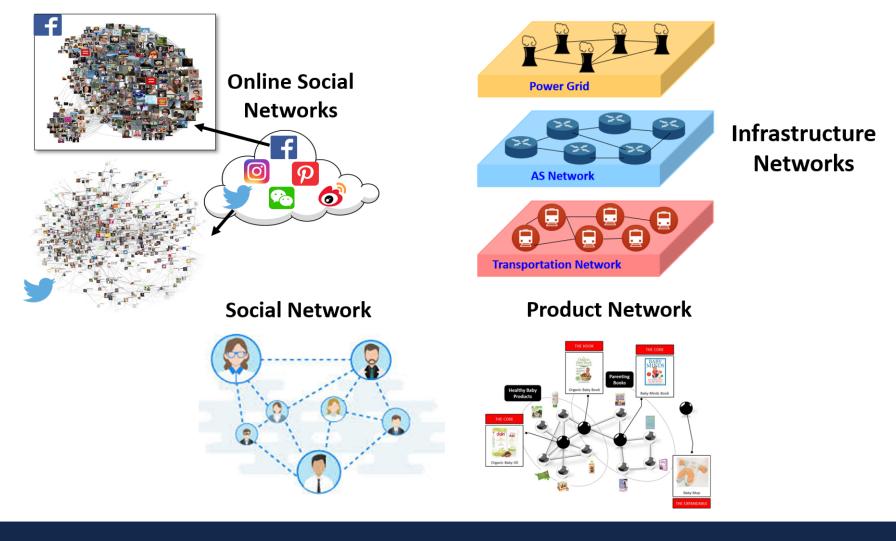


NetTrans: Neural Cross-Network Transformation

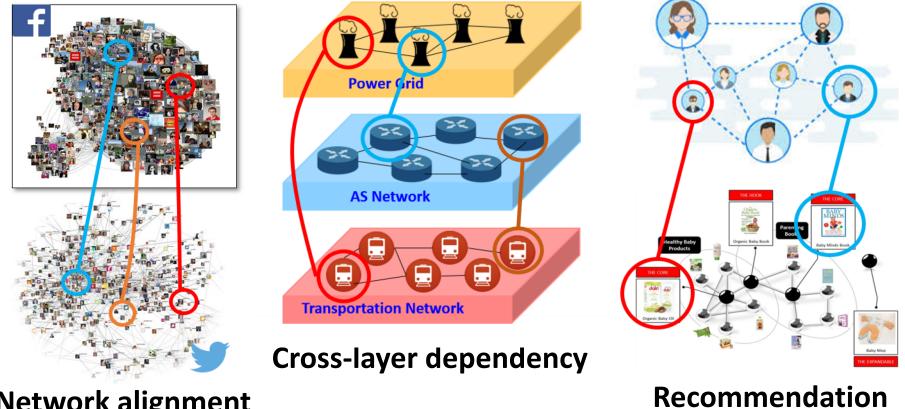


Networks Are Often Multi-Sourced



Cross-Network Node Associations

To find node associations across different networks



Network alignment

Traditional Methods

For network alignment – graph matching based [1]

min $\|\boldsymbol{B}_0 - \boldsymbol{P}\boldsymbol{A}_0\boldsymbol{P}^T\|_F^2$ Linear A_0, B_0 : adjacency matrices *P*: permutation matrix transformation $\widetilde{P} = P \otimes P$: Kronecker product $\|\widetilde{\boldsymbol{P}}\operatorname{vec}(\boldsymbol{A}_0)\|_2^2$ min $\|\operatorname{vec}(\boldsymbol{B}_0)\|$

For recommendation and cross-layer dependency [2,3]

min
$$\|\boldsymbol{R} - \boldsymbol{U}_1^T \boldsymbol{U}_2\|_F^2 + \alpha \sum_i \operatorname{Tr} (\boldsymbol{U}_i^T (\boldsymbol{D}_i - \boldsymbol{A}_i) \boldsymbol{U}_i)$$

Network-based regularization

R: user-product matrix **U**_i: low-rank matrices A_i : adjacency matrices D_i : degree matrices

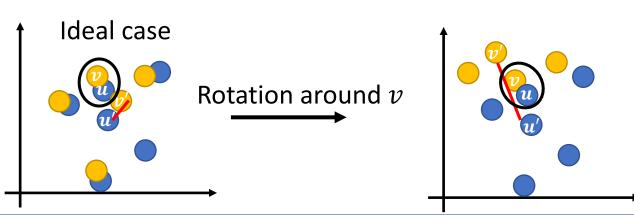
• Limitations: linear and/or consistency assumptions

[1] Umeyama, Shinji. "An eigendecomposition approach to weighted graph matching problems." IEEE transactions on pattern analysis and machine intelligence 10.5 (1988): 695-703. [2] Yao, Yuan, et al. "Dual-regularized one-class collaborative filtering." CIKM 2014. 3

[3] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." KDD 2016.

Embedding Based Methods

- Existing methods
 - Network alignment [1,2]
 - Aligned nodes are closed in the embedding space
 - Cross-layer dependency [3]
 - Embeddings of different networks interact linearly
- Limitation: space disparity issue

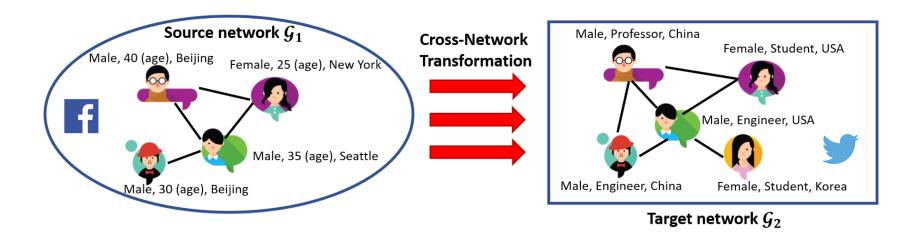


[1] Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." *Ijcai*. 2016.
[2] Chu, Xiaokai, et al. "Cross-network embedding for multi-network alignment." *The World Wide Web Conference*. 2019.
[3] Li, Jundong, et al. "Multi-layered network embedding." *SDM*, 2018.

Cross-Net Node Assoc.: A New Angle

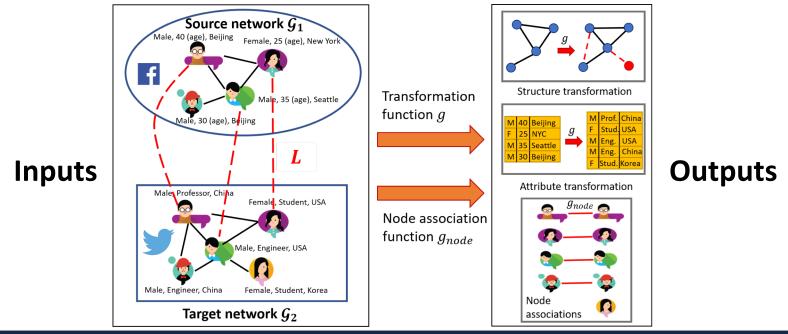
• A generic question:

Given two different networks, how can we transform one network to another?



Prob. Def.: Cross-Net Transformation

- Given: (1) source and target networks $\mathcal{G}_1 = \{\mathcal{V}_1, A_0, X_0\}, \ \mathcal{G}_2 = \{\mathcal{V}_2, B_0, Y_0\}$; (2) observed cross-network node associations L
- **Output:** (1) cross-network transformation function g, s.t. $g(G_1) \approx G_2$; (2) node association function g_{node}



An Illustrative Example

Graph matching based network alignment

$$\min \|B_0 - PA_0P^T\|_F^2 + \|Y_0 - PX_0\|_F^2$$
$$\|\operatorname{vec}(B_0) - \widetilde{P}\operatorname{vec}(A_0)\|_2^2 \qquad \text{Minimize difference between}$$
$$\operatorname{vec}(B_0) \approx \widetilde{P}\operatorname{vec}(A_0)$$
$$- \operatorname{Transformation:} g(\operatorname{vec}(A_0), X_0) = (\widetilde{P}\operatorname{vec}(A_0), PX_0)$$
$$\approx (\operatorname{vec}(B_0), Y_0)$$

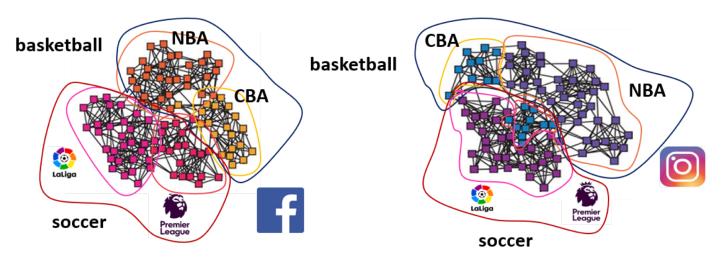
- Node associations: $g_{node}(u, v) = \mathbf{P}(v, u)$

Outline

- Motivations
- NetTrans Model
 - Encoder: TransPool
 - Decoder: TransUnPool
- Experimental Results
- Conclusions

NetTrans – Model Overview

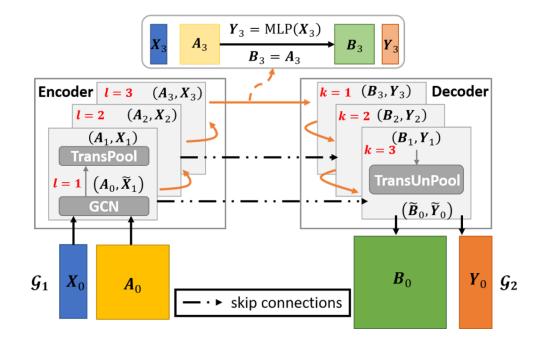
• Key idea #1: multi-resolution characteristic



- Simplify network transformation at coarse resolutions
- Assume same latent meanings, e.g., NBA (FB) vs. NBA (Ins)
- Auxiliary associations info, e.g., NBA -> users who like NBA

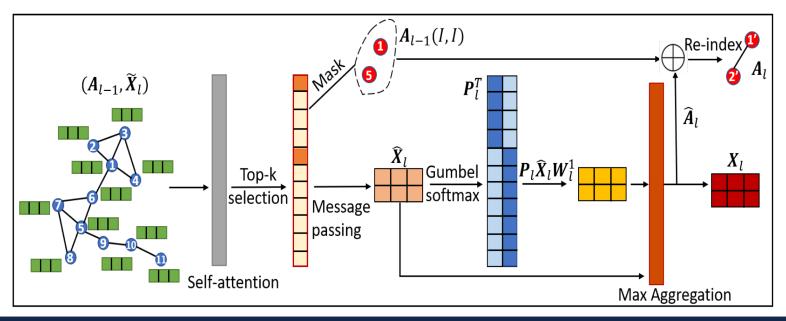
NetTrans – Model Overview (con't)

- Key idea #2: encoder-decoder architecture
 - Encoder: to coarsen source network at different resolutions
 - Decoder: to reconstruct target network at different resolutions



NetTrans – Encoder

- Goals:
 - To learn node representations and structure at different resolutions
 - To learn node-to-supernode assignments

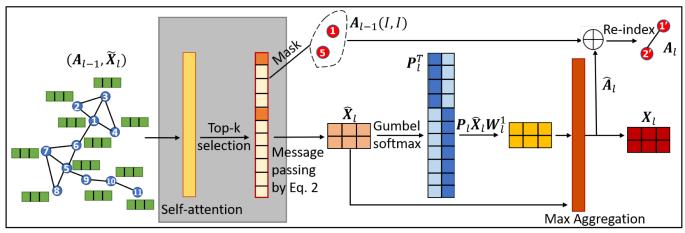


- Supernode selection
 - Self-attention based pooling [1]

$$\mathbf{z}_{l} = \sigma \left(\tilde{\mathbf{D}}_{l-1}^{-\frac{1}{2}} \tilde{\mathbf{A}}_{l-1} \tilde{\mathbf{D}}_{l-1}^{-\frac{1}{2}} \tilde{\mathbf{X}}_{l} \mathbf{W}_{l}^{\text{self}} \right)$$

• $\widetilde{A}_{l-1} = A_{l-1} + I$ and \widetilde{D}_{l-1} is the degree matrix of \widetilde{A}_{l-1}

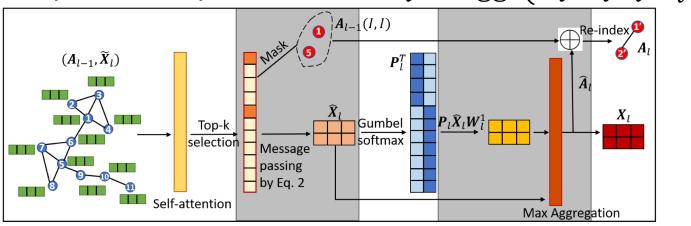
- Select nodes $I = top-rank(\mathbf{z}_l, n_l)$ as supernodes



[1] Lee, Junhyun, Inyeop Lee, and Jaewoo Kang. "Self-attention graph pooling." arXiv preprint arXiv:1904.08082 (2019).

- Supernode representations
 - Aggregation from nodes to supernodes
 - 1-hop neighboring nodes by attention mechanism
 - Distant nodes by $\boldsymbol{P}_l \boldsymbol{\widetilde{X}}_l \boldsymbol{W}_l^1$

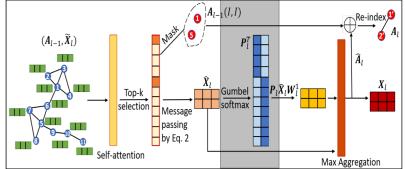
- Final supernode representations $X_l = \text{Aggr}(\widehat{X}_l, P_l \widetilde{X}_l W_l^1)$



• **Q:** How to learn node-to-supernode assignment P_l ?

Node-to-supernode assignment

$$\mathbf{P}_{l}(u', u) = \frac{\exp\left(\left[\log\left(\hat{\mathbf{X}}_{l}(u', :)\mathbf{W}_{l}^{g}\tilde{\mathbf{X}}_{l}^{T}\right) + g_{u'u}\right]/\tau\right)}{\sum_{c \in C(u)} \exp\left(\left[\log\left(\hat{\mathbf{X}}_{l}(c, :)\mathbf{W}_{l}^{g}\tilde{\mathbf{X}}_{l}^{T}\right) + g_{cu}\right]/\tau\right)}$$

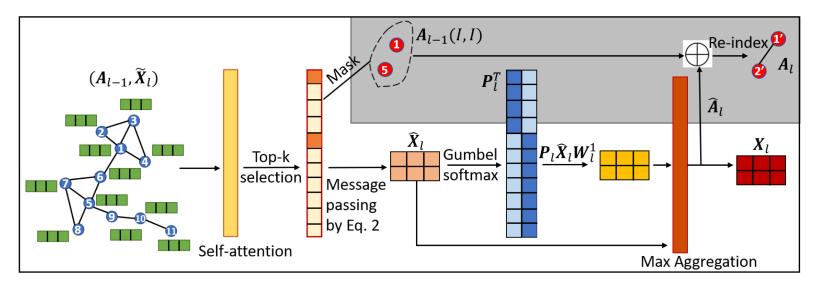


- Gumbel softmax: approximation to discrete P_l
- C(u): supernode candidates of node u
 - 1-hop: $C(6) = \{1,5\}$
 - 2-hop: $C(10) = \{5\}$
 - Others: all supernodes, i.e., $C(11) = \{1,5\}$

Supernode connections

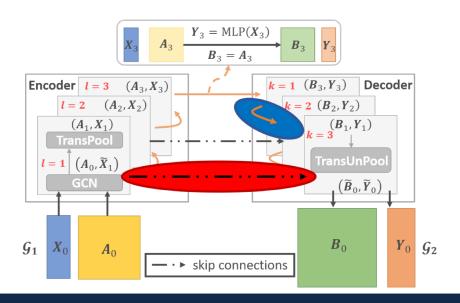
$$-A_l = \frac{1}{2} \left(A_{l-1}(I,I) + \widehat{A}_l \right)$$

– Auxiliary connections \widehat{A}_l based on supernode representations



NetTrans – Decoder

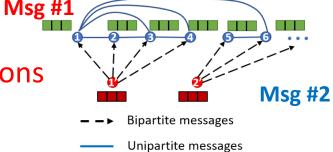
- Goal: to reconstruct the target network
- Key idea: same latent meanings of supernodes
 - Part #1: leverage \mathcal{G}_1 by skip connections
 - Part #2: calibrate part #1 from supernodes to nodes
- Message passing
 - Part #1 -> Msg #1
 - Part #2 -> Msg #2



NetTrans Decoder

- Key idea: to calibrate source representations & structure
- Node representation learning
 - Msg #1: to transform node representations

$$\mathbf{m}_{\upsilon_1 \to \upsilon}^k = \frac{1}{\sqrt{|\mathcal{N}_{\upsilon}|}\sqrt{|\mathcal{N}_{\upsilon_1}|}} \mathbf{X}_{L-k}(\upsilon_1, :) \mathbf{W}_k^3$$



– Msg #2: to calibrate from supernodes to nodes of target network $\mathbf{m}_{\upsilon' \to \upsilon}^k = \mathbf{P}_{L-k+1}(\upsilon',\upsilon) \odot (\mathbf{Y}_{L-k+1}(\upsilon',:)\mathbf{W}_k^2)$

- Aggregations: A_{L-k} for Msg #1 and P_{L-k+1} for Msg #2
- Structure calibrate based on target node embedding $B_{L-k}(v, v_1) = \frac{1}{2} \max\{0, A_{L-k}(v, v_1) + \sigma_t(Y_{L-k}(v, :)Y_{L-k}(v_1, :)^T)\}$

NetTrans – Loss Functions

Structure reconstruction

$$\mathcal{L}_{adj} = -\frac{1}{|\mathcal{E}|} \sum_{(v,v_1) \in \mathcal{E}} [y_{v,v_1} \log p_{v,v_1} + (1 - y_{v,v_1}) \log (1 - p_{v,v_1})]$$

Attribute reconstruction

$$\mathcal{L}_{\text{attr}} = \frac{1}{m_0} \|\mathbf{Y}_0 - \text{MLP}_2(\tilde{\mathbf{Y}}_0)\|_F^2$$

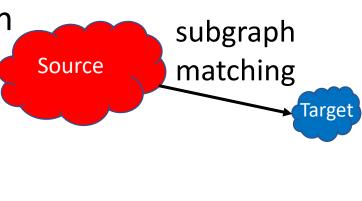
- Observed cross-network node associations
 - Network alignment: margin ranking loss

 $\mathcal{L}_{\mathrm{rank}} = \frac{1}{|\mathcal{O}|} \sum_{(u,v,v_1) \in \mathcal{O}} \max\{0, \lambda - (g_{\mathrm{node}}(u,v) - g_{\mathrm{node}}(u,v_1))\}, \quad g_{\mathrm{node}}(u,v) = \left[\mathbf{P}_1^T(\mathbf{Y}_1 \tilde{\mathbf{Y}}_0^T)\right](u,v)$

- Recommendation: Bayesian personalized ranking loss

NetTrans – Variants & Generalizations

- Bi-directional cross-network transformation
 - Learn reverse direction as well, i.e., target \rightarrow source network
- Graph-to-subgraph transformation
 - Source network: large data graph
 - Target network: small query graph
- Dynamic network transformation
 - Source network: \mathcal{G}^t at timestamp t
 - Target network: \mathcal{G}^{t+1} at timestamp t+1
- Single network auto-encoder
 - Source & target networks are same network



 \rightarrow evolution

Outline

- Motivations
- NetTrans Model
 - Encoder: TransPool
 - Decoder: TransUnPool
- Experimental Results
- Conclusions

Experimental Setup

- Evaluation objectives
 - Effectiveness of learning cross-network node associations
 - Effectiveness of the proposed TransPool and TransUnPool
- Datasets

Baseline methods

•					
Tasks	Networks	# of nodes	# of edges	# of attributes	
	Cora-1	2,708	5,806	1,433	
	Cora-2	2,708	4,547	1,433	
Network	ACM	9,872	39 <mark>,</mark> 561	17	
Alignment	DBLP	9,916	44,808	17	
	Foursquare	5,313	54,233	1	
	Twitter	5,120	130,575	1	
Recommendation	Ciao-user	3,719	65,213	1	
	Ciao-product	4,612	49,136	28	
		-			

Network	FINAL-N	FINAL-P	REGAL	
alignment	IONE	<u>CrossMNA</u>		
Recommendation	NGCF	<u>GraphRec</u>	<u>SamWalker</u>	
	wpZAN	BPR		

Results for Network Alignment

	Cora1-Cora2				ACM-DBLP			Foursquare-Twitter		
	Hits@10	Hits@30	Accuracy	Hits@10	Hits@30	Accuracy	Hits@10	Hits@30	Accuracy	
NetTrans	90.98 %	97.51%	89.89%	84.09%	94.52%	58.21%	24.68%	34.58%	9.17%	
FINAL-N	88.73%	90.77%	87.58%	82.91%	90.71%	54.39%	24.09%	33.80%	8.47%	
FINAL-P	62.28%	80.01%	54.34%	69.70%	83.12%	36.34%	24.09%	33.80%	8.47%	
REGAL	60.90%	69.20%	46.26%	63.68%	71.80%	41.78%	0.15%	2.20%	0.11%	
IONE	73.03%	79.92%	42.29%	58.93%	84.19%	33.00%	13.44%	28.17%	4.13%	
CrossMNA	59.06%	68.62%	33.26%	42.54%	49.69%	21.04%	3.37%	14.79%	2.48%	

Effectiveness results on network alignment.

Observation: NetTrans outperforms all other baselines for network alignment task.

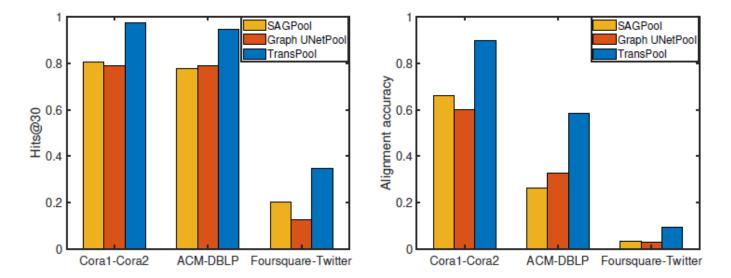
Results for Recommendation

	Ciao-0.2				Ciao-0.3			Ciao-0.5		
	Prec@10	Rec@10	Rec@50	Prec@10	Rec@10	Rec@50	Prec@10	Rec@10	Rec@50	
NetTrans	13.87%	11.08%	29.90%	11.01%	13.23%	28.15%	10.87%	12.43%	39.02%	
BPR	1.37%	0.6%	20.25%	1.38%	0.62%	20.18%	1.00%	0.37%	14.97%	
wpZAN	11.99%	9.19%	20.77%	9.88%	10.33%	23.22%	9.85%	11.64%	26.04%	
GraphRec	8.65%	6.62%	17.56%	8.42%	6.60%	18.07%	6.94%	6.63%	18.08%	
SamWalker	4.94%	1.97%	5.98%	4.39%	2.07%	5.67%	2.48%	1.58%	4.05%	
NGCF	2.77%	1.21%	3.26%	2.77%	1.48%	3.61%	3.17%	1.99%	4.77%	

Effectiveness results on social recommendation.

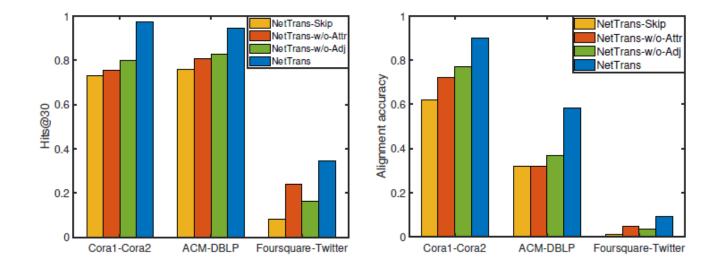
Observation: NetTrans outperforms all other baselines for recommendation task.

Ablation study on TransPool layer



Observation: TransPool outperforms both Graph Unet pooling and SAGPool for learning cross-network node associations.

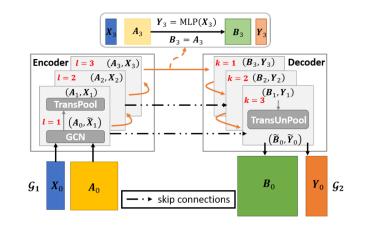
Ablation study on TransUnPool layer



Observation: TransUnPool outperforms other variants indicating the importance of both structure and node representation calibrations.

Conclusions

- Cross-network transformation
 - Encoder-decoder model NetTrans
 - Encoder TransPool
 - Decoder TransUnPool



Results

- NetTrans outperforms baseline methods in both tasks
- TransPool and TransUnPool achieves better performance than other variants

