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Networks Are Often Multi-Sourced
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Cross-Network Node Associations
• To find node associations across different networks

2

Network alignment
Cross-layer dependency

Recommendation



Traditional Methods
• For network alignment – graph matching based [1]

• For recommendation and cross-layer dependency [2,3]

• Limitations: linear and/or consistency assumptions
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Embedding Based Methods
• Existing methods

– Network alignment [1,2]
• Aligned nodes are closed in the embedding space

– Cross-layer dependency [3]
• Embeddings of different networks interact linearly

• Limitation: space disparity issue
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Cross-Net Node Assoc.: A New Angle
• A generic question:
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Given two different networks, how can we transform 
one network to another?



Prob. Def.: Cross-Net Transformation
• Given: (1) source and target networks !" = $", &', (' , !) =
{$), +', ,'}; (2) observed cross-network node associations /
• Output: (1) cross-network transformation function 0, s.t. 0(!") ≈!); (2) node association function 04567
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An Illustrative Example
• Graph matching based network alignment

– Transformation:

– Node associations: !"#$% &, ( = * (, &
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Outline

•Motivations
• NetTrans Model

– Encoder: TransPool
– Decoder: TransUnPool

• Experimental Results
• Conclusions
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NetTrans – Model Overview
• Key idea #1: multi-resolution characteristic

– Simplify network transformation at coarse resolutions
– Assume same latent meanings, e.g., NBA (FB) vs. NBA (Ins)
– Auxiliary associations info, e.g., NBA -> users who like NBA
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NetTrans – Model Overview (con’t)
• Key idea #2: encoder-decoder architecture

– Encoder: to coarsen source network at different resolutions
– Decoder: to reconstruct target network at different resolutions
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NetTrans – Encoder 
• Goals:

– To learn node representations and structure at different 
resolutions

– To learn node-to-supernode assignments
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NetTrans Encoder: Part #1
• Supernode selection

– Self-attention based pooling [1]

• !"#$% = "#$% + ( and !)#$% is the degree matrix of !"#$%
– Select nodes * = top−rank(4#, 6#) as supernodes
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[1] Lee, Junhyun, Inyeop Lee, and Jaewoo Kang. "Self-attention graph pooling." arXiv preprint arXiv:1904.08082 (2019).



NetTrans Encoder: Part #2
• Supernode representations

– Aggregation from nodes to supernodes
• 1-hop neighboring nodes by attention mechanism
• Distant nodes by !"#$"%"&

– Final supernode representations $" = Aggr +$", !"#$"%"&

• Q: How to learn node-to-supernode assignment !"?
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NetTrans Encoder: Part #3
• Node-to-supernode assignment

– Gumbel softmax: approximation to discrete !"
– # $ : supernode candidates of node $

• 1-hop: # 6 = 1,5
• 2-hop: # 10 = {5}
• Others: all supernodes, i.e., # 11 = 1,5
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NetTrans Encoder: Part #4
• Supernode connections

– !" = $
% !"&$ ', ' + *!"

– Auxiliary connections *!" based on supernode representations
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NetTrans – Decoder 
• Goal: to reconstruct the target network
• Key idea: same latent meanings of supernodes

– Part #1: leverage !" by skip connections
– Part #2: calibrate part #1 from supernodes to nodes

• Message passing
– Part #1 -> Msg #1
– Part #2 -> Msg #2
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NetTrans Decoder
• Key idea: to calibrate source representations & structure
• Node representation learning

– Msg #1: to transform node representations

– Msg #2: to calibrate from supernodes to nodes of target network

– Aggregations: !"#$ for Msg #1 and %"#$&' for Msg #2                 
• Structure – calibrate based on target node embedding
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NetTrans – Loss Functions
• Structure reconstruction

• Attribute reconstruction

• Observed cross-network node associations
– Network alignment: margin ranking loss

– Recommendation: Bayesian personalized ranking loss
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NetTrans – Variants & Generalizations
• Bi-directional cross-network transformation

– Learn reverse direction as well, i.e., target à source network
• Graph-to-subgraph transformation

– Source network: large data graph
– Target network: small query graph

• Dynamic network transformation
– Source network: !" at timestamp #
– Target network: !"$% at timestamp # + 1

• Single network auto-encoder
– Source & target networks are same network
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Outline

•Motivations
• NetTrans Model

– Encoder: TransPool
– Decoder: TransUnPool

• Experimental Results
• Conclusions
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Experimental Setup
• Evaluation objectives

– Effectiveness of learning cross-network node associations
– Effectiveness of the proposed TransPool and TransUnPool

• Datasets

• Baseline methods
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Results for Network Alignment
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Observation: NetTrans outperforms all other 
baselines for network alignment task.

Effectiveness results on network alignment.



Results for Recommendation
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Observation: NetTrans outperforms all other 
baselines for recommendation task.

Effectiveness results on social recommendation.



Ablation study on TransPool layer
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Observation: TransPool outperforms both Graph 
Unet pooling and SAGPool for learning cross-network 
node associations.



Ablation study on TransUnPool layer
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Observation: TransUnPool outperforms other variants 
indicating the importance of both structure and node 
representation calibrations.



Conclusions
• Cross-network transformation

– Encoder-decoder model – NetTrans 
– Encoder – TransPool 
– Decoder – TransUnPool 

• Results
– NetTrans outperforms baseline methods in both tasks
– TransPool and TransUnPool achieves better performance 

than other variants
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