jcl

NetTrans: Neural Cross-Network
Transformation

SiZhang Hanghang Tong Yinglong Xia Liang Xiong Jiejun Xu
7 o g P

X ILLINOIS



Online Social
Networks

Power Grid

ew Infrastructure
ET—— Networks
O _C
Q“ =
Transportation Network

Product Network




Cross-Network Node Associations

* To find node associations across different networks

-5~ 9  Cross-layer dependency
Network alignment Recommendation
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Traditional Methods
* For network alignment — graph matching based [1]
min |[B, — PAyPT||4 Linear Ay, By: adjacency matrices

transformation P: permutation matrix
- B 2 P=PRQP:K k duct
min ||V6C(BO) PV@C(AO)HZ X ronecker produc

* For recommendation and cross-layer dependency [2,3]

R: user-product matrix
: T 2 T
min ”R - U; Uz”,;"‘“ E‘Tr(Ui (D; — Ai)Ui) ‘ U;: low-rank matrices
i “ A;: adjacency matrices
Network-based regularization  D;: degree matrices

* Limitations: linear and/or consistency assumptions

[1] Umeyama, Shinji. "An eigendecomposition approach to weighted graph matching problems." IEEE transactions on pattern analysis
and machine intelligence 10.5 (1988): 695-703.

[2] Yao, Yuan, et al. "Dual-regularized one-class collaborative filtering." CIKM 2014. 3
[3] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." KDD 2016.




Embedding Based Methods

* Existing methods
— Network alignment [1,2]
* Aligned nodes are closed in the embedding space
— Cross-layer dependency [3]
 Embeddings of different networks interact linearly

* Limitation: space disparity issue o
Ideal case u
| om\‘e
Rotation around v
> O

[1] Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." ljcai. 2016.
[2] Chu, Xiaokai, et al. "Cross-network embedding for multi-network alignment." The World Wide Web Conference. 2019.
E [3] Li, Jundong, et al. "Multi-layered network embedding." SDM, 2018.




Cross-Net Node Assoc.: A New Angle

* A generic question:

Given two different networks, how can we transform

one network to another?

Source network G4 Cross-Network

Transformation

Male, 40 (age), Beijing Female, 25 (age), New York

Male, 35 (age), Seattle
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Male, Professor, China
@ Female, Student, USA

z::r USA
a-.)\ n v

9

Male, Engineer, China Female, Student, Korea

Target network G,




Prob. Def.: Cross-Net Transformation

* Given: (1) source and target networks G; = {V1, 40, Xo}, G2 =
{V,,By,Yo}; (2) observed cross-network node associations L

* Output: (1) cross-network transformation function g, s.t. g(G1) =

G»; (2) node association function g,,p4e
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An lllustrative Example
* Graph matching based network alignment
min ||By — PAoPT||5+||Yo — PX,ll%
|[vec(Byg) — ﬁ{/ec(AO)”z Minimize difference between

Minimize difference between Yo and PXy

vec(B,) ~ Pvec(4,)

— Transformation: g(vec(dy),Xo) = (Pvec(4y), PX,)
~ (vec(By),Y)

— Node associations: g,,,4. (U, v) = P(v,u)



Outline

* Motivations v’

* NetTrans Model
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* Experimental Results
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NetTrans — Model Overview

* Key idea #1: multi-resolution characteristic

— Simplify network transformation at coarse resolutions
— Assume same latent meanings, e.g., NBA (FB) vs. NBA (Ins)
— Auxiliary associations info, e.g., NBA -> users who like NBA




NetTrans — Model Overview (con’t)

Key idea #2: encoder-decoder architecture
— Encoder: to coarsen source network at different resolutions
— Decoder: to reconstruct target network at different resolutions

Y3 = MLP(X3)
A3 > B3
B3 = A3

Encoder =3 (4, X;) ’ ‘ k=1 (B3,Y3) Decoder
1=2 (43X;) k=2 (B3,Y3)
(4, X,) . _(BuYY)

[ ] k
— s e s m— —
(au3) .
> ~ =~
A4

.,
4
|
|
|

— - » skip connections




NetTrans — Encoder

* Goals:

— To learn node representations and structure at different

resolutions

— To learn node-to-supernode assignments
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NetTrans Encoder: Part #1

* Supernode selection
— Self-attention based pooling [1]

e« A;_{ = A;_{ + I and D,_; is the degree matrix of A;_4
— Select nodes I = top—rank(z;, n;) as supernodes

//o }Al_l(l, I)

“ Al R @Re-ind?
&V\e /l PT Al
A l

X -
= Gumbel P X W}

fimax glE=Ehy
Message softmax

passing
by Eq. 2

| | Top-k
| |selection

FI |self-attention

Max Aggregation

[1] Lee, Junhyun, Inyeop Lee, and Jaewoo Kang. "Self-attention graph pooling." arXiv preprint arXiv:1904.08082 (2019).
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NetTrans Encoder: Part #2

e Supernode representations
— Aggregation from nodes to supernodes
* 1-hop neighboring nodes by attention mechanism
» Distant nodes by P, X, W}
— Final supernode representations X; = Aggr(X;, P, X;W})

//\‘
. /@ }Al_‘ (Ln l@Re -ind?
|
— @65 \\9/// Al

P
A,
X -
T Gumbel P X W] o X,
- softmax . ! -
Message

passing
by Eq. 2

R Top-k
| |selection

LT TTTIET T 1 1

Max Aggregation

* Q: How to learn node-to-supernode assighment P;?
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NetTrans Encoder: Part #3

* Node-to-supernode assignment| | W@: -

exp ({log (Xl(u’. )W?XIT) + gufu] /Tj)

D, exp ([log (:)A(l(c. )W?XIT) - gcu] /T)

ceC ( u ) ) Max Aggregation

P,(u'.u) =

=
=3
[TTTTT T 1 14
>

— Gumbel softmax: approximation to discrete P;
— C(u): supernode candidates of node u

e 1-hop: C(6) = {1,5}

e 2-hop: C(10) = {5}

e Others: all supernodes, i.e., C(11) = {1,5}

[1] Jang, Eric, Shixiang Gu, and Ben Poole. "Categorical reparameterization with gumbel-softmax." arXiv preprint
E arXiv:1611.01144 (2016).




NetTrans Encoder: Part #4

* Supernode connections
1 ~
~A =5(A.(,D +A4))

— Auxiliary connections A; based on supernode representations

B X _
Top-k [ l Gumbel Plel/l;’l1
| |selection H Messagé softmax
__| passing
—c RES ] by Eq. 2

BEE self-attention

Max Aggregation




NetTrans — Decoder

* Goal: to reconstruct the target network

* Key idea: same latent meanings of supernodes

— Part #1: leverage G, by skip connections
— Part #2: calibrate part #1 from supernodes to nodes

* Message passing TN T
B, - 4, 3 3
- Pa rt #1 -> Msg #1 Encoder [=3 (43,X5) k=1 (B3Y;) Decoder
— Part #2 -> Msg #2 e VD>

(Bo.¥o)

G1 X% A B, Yo G,
— - » skip connections




NetTrans Decoder

* Key idea: to calibrate source representations & structure

. . Msg #1
* Node representation learning - - jm

— Msg #1: to transform node representations N

k 1 3
m,vl_)v = XL_k(Ul )Wk — —» Bipartite messages
VING [N, |

— Msg #2: to calibrate from supernodes to nodes of target network

mf, ., = Pp_ 1 (0. 0) © (Y1 (@', JWR)

Unipartite messages

— Aggregations: A;_; for Msg #1 and P;_;,,4 for Msg #2

 Structure — calibrate based on target node embedding

1
BL—k(U~ ZJ]) = E max{O. AL—k(U- 01) + O’t(YL_k(U. :)YL—k(Ulv :)T)}




NetTrans — Loss Functions

* Structure reconstruction

1

Fudi =g

Z [yv.vl log pv.v, + (1 = yp.v,)log(1 - Pv.vl)]

(v.0v7)€&
e Attribute reconstruction
1 -
Lattr = — [[Yo — MLP2(Yo)|I%
mo
 Observed cross-network node associations
— Network alignment: margin ranking loss

1 ) ~ . )
-£rank = Wl Z II]'&X{O. A - (gnode(u- v)— gnode(u~ Ul))}; gnode(ll-, U) = IP{(YIY({)J (ll. U)

(u,v,v1)e0

— Recommendation: Bayesian personalized ranking loss
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NetTrans — Variants & Generalizations

e Bi-directional cross-network transformation
— Learn reverse direction as well, i.e., target = source network

* Graph-to-subgraph transformation subgraph
— Source network: large data graph Source matching
— Target network: small query graph

* Dynamic network transformation

— Source network: Gt at timestamp t .
— Target network: G¢*1 at timestamp ¢t + 1 = evolution

 Single network auto-encoder
— Source & target networks are same network
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Experimental Setup

e Evaluation objectives

— Effectiveness of learning cross-network node associations
— Effectiveness of the proposed TransPool and TransUnPool

* Datasets

 Baseline methods

Tasks Networks # of nodes | # of edges | # of attributes
Cora-1 2,708 5,806 1,433
Cora-2 2,708 4,547 1,433
Network ACM 9,872 39,561 17
Alignment DBLP 9,916 44808 17
Foursquare 5,313 54,233 1
Twitter 5,120 130,575 1
Recommendation Ciao-user 3,719 65,213 !
ad n
Ciao-product 4,612 49,136 28
Network FINAL-N FINAL-P REGAL
alignment IONE CrossMNA
Recommendation | NGCF GraphRec SamWalker
wpZAN BPR




Results for Network Alignment

Effectiveness results on network alignment.

Coral-Cora2 ACM-DBLP Foursquare-Twitter

Hits@10 | Hits@30 | Accuracy | Hits@10 | Hits@30 | Accuracy | Hits@10 | Hits@30 | Accuracy
NetTrans 90.98% 97.51% 89.89% 84.09% 94.52% 58.21% 24.68% 34.58% 9.17%
FINAL-N 88.73% 90.77% 87.58% 82.91% 90.71% 54.39% 24.09% 33.80% 8.47%
FINAL-P 62.28% 80.01% 54.34% 69.70% 83.12% 36.34% 24.09% 33.80% 8.47%
REGAL 60.90% 69.20% 46.26% 63.68% 71.80% 41.78% 0.15% 2.20% 0.11%
IONE 73.03% 79.92% 42.29% 58.93% 84.19% 33.00% 13.44% 28.17% 4.13%
CrossMNA | 59.06% 68.62% 33.26% 42.54% 49.69% 21.04% 3.37% 14.79% 2.48%

Observation: NetTrans outperforms all other
baselines for network alignment task.




Results for Recommendation -
ts for R dat
Effectiveness results on social recommendation.
Ciao-0.2 Ciao-0.3 Ciao-0.5

Prec@10 | Rec@10 | Rec@50 | Prec@10 | Rec@10 | Rec@50 | Prec@10 | Rec@10 | Rec@50
NetTrans 13.87% | 11.08% | 29.90% | 11.01% | 13.23% | 28.15% | 10.87% | 12.43% | 39.02%
BPR 1.37% 0.6% 20.25% 1.38% 0.62% 20.18% 1.00% 0.37% 14.97%
wpZAN 11.99% 9.19% 20.77% 9.88% 10.33% | 23.22% 9.85% 11.64% | 26.04%
GraphRec 8.65% 6.62% 17.56% 8.42% 6.60% 18.07% 6.94% 6.63% 18.08%
SamWalker | 4.94% 1.97% 5.98% 4.39% 2.07% 5.67% 2.48% 1.58% 4.05%
NGCF 2.77% 1.21% 3.26% 2.77% 1.48% 3.61% 3.17% 1.99% 4.77%

Observation: NetTrans outperforms all other
baselines for recommendation task.




Ablation study on TransPool layer
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Observation: TransPool outperforms both Graph

Unet pooling and SAGPool for learning cross-network
node associations.




Ablation study on TransUnPool layer
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Observation: TransUnPool outperforms other variants
indicating the importance of both structure and node
representation calibrations.




Conclusions |
* Cross-network transformation -
— Encoder-decoder model — NetTrans  [ewsr i ) TG T [
(A,X,) e §Bl,Y1)
— Encoder — TransPool ’#%J________;ij
— Decoder — TransUnPool | &y
G1 ' Yol 6,
[ — - > skip connections |. [
* Results

— NetTrans outperforms baseline methods in both tasks

— TransPool and TransUnPool achieves better performance
than other variants




