i |∑D

d=1 |V
d
i |

. Finally, we compute the

importance of a predicate i asw(i) = 2σ ( 1
E(i) ) − 1, where σ () is the

sigmoid function. We give an example in Appendix.

3.2 Edge-specific Knowledge Segment

Edge-specific knowledge segment extraction aims at finding a
knowledge segment to best characterize the semantic context of
the given edge (i.e., a triple). Several connection subgraph extrac-
tion methods exist for a weighted graph, e.g., [30], [15], [10]. We
propose to use a TF-IDF based method4 to measure the similarity
between different predicates, and transfer the knowledge graph
into a weighted graph whose edge weight represents the similarity

4The TF-IDF based method was also used in [24] for computational fact checking.
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between the edge predicate and query predicate. Then, we find
k-simple shortest paths [15] from the subject to the object of the
given query edge as its knowledge segment.

The key idea behind predicate similarity is to treat each triple in
the knowledge graph and its adjacent neighboring triples as a docu-
ment, and use a TF-IDF like weighting strategy to calculate the pred-
icate similarity. Consider a triple et = <s , receiveDegreeFrom,o> in
the knowledge graph whose predicate is i = receiveDegreeFrom.
In the neighborhood of et , there is a high probability that triples
like <s, major, o> and <s, graduateFrom, o> also exist (adjacent
to et ). The predicates of these triples should have high similarity
with each other. On the other hand, triples like <s, livesIn, o>, <s,
hasNeighbor, o> may also occur in the adjacent neighborhood of
triple et . This is because these predicates are very common in the
knowledge graph, and occur almost everywhere. These predicates
are like the stop words such as “the”, “a”, “an” in a document. There-
fore, if we treat each predicate and its neighborhood as a document,
we could use a TF-IDF like weighting strategy to find highly similar
predicates and in the meanwhile penalize common predicates like
livesIn, hasNeighbor.

To be specific, we use the knowledge graph to build a co-occurrence
matrix of predicates, and calculate their similarity by a TF-IDF
like weighting strategy as follows. Let i, j denote two different
predicates. We define the TF between two predicates as TF(i, j) =
log(1 +C(i, j)w(j)), where C(i, j) is the co-occurrence of predicate
i and j. The IDF is defined as IDF(j) = log |M |

| {i :C(i , j)>0} | , where
M is the number of predicates in the knowledge graph. Then,
we build a TF-IDF weighted co-occurrence matrix U as U (i, j) =
TF(i, j) × IDF (j). Finally, the similarity of two predicates is defined
as Sim(i, j) = Cosine(Ui ,Uj ), whereUi andUj are the ith row and
jth row ofU , respectively. We give an example in Appendix.

3.3 Subgraph-specific Knowledge Segment

Given an attributed query graph Q={VQ , EQ , LQ }, the traditional
subgraph matching aims to find an edge or a path for each ei ∈ EQ .
On the contrary, subgraph-specific knowledge segment extraction
aims to find an edge-specific knowledge segment for each edge
ei ∈ EQ . See Figure 3 for comparison.

To our best knowledge, there is no existing method for subgraph-
specific knowledge segment extraction. We generalize a recent
indexing-based subgraph matching algorithm called GFinder [21]
in the following two aspects. First, we use the Core-Forest decom-
position [9] in conjunction with root selection to minimize the

Table 2: Notations and definition

Symbols Definition

Q={VQ , EQ , LQ } an attributed query graph
G={VG , EG , LG } a knowledge graph

KSi knowledge segment i
Ai adjacency matrix of KSi
Ni attribute matrix of KSi , the j th row

denotes the attribute vector of node j in KSi
A× kronecker product of A1 and A2
N l diagonal matrix of the l th node attribute
N× combined node attribute matrix
S i , j single entry matrix S i , j (i , j) = 1 and zeros elsewhere

query graph search diameter. Second, we design a new data struc-
ture called Edge-Table to index the knowledge segment between
each pair of matching nodes to reduce memory cost. For each edge
ei ∈ EQ , there is a corresponding Edge-Table to store the informa-
tion of its corresponding knowledge segment, e.g., triples in the
knowledge segments, the k-simple shortest paths and their costs.
In order to find the edge-specific knowledge segments for each
ei ∈ EQ , we again use the k-simple shortest path method to extract
the paths with the lowest cost. The cost of a path is equal to the sum
of the reciprocal of the predicate-predicate similarity of all edges
in the path. Finally, all the edge-specific knowledge segments will
be merged together to obtain the graph (i.e., the subgraph-specific
knowledge segment).

4 KOMPARE COMPARATIVE REASONING

In this section, we introduce the technical details of comparative
reasoning in KompaRe. We first introduce the pairwise reasoning
(f4 in Table 1) for two pieces of clues (e.g., two edges/triples), and
then present the collective comparative reasoning (f5 in Table 1).
The main idea behind these two functions is that we use a knowl-
edge segment to express the semantic meaning of each query triple,
and use influence function to discover a set of important elements
in the knowledge segments. Then, these important elements can
be used to check the inconsistency. Table 2 summarizes the main
notation used in this section.

4.1 Pairwise Comparative Reasoning

Pairwise comparative reasoning aims to infer the commonality
and/or inconsistency with respect to a pair of clues according to
their knowledge segments. Here, we assume that the two given
clues are two edges/triples:EQ1 =< s1, p1, o1 > andE

Q
2 =< s2, p2, o2 >

where s1, o1, s2, o2 ∈ VQ and p1, p2 ∈ EQ . We denote their cor-
responding knowledge segments as KS1 for E

Q
1 and KS2 for E

Q
2 ,

respectively. The commonality and inconsistency between these
two knowledge segments are defined as follows.

Definition 2. Commonality. Given two triples (EQ1 and E
Q
2 )

and their knowledge segments (KS1 and KS2), the commonality of
these two triples refers to the shared nodes and edges between E

Q
1

and EQ2 , as well as the shared nodes and edges between KS1 and KS2:
((VKS1 ∩VKS2 ) ∪ (VQ1 ∩VQ2 ), (EKS1 ∩ EKS2 ) ∪ (EQ1 ∩ EQ2 )).

Definition 3. Inconsistency. Given two knowledge segments
KS1 and KS2, the inconsistency between these two knowledge seg-
ments refers to any element (node, node attribute or edge) in KS1 and
KS2 that contradicts with each other.

In order to find out if these two given edges/triples are incon-
sistent, we first need to determine if they refer to the same/similar



thing/fact. Given a pair of clues < s1, p1, o1 > and < s2, p2, o2 >,
we divide it into the following six cases, including

C1. s1 , s2, s1 , o2, o1 , s2, o1 , o2. For this case, these
two clues apparently refer to different things, e.g., <Alan Turing,
wasBornIn, United Kingdom> and <Google, isLocatedIn, USA>.
C2. s1 = s2 and o1 = o2. If p1 = p2, these two clues are the same.
If p1 and p2 are different or irrelevant, e.g., p1 = wasBornIn, p2 =
hasWebsite, these two clues refer to different things. However, if
p1 contradicts p2, they are inconsistent with each other.
C3. s1 = s2 but p1 , p2 and o1 , o2, e.g., <Alan Turing,
wasBornIn, Maida Vale>, <Alan Turing, livesIn, United Kingdom>.
C4. s1 = s2, p1 = p2, but o1 , o2, e.g., <Alan Turing, wasBornIn,
Maida Vale>, <Alan Turing, wasBornIn, United Kingdom>.
C5. o1 = o2, but s1 , s2. For this case, no matter what p1 and p2
are, these two clues refer to different things.
C6. o1 = s2. For this case, no matter what p1 and p2 are, they
refer to different things. For example, <Alan Turing, wasBornIn,
United Kingdom>, <United Kingdom, dealsWith, USA>.

Among these six cases, we can see that the clue pair in C1, C5
and C6 refer to different things. Therefore, there is no need to
check the inconsistency between them. For C2, we only need to
check the semantic meaning of their predicates, i.e., whether p1
contradicts p2. For example, p1 = isFather and p2 = isSon, they
are inconsistent with each other. Otherwise, there is no inconsis-
tency between them. We mainly focus on C3 and C4 where the
two clues may be inconsistent with each other even if each of
them is true. For example, either <Barack Obama, graduatedFrom,
Harvard University> or <Barack Obama, majorIn , Political
Science> could be true. But putting them together, they cannot be
both true, since Barack Obamamajored in law instead of Political
Science when he studied at Harvard University. In other words,
they are mutually exclusive with each other and thus are incon-
sistent. However, queries like <Alan Turing, wasBornIn, Maida
Vale> and <Alan Turing, wasBornIn, United Kingdom> are both
true, because Maida Vale belongs to United Kingdom. Alterna-
tively, we can say that United Kingdom contains Maida Vale.
Another example is <Alan Turing, wasBornIn, Maida Vale> and
<Alan Turing, graduatedFrom, Princeton University>, both
of which are true. Although they have the same subject, they refer
to two different things. We summarize that if (1) the subjects of
two clues are the same, and (2) their predicates are similar with
each other or the same, they refer to the same thing. Furthermore,
if their objects are two uncorrelated entities, it is highly likely that
these two clues are inconsistent with each other.

Based on the above observations, we take the following three
steps for pairwise comparative reasoning. First, given a pair of clues,
we decide which of six cases it belongs to, by checking the subjects,
predicates and objects of these two clues. Second, if this pair of
clues belongs to C3 or C4, we need to decide whether they refer to
the same thing or two different things. To this end, we first find a
set of key elements (nodes or edges or node attributes) in these two
knowledge segments. If most of these key elements belong to the
commonality of these two knowledge segments, it is highly likely
that they refer to the same thing. Otherwise, these two clues refer
to different things. Third, if they refer to the same thing, we further
decide whether they conflict with each other. Here, the key idea is

as follows. We build two new query triples <o1, isTypeOf, o2> and
<o2, isTypeOf, o1>. If one of them is true, the original two triples
are consistent with each other. Otherwise, they are inconsistent.

In order to find the key elements, we propose to use the influence
function w.r.t. the knowledge segment similarity [38]. The basic
idea is that if we perturb a key element (e.g., change the attribute of
a node or remove a node/edge), it would have a significant impact
on the overall similarity between these two knowledge segments.
Let KS1 and KS2 be the two knowledge segments. We can treat
the knowledge segment as an attributed graph, where different
entities have different attributes. We use random walk graph kernel
with node attribute to measure the similarity between these two
knowledge segments [38].

Sim(KS1,KS2) = q
′
×(I − cN×A×)

−1N×p× (1)

where q′× and p× are the stopping probability distribution and
the initial probability distribution of random walks on the product
matrix, respectively.N× is the combined node attributematrix of the
two knowledge segments N× =

∑d
j=1 N

j
1 ⊗N

j
2 where N

j
i (i ∈ {1, 2})

is the diagonal matrix of the jth column of attribute matrix Ni . A×

is the Kronecker product of the adjacency matrices of knowledge
segments A1 and A2. 0 < c < 1 is a parameter.

We propose to use the influence function of Sim(KS1,KS2) w.r.t.
knowledge segment elements ∂Sim(KS1,KS2)

∂e , where e represents
an element of the knowledge segment KS1 or KS2. The element
with a high absolute influence function value is treated as a key ele-
ment, and it can be a node, an edge, or a node attribute. Specifically,
we consider three kinds of influence functions w.r.t. the elements in
KS1, including edge influence, node influence and node attribute in-
fluence, which can be computed according to the following lemma.
Note that the influence function w.r.t. elements in KS2 can be com-
puted in a similar way, and thus is omitted for space.

Lemma 1. (Knowledge Segment Similarity Influence Function [38].)
Given Sim(KS1,KS2) in Eq. (1). LetQ = (I − cN×A×)

−1 and S j ,i is a
single entry matrix defined in Table 2. We have that
(1.) The influence of an edge A1(i, j) in KS1 can be calculated as
I (A1(i, j)) =

∂Sim(KS1,KS2)
∂A1(i , j)

= cq′×QN×[(S
i , j + S j ,i ) ⊗ A2]QN×p×.

(2.) The influence of a node i in KS1 can be calculated as I (N1(i)) =
∂Sim(KS1,KS2)

∂N1(i)
= cq′×QN×[

∑
j |A1(i , j)=1(S

i , j + S j ,i ) ⊗ A2]QN×p×.
(3.) The influence of a node attribute j of node i in KS1 can be
calculated as I (N j

1 (i, i)) =
∂Sim(KS1,KS2)

∂N j
1 (i ,i)

= q′×Q[S
i ,i ⊗ N

j
2 ](I +

cA×QN×)p×.

Note that according to Lemma 1, if an element only belongs to
KS1 or KS2, its influence function value will be 0. In order to avoid
this, we introduce a fully connected background graph to KS1 and
KS2, respectively. This background graph contains all the nodes in
KS1 and KS2, and it is disconnected with KS1 and KS2. If we treat
KS1 and KS2 as two documents, we can think of this background
graph as the background word distribution in a language model.

For a given knowledge segment, we flag the top 50% of the
elements (e.g., node attribute, node and edge) with the highest
absolute influence function values as key elements. We would like
to check whether these key elements belong to the commonality of
these two knowledge segments. If most of them (e.g., 60% or more)
belong to the commonality of these two knowledge segments, we



say the two query clues describe the same thing. Otherwise, they
refer to different things and thus we do not need to check the
inconsistency between them.

If we determine that the query clues refer to the same thing, the
next step is to decide whether they are inconsistent with each other.
That is, given query clues <s1, p1, o1> and <s1, p2, o2>, we need to
decide whether o1 belongs to o2 or o2 belongs to o1. To this end, we
build two new queries <o1, isTypeOf, o2> and <o2, isTypeOf, o1>.
Then, we extract the knowledge segments for these two queries,
and check whether these two segments are true. If one of them
is true, we say the original clues are consistent with each other,
otherwise they are inconsistent. After we extract the knowledge
segments for <o1, isTypeOf, o2> and <o2, isTypeOf, o1>, we treat
each knowledge segment as a directed graph, and calculate how
much information can be transferred from the subject to the object.
We define the transferred information amount as:

infTrans(o1, o2) = max
1≤j≤k

pathValue(j) (2)

where pathValue(j) is defined as the multiplication of the weights
in the path. For an edge, its weight is the predicate-predicate similar-
ity Sim(isTypeOf, ei ). Ifmax{infTrans(o1, o2), infTrans(o2, o1)} is
larger than a thresholdT , then we say o1 belongs to o2 or o2 belongs
to o1. We set T = 0.700 in our experiment.

4.2 Collective Comparative Reasoning

Different from pairwise comparative reasoning, collective compar-
ative reasoning aims to find the commonality and/or inconsistency
inside a query graph which consists of a set of inter-connected
edges/triples. We first give the corresponding definition below.

Definition 4. Collective Commonality. For each edge EQi in a
query graph Q , let KSi be its knowledge segment. The collective com-
monality between any triple pair in the query graph is the intersection
of their knowledge segments.

Definition 5. Collective Inconsistency. For each edge EQi in
a query graph Q , let KSi be its knowledge segment. The collective
inconsistency refers to any elements (node or edge or node attribute)
in these knowledge segments that contradict with each other.

To check the inconsistency, one naive method is using the pair-
wise comparative reasoning method to check the inconsistency for
each pair of edges in the query graph. However, this method is
neither computationally efficient nor sufficient. For the former, if
two clues (e.g., two claims from a news article) are weakly or not
related with each other on the query graph, we might not need
to check the inconsistency between them at all. For the latter, in
some subtle situation, the semantic inconsistencies could only be
identified when we collectively reason over multiple (more than
two) knowledge segments. For example, given the following three
claims, including (1) Obama is refused by Air Force One; (2) Obama
is the president of the US; (3) The president of US is in front of a
helicopter. Only if we reason these three claims collectively, can we
identify the semantic inconsistency among them.

Based on the above observation, we propose the followingmethod
to detect the collective inconsistency.

First, we find a set of key elements inside the semantic match-
ing subgraph. Different from pair-wise comparative reasoning, the
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Figure 4: Collective comparative reasoning workflow.

importance/influence of an element for collective comparative rea-
soning is calculated by the entire semantic matching subgraph.
More specifically, we first transform the query graph and its seman-
tic matching subgraph (i.e., subgraph-specific knowledge segment)
into two line graphs, which are defined as follows.

Definition 6. Line Graph [24]. For an arbitrary graph G =
(V , E), the line graph L(G) = (V ′, E ′) ofG has the following properties:
(1) the node set of L(G) is the edge set ofG (V ′ = E); (2) two nodesV ′

i ,
V ′
j in L(G) are adjacent if and only if the corresponding edges ei , ej

of G are incident on the same node in G.
Figure 4 gives an example of the line graph. For the line graph

L(Q), the edge weight is the predicate-predicate similarity of the
two nodes it connects. For the line graph L(KS), the edge weight
is the knowledge segment similarity by Eq. (1) of the two nodes it
connects. The rationality of building these two line graphs is that
if the semantic matching subgraph is a good representation of the
original query graph, the edge-edge similarity in L(Q) would be
similar to the knowledge segment similarity in L(KS).

To measure the importance of an element, we propose to use the
influence function w.r.t. the distance between L(Q) and L(KS). We
assume that a key element, if perturbed, would have a great effect
on the distance Loss = | |H1 − H2 | |2F , where H1 is the weighted
adjacency matrix of L(Q), and H2 is the weighted adjacency ma-
trix of L(KS). We use the influence function ∂Loss(H1,H2)

∂e , where
e represents an element of the knowledge segment graph and it
could be a node, an edge, or a node attribute. Lemma 2 provides
the details on how to compute such influence functions. The proof
of Lemma 2 is shown in Appendix.

Lemma 2. Given the loss function Loss = | |H1 − H2 | |2F . Let n,
k denote two different nodes in L(Q), and KSn , KSk denote their
corresponding knowledge segments. Let hek ,n denote the weight of
edge between node k and n, and hck ,n denote the weight of edge
between KSk and KSn . We have
(1.) The influence of an edgeAn (i, j) in knowledge segmentKSn can be
calculated as I (An (i, j)) =

∑
k ∈N (n) −2(hek ,n−hck ,n )

∂sim(KSn ,KSk )
∂An (i , j)

.
(2.) The influence of a node i in knowledge segment KSn can be
calculated as I (Nn (i)) =

∑
k ∈N (n) −2(hek ,n − hck ,n )

∂sim(KSn ,KSk )
∂Nn (i)

.
(3.) The influence of a node attribute j in knowledge segment KSn can
be calculated as I (N j

n (i, i)) =
∑
k ∈N (n) −2(hek ,n−hck ,n )

∂sim(KSn ,KSk )
∂N j

n (i ,i)
.

Second, after we find all the key elements, we check the con-
sistency of the semantic matching subgraph according to these
key elements. The steps are as follows. For each pair of knowledge
segments of the semantic matching subgraph, if their key elements
overlapping rate is greater than a threshold (60%), we check the con-
sistency of this pair. Suppose the corresponding triples are <s1, p1,



Figure 5: Node-specific knowledge segment of Barack Obama.

o1> and <s2, p2, o2>, respectively. We check if <s1, isTypeOf, s2>
or <s2, isTypeOf, s1> is true. If both of them are false, we skip this
pair of clues because it does not belong to C3 or C4. Otherwise, we
check if <o1, isTypeOf, o2> or <o2, isTypeOf, o1> is true. If both of
them are false, we say this query graph has collective inconsistency.
When checking the truthfulness of triples (e.g., <s1, isTypeOf, s2>,
<s2, isTypeOf, s1>, <o1, isTypeOf, o2> and <o2, isTypeOf, o1>),
we use the same method (i.e., transferred information amount in
Eq. (2)) as in pairwise comparative reasoning.

5 EXPERIMENTAL RESULTS

In this section, we present the experimental evaluations. All the
experiments are designed to answer the following two questions:

• Q1. Effectiveness. How effective are the proposed reason-
ing methods, including both point-wise methods (KompaRe
basics) and comparative reasoning methods?

• Q2. Efficiency. How fast are the proposed methods?
Two data graphs are used in the experiments: Yago [28] 5 and

Covid-19 6. Yago [28] is a widely used knowledge graph which
contains 12,430,705 triples, 4,295,825 entities and 39 predicates.
The Covid-19 data graph contains three types of entities which
are Gene, Disease and Chemical. In our experiments, we use a
subset of the Covid-19 dataset which contains 55,434 core entities
and 5,527,628 triples. We compare our method to two existing al-
gorithms for fact checking (Knowledge Linker [5], short for KL,
and KGMiner [25]), one link prediction algorithm (Jaccard coef-
ficient [18]), and one algorithm for knowledge graph completion
(TransE [2]). For TransE [2], we set the embedding dimension to 64
and use a margin of one and a learning rate of 0.01 for 1,200 epochs.

All the experiments are conducted on a moderate desktop with
an Intel Core-i7 3.00GHz CPU and 64GB memory. The system was
deployed in November 17 2020. The source code will be released
upon publication of the paper. 7

5.1 KompaRe Basics

We evaluate the proposed predicate-predicate similarity. The top
similar predicates w.r.t. exports by our method include imports,
hasOfficialLanguage, dealsWith, all of which have a high simi-
larity with exports. They all provide specific semantic information
about exports. Likewise, the top similar predicates w.r.t. livesIn

5It is publicly available at https://www.mpi-inf.mpg.de/de/departments/databases-
and-information-systems/research/yago-naga/yago/downloads. We use the core
version.
6The dataset can be found at http://blender.cs.illinois.edu/covid19/.
7The developed methods have been integrated into a knowledge graph reasoning
system [20]. The video demonstration of the system can be found at https://github.c
om/lihuiliullh/KompaRe.

Table 3: Accuracy of pair-wise comparative reasoning.

Dataset
# of

queries
TransE Jaccard KL KGMiner Kompare

Family members positive 300 0.682 0.831 0.618 0.983 0.944
Family members negative 300 0.335 0.169 1.000 1.000 0.941
Graduated college positive 300 0.686 0.335 0.502 0.769 0.794

Graduated college negative 300 0.626 0.993 0.947 0.901 0.994

Live place positive 300 0.567 0.415 0.489 0.834 0.762
Live place negative 300 0.802 0.585 0.907 0.900 0.888
Birth place positive 300 0.590 0.435 0.537 0.698 0.800

Birth place negative 300 0.845 1.000 0.973 0.927 0.927
Work place positive 300 0.751 0.319 0.445 0.698 0.720
Work place negative 300 0.624 0.994 0.942 0.927 0.995

mean ± std - 0.651 ± 0.424 0.608 ± 0.302 0.736 ± 0.221 0.864 ± 0.105 0.877 ± 0.095

include wasBornIn, isCitizenOf, diedIn, all of which are closely
related to livesIn. These results show that the proposed TF-IDF
based method can effectively measure the similarity between dif-
ferent predicates.

Figure 5 shows the node-specific knowledge segment found by
our method w.r.t. the query node Barack Obama. We can see that
the extracted knowledge segment provides critical semantics of the
query node Barack Obama. For example, Barack Obama graduated
from Harvard Law School and Columbia University; his wife is
Michelle Obama; he is affiliated to the democratic party; he was the
senator of united states and he was born in Honolulu. The result
shows that node-specific knowledge segment is able to capture
semantic context of the query node/entity.
5.2 Pair-wise Comparative Reasoning

Here, we evaluate the effectiveness of the proposed pair-wise com-
parative reasoning. Ten query sets are used in the experiments. For
each positive query set, it contains a set of queries which describe
the true claim, while for each negative query set, it contains a set
of queries which describe the false claim. For example, in query
set "Birth Place", <Alan Turing, wasBornIn, Maida Vale> and
<Alan Turing, wasBornIn, United Kingdom> is a positive query
pair, while <Alan Turing, wasBornIn, Maida Vale> and <Alan
Turing, wasBornIn, Canada> is an negative query pair. The pos-
itive queries are generated by sampling some true claims in the
knowledge graph. The negative queries are generated by substitut-
ing one subject of the positive queries. The accuracy is defined as
N
M where N is the number of queries correctly classified by pair-
wise comparative reasoning andM is the total number of queries.
When checking the consistency of a query pair < s1, p1, o1 > and
< s2, p2, o2 >, because none of the baseline methods is designed
for pair-wise comparative reasoning, we use them to check each
triple in the pair, if any triple is classified as false, this query pair
is treated as false. Otherwise, we further check the truthness of
< o1, isTypeOf, o2 > and < o2, isTypeOf, o1 >, if one of them is
classified as consistency, this query pair is treated as consistency.
Table 3 gives the detailed results. As we can see, KompaRe and
KGMiner [25] have the highest accuracy most of the time. But Kom-
paRe has the highest average accuracy and the lowest variance
compared with other methods.

5.3 Collective Comparative Reasoning

We test collective comparative reasoning method on Yago dataset,
using 6 query sets . Different from the queries of pair-wise compar-
ative reasoning which only contain two edges, each query of collec-
tive comparative reasoning contains 3 edges. For example, in query

https://www.mpi-inf.mpg.de/de/departments/databases-and-information-systems/research/yago-naga/yago/downloads
https://www.mpi-inf.mpg.de/de/departments/databases-and-information-systems/research/yago-naga/yago/downloads
http://blender.cs.illinois.edu/covid19/
https://github.com/lihuiliullh/KompaRe
https://github.com/lihuiliullh/KompaRe


Table 4: Accuracy of collective comparative reasoning.

Dataset
# of

queries
TransE Jaccard KL KGMiner Kompare

Birth place positive 300 0.542 0.418 0.389 0.678 0.795

Birth place negative 300 0.465 0.996 0.968 0.970 0.829
Live place positive 300 0.448 0.451 0.465 0.635 0.989

Live place negative 300 0.558 1.000 0.860 0.924 0.743
Graduated college positive 300 0.488 0.269 0.335 0.585 0.963

Graduated college negative 300 0.545 0.996 0.928 0.907 0.829
mean ± std - 0.508 ± 0.045 0.688 ± 0.313 0.658 ± 0.265 0.783 ± 0.155 0.858 ± 0.089

Table 5: Accuracy of collective comparative reasoning for

Covid-19.

Dataset # of queries TransE Jaccard KL KGMiner Kompare
Positive 36 0.667 0.611 1.000 0.694 1.000

Negative 36 0.528 0.361 0.722 0.553 0.863

Average accuracy - 0.598 ± 0.071 0.486 ± 0.126 0.861 ± 0.138 0.623 ± 0.071 0.932 ± 0.063

set "live Place", <Barack Obama, livesIn, Washington,D.C.>, <Barack
Obama, is, United States Senate Barack Obama> and <United
States Senate Barack Obama, livesIn, United States> is a pos-
itive query triad, while <Barack Obama, livesIn, Washington,D.C.>,
<Barack Obama, is, United States Senate Barack Obama> and
<United States Senate Barack Obama, livesIn, Canada> is an
negative query triad. The definition of the accuracy is the same as
the previous section. Following the setting of pair-wise reasoning,
when checking the consistency of the query graph < s1, p1, o1 >,
< s1, is, s2 > and < s2, p2, o2 >, we use baseline methods to check
the truthness of this query triad, if any edge is classified as false,
this query triad is treated as false. Otherwise, we further check the
truthness of < o1, isTypeOf, o2 > and < o2, isTypeOf, o1 >, if one
of them is classified as true , this query pair is treated as consistency.
Table 4 gives the detailed results. As we can see, Jaccard [18] prefers
to classify all queries as inconsistency and has the largest variance.
TransE [2] has the lowest variance, but its average accuracy is very
low. KompaRe has the highest accuracy most of the time. It also
has the highest average accuracy, and the second lowest variance.

We further provide experimental results on Covid-19 dataset.
We use queries which contain connections between drugs and
genes/chemicals related to covid-19.8 Among all these queries, we
use queries which contain less than 8 nodes, and treat them as
positive queries. For each of the positive queries, we randomly
select one node inside the query and substitute it with a randomly
selected entity in the data graph, and treat the new query as the
negative query. For all the baseline methods, we use them to check
all the edges inside the query, if any edge is classified as false,
the whole query is treated as false. Table 5 shows the accuracy
of different methods. As we can see, KompaRe has the highest
accuracy on both the positive and negative datasets, it also has the
highest average accuracy and the lowest variance compared with
other baseline methods.

5.4 KompaRe Efficiency

The runtime of knowledge segment extraction depends on the size
of the underlying knowledge graphs. Among the three types of
knowledge segments (f1, f2 and f3 in Table 1), subgraph-specific
knowledge segment (f3) is most time-consuming. Figure 6(a) shows
that its runtime scales sub-linearly w.r.t. the number of nodes in the

8The query graphs can be found at http://blender.cs.illinois.edu/covid19/visualization.
html.

(a) Subgraph-specific KS extraction (b) Comparative reasoning

Figure 6: Runtime of KompaRe

knowledge graph. Different lines show the runtime w.r.t. different
query graph size. Figure 6(b) shows the runtime of comparative
reasoning, where ‘Pair-wise’ refers to the pairwise comparative
reasoning, and the remaining bars are for collective comparative
reasoning with 3, 4 and 5 edges in the query graphs respectively.
Note that the runtime of comparative reasoning only depends on the
size of the the corresponding knowledge segments which typically
have a few or a few tens of nodes. In other words, the runtime of
comparative reasoning is independent of the knowledge graph size.

6 RELATEDWORK

A - Knowledge Graph Search. Many efforts have been made for
searching and browsing large knowledge graphs. Wang et al. [32]
proposed a Bayesian probability model combined with random
walks to find the most similar concepts for a given query entity.
Wu et al. [27] discovered that the background knowledge graph
can be described by many small-sized patterns. They developed
an effective mining algorithm to summarize the large knowledge
graph according to small-sized patterns. Yang et al. [35] found
that due to the lack of insight about the background knowledge
graph, it is often hard for a user to precisely formulate a query.
They developed a user-friendly knowledge graph search engine to
support query formation and transformation. Jayaram et al. [13]
proposed a knowledge graph query system called GQBE. Different
from other graph query systems, GQBE focuses on entity tuple
query which consists of a list of entity tuples. Zhang et al. [37]
developed a comprehensive multi-modality knowledge extraction
and hypothesis generation system which supports three types of
queries, including (1) class-based queries (2) zero-hop queries and
(3) graph-queries.
B - Knowledge Graph Reasoning. Generally speaking, there
are two types of knowledge graph reasoning methods, including
(1) embedding based approaches and (2) multi-hop approaches.
For the former, the main idea is to learn a low dimensional vec-
tor for each entity and predicate in the embedding space, and
use these embedding vectors as the input of the reasoning tasks
(e.g., [2], [29], [16], [31]). For the latter, the main idea is to learn
missing rules from a set of relational paths sampled from the knowl-
edge graph (e.g., [17], [34], [23]). Many effective reasoning methods
have been developed for predicting the missing relation (i.e., link
prediction) or the missing entity (i.e., entity prediction). In link pre-
diction, given the ‘subject’ and the ‘object’ of a triple, it predicts the
existence and/or the type of relation. For example, TransE [2] learns
the low dimensional embedding of both entities and predicates in
the knowledge graph; TransR [19] learns the embedding of entities
and predicates in two separate spaces. The learned embedding (ei-
ther by TransE or TransR) can be used for both link predication and

http://blender.cs.illinois.edu/covid19/visualization.html
http://blender.cs.illinois.edu/covid19/visualization.html


entity predication. In entity prediction, given the ‘subject’ and the
‘predicate’ of a triple, it predicts the missing ‘object’. For example,
GQEs [16] embeds the graph nodes in a low dimensional space, and
treats the logical operators as learned geometric operations.

In recent years, knowledge graph reasoning has demonstrated
strong potential for computational fact checking. Given a claim in
the form of a triple of the knowledge graph, it reasons whether
the claim is authentic or falsified. For example, in [24], the authors
focused on checking the truthfulness of a given triple/claim, by
first transforming the knowledge graph into a weighted directed
graph, and then extracting a so-called knowledge stream based on
maximum flow algorithm. It is worth mentioning that the extracted
knowledge stream can be viewed as an edge-specific knowledge
segment in KompaRe. In [26], an alternative method was devel-
oped to detect fake claims by learning the discriminative paths of
specific predicates. Different from [24], this is a supervised reason-
ing method since it requires different training datasets for different
predicates. If the predicate in the claim does not exist in the training
data, which is likely to be the case for detecting falsified claims in
emerging news, the algorithm becomes inapplicable. As mentioned
before, these methods belong to point-wise reasoning. Therefore,
they might fall short in detecting the semantic inconsistency be-
tween multiple claims which can be solved by knowledge graph
comparative reasoning.

7 CONCLUSIONS

In this paper, we present a prototype system (KompaRe) for knowl-
edge graph comparative reasoning. KompaRe aims to complement
and expand the existing point-wise reasoning over knowledge
graphs by inferring commonalities and inconsistencies of multiple
pieces of clues. The developed prototype system9 consists of three
major components, including its UI, online reasoning and offline
mining. At the heart of the proposed KompaRe are a suite of core
algorithms, including predicate entropy, predicate-predicate sim-
ilarity and semantic subgraph matching for knowledge segment
extraction; and influence function, commonality rate, transferred
information amount for both pairwise reasoning and collective rea-
soning. The experimental results demonstrate that the developed
KompaRe (1) can effectively detect semantic inconsistency, and (2)
scales near linearly with respect to the knowledge graph size.
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APPENDIX: REPRODUCIBILITY

Reproducibility. Two datasets are used in our experiments, in-
cluding Yago core version and Covid-19 knowledge graph. All
experiments are performed on a machine with an Intel Core-i7
3.00GHz CPU and 64GB memory. The details of datasets, machine
and parameters can be found in Section 5. All datasets are publicly
available. The source code will be released upon publication of
the paper. The video demonstration of the system can be found at
https://github.com/lihuiliullh/KompaRe.

A – Predicate Entropy and Similarity Examples

Here, we use Figure 1 to give two examples on how to calculate the
predicate entropy and predicate-predicate similarity. For the predi-
cate entropy, suppose we want to calculate the entropy for command.
Three entities (President, US Army and Air Force) have command
as their out links, and the numbers of out links of command are 2, 3
and 2, respectively. Therefore,V 2

i = {President, AirForce},V 3
i =

{USArmy} andV d
i = ∅ otherwise. Therefore, we have E(command) =

− 2
3 log(

2
3 ) −

1
3 log(

1
3 ) = 0.92 andw(command) = 0.43.

For the predicate-predicate similarity, suppose we want to cal-
culate the similarity between major and study. Both major and
study have only one adjacent neighboring predicate graduate.
This means that for any predicate i , graduate, U (major, i) =
U (study, i) = 0. Since E(graduate) = 0, we have w(graduate) =
2σ (∞)−1 = 1.We have TF(major, graduate) = TF(study, graduate)
= log(1+1×1) = 1, andU (major, graduate) = U (study, graduate) =
IDF (graduate) = log 8

4 = 1. If we compare the two vectors,Umajor

andUstudy, we find that they are the same. Therefore, we have that
Sim(major, study) = 1.
B – Proof of Lemma 2

Proof. We rewrite the loss function as
Loss = | |H1 − H2 | |

2
F =

∑
i , j

(hei , j − hci , j )
2

Take the derivative, together with Lemma 1, we have

I (An (i , j)) =
∑

k∈N (n)

−2(hek ,n − hck ,n )
∂sim(KSn , KSk )

∂An (i , j)

(Nn (i)) =
∑

k∈N (n)

−2(hek ,n − hck ,n )
∂sim(KSn , KSk )

∂Nn (i)

I (N l
n (i , i)) =

∑
k∈N (n)

−2(hek ,n − hck ,n )
∂sim(KSn , KSk )

∂N l
n (i , i)

(3)

which completes the proof. □

C – Predicate Entropy

The top-10 predicates with the highest predicate entropy in Yago
dataset are edited, isConnectedTo, actedIn, playsFor, dealsWith,
directed, hasNeighbor, isAffiliatedTo, wroteMusicFor and
exports. Predicates like actedIn, playFor, hasNeighbor have a
very high entropy. The reason is that these predicates not only occur
commonly in the Yago knowledge graph, but also have a high degree
of uncertainty. It is consistent with our hypothesis that these predi-
cates provide little semantic information about the entities around
them. On the contrary, The top-10 predicates with the lowest pred-
icate entropy in Yago dataset are diedIn, hasGender, hasCurrency,
wasBornIn, hasAcademicAdvisor, isPoliticianOf, isMarriedTo,
hasCaptal, hasWebsite, and isCitizenOf. Predicates like diedIn,

wasBornIn, isMarriedTo, isPoliticianOf have a very low en-
tropy. They provide specific and detailed background information
about the entities around them.
D – Predicate Similarity Results

Table 6 shows the predicate similarity between isTypeOf and other
predicates.

Table 6: Predicate similarity of isTypeOf with others

predicate sim predicate sim predicate sim predicate sim
isCitizenOf 0.840 isLeaderOf 0.955 isAffiliatedTo 0.808 isPoliticianOf 0.917
livesIn 0.972 owns 0.945 exports 0.706 dealsWith 0.697

hasCapital 0.786 command 0.216 happenedIn 0.767 participatedIn 0.869
worksAt 0.752 isLocatedIn 0.870

E – Pair-wise Comparative Reasoning Examples

Here, we give an example of the pair-wise comparative reasoning.
Consider a fake news which says “The white house will participate in
the operation mountain thrust, because the white house wants to pun-
ish the iraqi army." From this news, we can extract two query clues,
including <White House, participatedIn, Operation Mountain
Thrust> and <White House, punish, Iraqi Army>. Figure 7 shows
these two corresponding knowledge segments. Table 7 and Table 8
show the node attribute influence value, node influence value and
edge influence value of KS1 and KS2, respectively. We can see
from Table 7 that for KS1, the top-50% elements with the high-
est node attribute influence are Washington,D.C, United States
President, White House and United States. For KS2, the top-
50% elements with the highest node attribute influence are White
House, Washington,D.C, and United States. Because all the im-
port elements with the highest node attribute influence of KS2 also
belong to KS1, the key elements overlapping rate for node attribute
is 100%. For the top-50% elements with the highest node influence,
we obtain the same result. As for the top-50% edges of KS1 with the
highest influence, there is one edge (<United States, hasCapital,
Washington,D.C>) which also belongs to the top-50% edges ofKS2.
Therefore, the key elements overlapping rate of KS1 and KS2 is
1+1+ 1

3
3 = 7

9 > 60%. This means that these two clues refer to the
same thing.

We further check if there is any inconsistency between them.
To this end, we extract the knowledge segment for <Operation
Mountain Thrust, isTypeOf, Iraqi Army> and <Iraqi Army,
isTypeOf, Operation Mountain Thrust>. The right part of Fig-
ure 7 shows the knowledge segment for <Operation Mountain
Thrust, isTypeOf, Iraqi Army>. The proposed TF-IDF predicate-
predicate similarities between isTypeOf and other predicates are
shown in Table 6. Based on that, we have infTrans(Operation
Mountain Thrust, Iraqi Army) = infTrans(Iraqi Army, Operation
Mountain Thrust) = 0.505 < 0.700. This means that "Operation
Mountain Thrust" and "Iraqi Army" are two different things.
Therefore, we conclude that the two given clues are inconsistent.

F – Collective Comparative Reasoning Examples

Here, we evaluate the effectiveness of the proposed collective com-
parative reasoning. We test a query graph with three edges, in-
cluding <White House, punish, Iraqi Army>, <Washington,D.C,
means, White House> and <Washington,D.C, participatedIn,
Operation Mountain Thrust>. Figure 8 shows the query graph
and the corresponding semantic matching subgraph. As we can see,

https://github.com/lihuiliullh/KompaRe
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Table 7: Pairwise node attribute influence ranking

(a) Node attribute influence: KS1
Rank Predicate value
1 Washington, D.C 4.49 e−5

2 United States President 3.92 e−5

3 White House 3.90e−5

4 United States 3.87e−5

5 United States Army 1.96e−5

6 Afghanistan 1.95e−5

7 Operation Mountain Thrust 1.95e−5

(b) Node attribute influence: KS2

Rank Predicate value
1 Washington, D.C 4.51e−5

2 White House 3.90e−5

3 United States 3.87e−5

4 United States President 3.83e−5

5 Iraq 1.97e−5

6 Iraqi Army 1.86e−5

(c) Node influence: KS1
Rank Predicate value
1 Washington, D.C 1.54e−5

2 United States President 6.88 e−6

3 United States 6.18e−6

4 White House 5.37e−6

5 United States Army 3.06e−6

6 Operation Mountain Thrust 3.06 e−6

7 Afghanistan 3.06e−6

(d) Node influence: KS2

Rank Predicate value
1 Washington, D.C 1.47e−5

2 United States 6.19e−6

3 White House 5.37e−6

4 United States President 4.66e−6

5 Iraq 3.04e−6

6 Iraqi Army 1.50e−6

Table 8: Pairwise edge influence ranking

Edge influence of KS1
Rank Triple value
1 <United States President, livesIn, Washington, D.C> 4.28e−4

2 <United States, hasCapital, Washington, D.C> 4.28 e−4

3 <United States President, isLeaderOf, US Army> 3.67e−4

4 <United States, dealsWith, Afghanistan> 3.67 e−4

5 <White House, isLocatedIn, Washington, D.C> 3.59 e−4

6 <Afghanistan, participatedIn, Operation Mountain Thrust> 3.59 e−4

7 <US Army, participatedIn, Operation Mountain Thrust> 3.59e−4
Edge influence of KS2

Rank Triple value
1 <United States, hasCapital, Washington, D.C> 4.51 e−4

2 <United States, dealsWith, Iraq> 3.89 e−4

3 <White House, isLocatedIn, Washington, D.C> 3.83 e−4

4 <United States President, livesIn, Washington, D.C> 3.83 e−4

5 <United States President, politician, United States> 3.31e−4

6 <Iraqi Army, isLocatedIn, Iraq> 3.20e−4

if we use the pair-wise comparative reasoningmethod to check each
pair of them, all of them are true. However, if we use the collective
comparative reasoning method, we could detect the inconsistency
in the query graph as follows.

Table 9 and Table 10 show the node attribute influence, the
node influence, and the edge influence of these three knowledge
segments, respectively. If we check each pair of clues in the query
graph, we find that the key elements overlapping rate between KS1
and KS3 is more than 60%. This is because the overlapping rates
are 66.6% for node attribute influence, 100% for node influence and
66.6% for edge influence, which give the average overlapping rate
2
3+1+

2
3

3 = 7
9 > 60%.

Based on this, we future check <Washington,D.C, isTypeOf,
White House> or <White House, isTypeOf, Washington,D.C>.

Table 9: Collective node attribute influence ranking

(a) Node attribute influence

Node attribute influence: KS1
Rank Predicate value
1 Washington,D.C 2.93e−5

2 White House 2.71e−5

3 United States 1.59e−5

4 United States President 1.47e−5

5 Iraq 1.47e−5

6 Iraqi Army 1.36e−5
Node attribute influence: KS2

Rank Predicate value
1 Washington,D.C 2.29 e−4

2 White House 1.31 e−4
Node attribute influence: KS3

Rank Predicate value
1 Washington,D.C 2.08 e−4

2 United States President 1.10 e−4

3 United States 1.10e−4

4 United States Army 1.09e−4

5 Operation 1.09e−4
Mountain Thrust

6 Afghanistan 1.09 e−4

(b) Node influence

Node influence: KS1
Rank Predicate value
1 Washington,D.C 4.57e−6

3 United States 3.57e−6

4 United States President 2.35e−6

5 Iraq 2.26e−6

2 White House 2.17e−6

6 Iraqi Army 1.09e−6
Node influence: KS2

Rank Predicate value
1 Washington,D.C 7.68 e−6

2 White House 7.68 e−6
Node influence: KS3

Rank Predicate value
1 Washington,D.C 1.19 e−5

2 United States President 1.19 e−5

3 United States 1.19e−5

4 United States Army 1.18e−5

5 Operation 1.18e−5
Mountain Thrust

6 Afghanistan 1.18 e−5

Table 10: Collective edge influence ranking

Edge influence of KS1
Rank Triple value
1 <United States, hasCapital, Washington, D.C> 1.20 e−4
2 <United States President, isPoliticianOf, United States> 1.07 e−4
3 <United States President, livesIn, Washington, D.C> 1.05 e−4
4 <United States, dealsWith, Iraq> 9.94 e−5
5 <White House, isLocatedIn, Washington, D.C> 8.22 e−5
6 <Iraqi Army, isLocatedIn, Iraq> 6.47 e−5

Edge influence of KS2
Rank Triple value
1 <White House, isLocatedIn, Washington, D.C> 2.23 e−4

Edge influence of KS3
Rank Triple value
1 <United States President, livesIn, Washington, D.C> 4.99e−4
2 <United States, hasCapital, Washington, D.C> 4.99 e−4
3 <United States President, isLeaderOf, US Army> 4.99 e−4
4 <United States, dealsWith, Afghanistan> 4.99, e−4
6 <Afghanistan, participatedIn, Operation Mountain Thrust> 4.99 e−4
7 <US Army, participatedIn, Operation Mountain Thrust> 4.99e−4

Our TF-IDF based predicate-predicate similarity between "isTypeOf"
and "isLocatedIn" is 0.870. Thus, we have infTrans(Washington,D.C,
White House) = 0.870 > 0.700. This means that these two knowl-
edge segments have the same subject. Finally, we check <Operation
Mountain Thrust, isTypeOf, Iraqi Army> or <Iraqi Army, isTypeOf,
Operation Mountain Thrust>. According to the results in the
previous subsection, we have that Iraqi Army and Operation
Mountain Thrust are two different things. Therefore, we conclude
that this query graph is inconsistent.
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