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Graph Mining: Applications
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[1] Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G.. Network Analysis in the Social Sciences. Science 2009.
[2] Zhang, S., Zhou, D., Yildirim, M. Y., Alcorn, S., He, J., Davulcu, H., & Tong, H.. Hidden: Hierarchical Dense Subgraph Detection with
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Application to Financial Fraud Detection. SDM 2017.
[3] Wang, S., He, L., Cao, B., Lu, C. T., Yu, P. S., & Ragin, A. B.. Structural Deep Brain Network Mining. KDD 2017. 2
[4] Ding, M., Zhou, C., Chen, Q., Yang, H., & Tang, J.. Cognitive Graph for Multi-Hop Reading Comprehension at Scale. ACL 2019.




Graph Mining: How To

* Graph Mining Pipeline

input graph mining model mining results
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Question: are the mining results fair or biased?
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Algorithmic Fairness in Machine Learning

* Goal: minimize unintentional bias caused by machine
learning algorithms

* Existing Measures
— Group fairness
* Disparate impact [1]
 Statistical parity [2]
* Equal odds [3]
— Counterfactual fairness [4]
— Individual fairness [5]

[1] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S.. Certifying and Removing Disparate Impact. KDD 2015.
[2] Chouldechova, A., & Roth, A.. The Frontiers of Fairness in Machine Learning. arXiv.

[3] Hardt, M., Price, E., & Srebro, N.. Equality of Opportunity in Supervised Learning. NIPS 2016.
[4] Kusner, M. J., Loftus, J., Russell, C., & Silva, R.. Counterfactual Fairness. NIPS 2017. 4
[5] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.




Group Fairness: Statistical Parity

« Definition: candidates in protected and unprotected groups have equal probability of being
assigned to a predicted class ¢

Pry(y =c)=Pr_(y =c)
— Pr,.(y = c): probability of being assigned to ¢ for protected group; Pr_(y = c) is for unprotected
group

* lllustrative Example: job application classification

qualified unqualified
e o o o o o o o |
w ﬂ w w a c]assiﬁer for w w ﬂ ﬂ

job application

e |
e |

e Advantages:

— Intuitive and well-known
— No impact of sensitive attributes

* Disadvantage: fairness can still be ensured when

— Choose qualified candidates in one group
— Choose candidates randomly in another group




Individual Fairness

* Problem of Group Fairness: different forms of bias in different settings
— Question: which fairness notion should we apply?

* Principle: similar individuals should receive similar algorithmic outcomes [1]
— Rooted in definition of fairness [2]: lack of favoritism from one side or another

 Definition: given two distance metrics d; and d,, a mapping M satisfies
individual fairness if for every x, y in a collection of data D

d;(M(x), M(y)) < dy(x,y)
* Illustrative Example: M)

Y A

d(x,x")

.

e Advantage: finer granularity than group fairness
* Disadvantage: hard to find proper distance metrics

X
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[1] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.
[2] https://www.merriam-webster.com/dictionary/fairness




Algorithmic Fairness in Machine Learning

e Goal: minimize unintentional discrimination caused by
machine learning algorithms

* Existing Measures
— Group fairness
* Disparate impact [1]
 Statistical parity [2]
* Equal odds [3]
— Counterfactual fairness [4]
— Individual fairness [5]

 Limitation: [ID assumption in traditional machine learning
— Might be violated by the non-IID nature of graph data

[1] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S.. Certifying and Removing Disparate Impact. KDD 2015.
[2] Chouldechova, A., & Roth, A.. The Frontiers of Fairness in Machine Learning. arXiv.

[3] Hardt, M., Price, E., & Srebro, N.. Equality of Opportunity in Supervised Learning. NIPS 2016.
[4] Kusner, M. J., Loftus, J., Russell, C., & Silva, R.. Counterfactual Fairness. NIPS 2017. 7
[5] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.




Algorithmic Fairness in Graph Mining

* Fair Spectral Clustering [1]
— Fairness notion: disparate impact

* Fair Graph Embedding

— Fairwalk [2], compositional fairness constraints [3]
* Fairness notion: statistical parity
— MONET [4]

* Fairness notion: orthogonality of metadata and graph embedding

* Fair Recommendation

— Information neural recommendation [5]
* Fairness notion: statistical parity
— Fairness for collaborative filtering [6]

* Fairness notion: four metrics that measure the differences in estimation error
between ground-truth and predictions across protected and unprotected
groups

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
[2] Rahman, T. A., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. [JCAI 2019.
[3] Bose, A. J., & Hamilton, W. L.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.

[4] Palowitch, J., & Perozzi, B.. Monet: Debiasing Graph Embeddings via the Metadata-Orthogonal Training Unit. arXiv.
[5] Kamishima, T., Akaho, S., Asoh, H., & Sakuma, J.. Enhancement of the Neutrality in Recommendation. RecSys 2012 Workshop.
[6] Yao, S., & Huang, B.. Beyond Parity: Fairness Objectives for Collaborative Filtering. NIPS 2017.




Compositional Fairness Constraints fo@
Graph Embeddings [1]

* Goal: learn graph embeddings that is fair w.r.t. a combination of different
sensitive attributes

e Fairness definition: mutual information between sensitive attributes and
embedding is O

— Imply statistical parity

* Method: adversarial training

— Key idea: train filters for each sensitive attribute so that embeddings fail to predict
this attribute sensitive

Attributes

fﬂ‘ . . Gender Ge?der
R — ® . Occupation > Z OWuEaﬂm
- \
Age o

Node Filtered

Input Graph Embedding Filters Embedding Discriminators

[1] Bose, A. J., & Hamilton, W. L.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.




Algorithmic Fairness in Graph Mining

Fair Spectral Clustering [1]
— Fairness notion: disparate impact

Fair Graph Embedding

— Fairwalk [2], compositional fairness constraints [3]
* Fairness notion: statistical parity

— MONET [4]
* Fairness notion: orthogonality of metadata and graph embedding

Fair Recommendation
— Information neural recommendation [5]
* Fairness notion: statistical parity
— Fairness for collaborative filtering [6]

* Fairness notion: four metrics that measure the differences in estimation error
between ground-truth and predictions across protected and unprotected
groups

Observation: all of them focus on group-based fairness!

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
[2] Rahman, T. A., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. [JCAI 2019.

[3] Bose, A. J., & Hamilton, W. L.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.

[4] Palowitch, J., & Perozzi, B.. Monet: Debiasing Graph Embeddings via the Metadata-Orthogonal Training Unit. arXiv.

[5] Kamishima, T., Akaho, S., Asoh, H., & Sakuma, J.. Enhancement of the Neutrality in Recommendation. RecSys 2012 Workshop.
[6] Yao, S., & Huang, B.. Beyond Parity: Fairness Objectives for Collaborative Filtering. NIPS 2017.
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InFORM: Individual Fairness on Graph Mining

* Research Questions
Q1. Measures: how to quantitatively measure individual bias?
Q2. Algorithms: how to enforce individual fairness?
Q3. Cost: what is the cost of individual fairness?




Graph Mining Algorithms

* Graph Mining: An Optimization Perspective

input graph A mining model w/ parameter 6 mining results Y
'oo, 'oo, '00, minimize

1010103 [(A)Y,0) .
input ) output > [
(= - .
e
— Input:

* Input graph A minimize loss function
* Model parameters 9 [(AY,0)

— Output: mining results Y

* Examples: ranking vectors, class probabilities, embeddings




Classic Graph Mining Algorithms

Examples of Classic Graph Mining Algorithm

Mining Task Loss Function L() Mining Result Y* Parameters
miner’ (I = A)r + (1 = o)|Ir — el|? damping factor ¢
PageRank . ( ) ( )l 5 PageRank vector r teleportation vector
min Tr (U'LU
Spectr-al u ( ) eigenvectors U # clusters k
Clustering s.t. U'U=1
n n
A[ll ] lo (_X ’ ]X[lr ],) i i i
LINE (1st) mlnz Z / ( &9 U ) embedding matrix X embeddw_]g dimension d
X i=1j=1 # negative samples b
+bE;_p [log g(=X[j",: IX[i,:]1)]
L L = ® @ .5
¥ ranking v N v |
vey e % algorithm ototee o et s ot M U Vem T AR & i
° ° ° gﬁ ! B ,c): \w—{ =~< @ ' Network
b L ] @r “ : %, :




Roadmap

* Motivations
* InFORM Measures

* InFORM Algorithms

— Debiasing the Input Graph
— Debiasing the Mining Model
— Debiasing the Mining Results

* InNFORM Cost
* Experimental Results
e Conclusions
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Problem Definition: InNFORM Measuresi:’L

Input Graph: A

Node i

* Questions /\T

— How to determine if the mining
results are fair?

— How to quantitatively measure ) ~Node
the overall bias? /b
* Input V-

— Node-node similarity matrix S
* Non-negative, symmetric

I(AY, 6)
— Graph mining algorithm [(A,Y, ) T

minimize

e Loss function I(+) Mining Results: ¥ Similertty inges
* Additional set of parameters 0 : Node i, = ,M\\
— Fairness tolerance parameter € T P N SR S
: DIfE(Y[i,: ], Y[j,:]) < tolerance " =
* Output e Sk \ A
. . . L N 4 ' \,
— binary decision on whether the , fe-q-c0
mining results are fair Nodej\ [\
— individual bias measure o-~.
Bias(Y, S -
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Measuring Individual Bias: Formulation

* Principle: similar nodes = similar mining results
 Mathematical Formulation
€
Y[ : 1= Y0 IE < o=
] S[i,J]
— Intuition: if S[i, j] is high, Sl is small = push Y[i,: ] and Y[j, : ] to be more similar
— Observation: Inequality should hold for every pairs of nodes i and j
* Problem: too restrictive to be fulfilled

* Relaxed Criteria: Y7, ™ . ||Y[i, G, : 112S[i, /] = 2Tr(Y'LgY) < me = 6

/'\/ mun
TN\
§ &

Vi,j=1,..,n

00000500




Measuring Individual Bias: Solution

* InFORM (Individual Fairness on Graph Mining)

— Given (1) a graph mining results Y, (2) a symmetric similarity
matrix S and (3) a constant fairness tolerance 6
—Y is individually fair w.r.t. S if it satisfies

)
Tr(Y'LsY) <
— Overall individual bias is Bias(Y,S) = Tr(Y'LgY)

[1] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.
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Lipschitz Property of Individual Fairness

e Connection to Lipschitz Property
— (D4, D,)-Lipschitz property [1]: a function f is (D4, D,)-
Lipschitz if it satisfies
e L is Lipschitz constant
— InFoRM naturally satisfies (D, D)-Lipschitz property as

long as
* fQ@) =Y[i:]
« Di(F ), F(D)) = II¥[i,: 1 = Y[, : W13, Do (i) = =

S[i,j]

— Lipschitz constant of InNFORM is €




Roadmap

* Motivations
* InFORM Measures

* InFORM Algorithms
— Debiasing the Input Graph
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Problem Definition: InNFORM Algorithms

* Question: how to mitigate the bias ’r
of the mining results? f\ /

* Input < \ :
— Node-node similarity matrix S 9/.7
— Graph mining algorithm [(A, Y, 0)
— Individual bias measure Bias(Y, S) o thn

* Defined in the previous problem (InFORM
Measures)

* Output: a revised mining results Y~
that minimizes

— Loss function [(A,Y, 0)
— Individual bias measure Bias(Y, S)

9000000




Mitigating Individual Bias: How To

e Graph Mining Pipeline
input graph A mining model w/ parameter 0 mining results Y

101010

010101 minimize
DIOTO

I(AY, 0) o
output > [J

a
* Observation: Bias can be introduced/amplified in each

component
— Solution: bias can be mitigated in each part

e Algorithmic Frameworks
— Debiasing the input graph
— Debiasing the mining model mutually complementary
— Debiasing the mining results

™



Debiasing the Input Graph

* Goal: bias mitigation via a pre-processing strategy

e Intuition: learn a new topology of graph A such that
— A is as similar to the original graph A as possible
— Bias of mining results on A is minimized

° Optimization Problem _ consistency in graph topology
. N 2 !/

min ] = HA A”F +~aTr(Y LS)Q
s.t. Y =argminy [(AY,8)

* Challenge: bi-level optimization
— Solution: exploration of KKT conditions [1, 2]

bias measure

[1] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.
E [2] Mei, S., & Zhu, X.. Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine Learners. AAAI 2015.




Debiasing the Input Graph

* Considering the KKT conditions,
min J = [|& - Al[, + aTr(Y'LsY)

s.t. dyl(AY,0)=0
* Proposed Method
(1) Fix A (A = A at initialization), find Y using current A
(2) Fix Y, update A by gradient descent
(3) lterate between (1) and (2)

e Problem: how to calculate gradient w.r.t. A?




Debiasing the Input Graph

key component to calculate
e Calculating Gradient

9 =2(A—-A)+a||Tr( 2YL o
oA N\ 3AT
KN 0]
d_] _, 3A ( ) — diag <6A) if undirected
dA aJ .
A’ if directed

— Y satisfies BYI(K, Y, H) =0

— H= [Tr (ZVLS a:[zj])] is a matrix with H[i, j] = Tr (ZYLS aAa[Y ])

* Question: how to efficiently calculate H?

I
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Instantiation #1: PageRank

Goal: efficiently calculate H for PageRank
Mining Results Y: r = (1 — ¢)Qe

Partial Derivatives H: H = 2cQ’'Lgr
Remarks: Q = (I — cA)~?!

Time Complexity
— Straightforward: 0(n3)
— Ours: 0(my + m, +n) 2¢Q Lsr

|
* my: number of edges in A X
* mg: number of edgesin S —
* n:number of nodes
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Instantiation #2: Spectral Clustering

Goal: efficiently calculate H for spectral clustering

Mining Results Y: U = eigenvectors with k smallest eigenvalues  |ow-rank

—W)

Partial Derivatives H: H = 2 Y'X

* Remarks: (1;,u;) = i-th smallest eigenpalr, v; i A
e Time Comp'exity vectorize diag(MiLSuiui’)
— Straightforward: O (k?(m + n) + k3n + kn3) and stack it n times

— Ours: 0(k?(m +n) + k3n)
M: Lsul

-




Instantiation #3: LINE (1st)

Goal: efficiently calculate H for LINE (1st)

M Results Y: Y[i,: |Y]/,:| =1
ining Results [i,:1Y[],:] ogdid?/4+di3/4dj
3/4

— d; = outdegree of node i, T = )., d;

l

—logb

and b = number of negative samples

Partial Derivatives H: H =[2f (A + A’) o Lg|—|2diag(BLg)1,,x,

Remarks element-wise in-place calculation

— f() calculates Hadamard inverse, o calculates Hadamard product

= B =2f (/4@ /*) +[dLpen)) + £ (4¥/4(@/) 1y

Time Complexity
— Straightforward: 0(n3)
— Ours: O(my + my, +n)
* my: number of edges in A
* mg: number of edgesin S
* n:number of nodes

stack d n times

vectorize diag(BLg) and
stack it n times

with d*[i] = df




Debiasing the Mining Model

* Goal: bias mitigation during model optimization

* Intuition: optimizing a regularized objective such that

— Task-specific loss function is minimized
— Bias of mining results as regularization penalty is minimized

Optimization Problem e task-specific loss function
min J =1[(AY,0) + aTr(Y’LSsQ

bias measure

Solution

__Ol(AY,0
— General: solve by (stochastic) gradient descent (AY.9)

6Y

+ 2aLsY

— Task-specific: solve by specific algorithm designed for the graph mining
problem

Advantage
— Linear time complexity incurred in computing the gradient




Debiasing the Mining Model: bail?

Instantiations

* PageRank
— Objective Function: min cr’(I — A)r + (1 — ¢)||r — e||% + ar'Lgr
r
— Solution: r* = ¢ (A — %LS) r +(l—c)e
* PageRank on new transition matrix A —%LS

+ fLg=1-Sthenr" = (Z-A+-—S)r' +—e

1+a

_c
1+a
* Spectral Clustering
— Objective Function: mUin Tr(U'LoU) + aTr(U'LgU) = Tr(U'Lp44sU)
— Solution: U™ = eigenvectors of L, s With k smallest eigenvalues
* spectral clustering on an augmented graph A + aS

e LINE (1st)
— Objective Function: maxlog g(x;x;) + bE;rcp. [logg(—xjrxg)] — a||xl- — xj||12:S[i,j]
Xl',Xj
Vi,j=1,..,n

— Solution: stochastic gradient descent




Debiasing the Mining Results

Goal: bias mitigation via a post-processing strategy

Intuition: no access to either the input graph or the graph
mining model

Optimization Problem /consistency of mining results, convex
min ] = IY = Y||4 + aTr(Y'LgY)
— Y is the vanilla mining results bias measure, convex
Solution: (I + aS)Y" =Y

— convex loss function as long as @ = 0 - global optima by

a]

av Y

— solve by conjugate gradient (or other linear system solvers)

Advantages
— No knowledge needed on the input graph
— Model-agnostic
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Problem Definition: InFORM Cost

* Question: how to quantitatively characterize the cost
of individual fairness?

* Input
— Vanilla mining results Y
— Debiased mining results Y™
e Learned by the previous problem (InFORM Algorithms)

e Output: an upper bound of ||Y — Y*||¢

* Debiasing Methods
— Debiasing the input graph
— Debiasing the mining model
— Debiasing the mining results — main focus of this paper

depend on specific graph topology/mining model




Cost of Debiasing the Mining Results

* Given
— A graph with n nodes and adjacency matrix A
— A node-node similarity matrix S
— Vanilla mining results Y
— Debiased mining results Y* = (I + aS)~ 1Y

* If ||S — Al|r = §, we have

I = ¥l < 20y (0 + | /rank(A) I

e Observation: the cost of debiasing the mining results depends on

— The number of nodes n (i.e. size of the input graph)

— The difference 6 between A and S
— The rank of A== could be small due to low-rank structures in real-world graphs

=P could be small if A is normalized




Cost of Debiasing the Mining Model: ™|
Case Study on PageRank

* Given
— A graph with n nodes and symmetrically normalized adjacency matrix A
— A symmetrically normalized node-node similarity matrix S
— Vanilla PageRank vector r
— Debiased PageRank vector r* = (I + aS)~1Y

* If ||S — Al|r = §, we have
2an

1—c

(5 + \/ rank(A) )

It —r*||p <

e Observation: the cost of debiasing PageRank depends on

— The number of nodes n (i.e. size of the input graph)

— The difference 6 between A and S
— The rank of A === could be small due to low-rank structures in real-world graphs

=P Upper bounded by 1
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Experimental Settings

* Questions:
RQ1. What is the impact of individual fairness in graph mining performance?

RQ2. How effective are the debiasing methods?
RQ3. How efficient are the debiasing methods?

* Datasets: 5 publicly available real-world datasets

Name Nodes Edges
AstroPh 18,772 198,110
CondMat | 23,133 93,497
Facebook | 22,470 171,002
Twitter 7,126 35,324
PPI 3,890 76,584

* Baseline Methods: vanilla graph mining algorithm
e Similarity Matrix: Jaccard index, cosine similarity

I




Experimental Settings

* Metrics

Metric Definition

Diff — Y* — Yl difference between fair and vanilla graph mining
IYlg results
KL( v || Y ) KL di
= ivergence
Y=l 1Yl
PageRank .
Prec@50 precision
RQ1
NDCG@50 normalized discounted cumulative gain
spectral clustering NMI(Cy~, Cy) normalized mutual information
ROC — AUC(Y*,Y) area under ROC curve
LINE —
F1(Y"Y) F1 score
Tr((Y")' LgY*
RQ2 Reduce =1 — u(l _), > ) degree of reduce in individual bias
Tr(Y'LgY)
RQ3 Running time in seconds running time




Experimental Results

Table 1: Effectiveness results for PageRank. Lower is better in gray columns. Higher is better in the others.

Debiasing the Input Graph

o Ja€Card Indew,_ | { Cosifiec Similatity /7 \
atasets - r
ff KL yec@SO NDCGNO y Reduc§| Time ff Iﬁc@so NDCG@O VReduc Time
Twitch f.109 537x 104/ 1.000 1.000 24.7% \| 564.9 £.299 | 5.41x 10" 0.860 0.899 62.9%N 649.3
PPI 0.185 | 1.90 x 1073 0.920 0.944 43.4% | 584.4 [0.328 | 8.07 x 1073 0.780 0.838 68.7% |\ 636.8
I [ [Débiasing thie Minjhg Model \
Dataset , Jaccard Index | Cosine Similarity \
Diff KL , rec@50 | NDCG@5 educe | |[Tim Diff KL rec@50 | NDCG@5 educe | [Time
Twitch|| | 0.182 | 497 x 10> || 0.940 0.958 62.0% |}16.18 | 0.315 | 1.05x 100 || 0.940 0.957 3.9% | 1273
PPI 0.211 | 4.78 x 10]° 0.920 0.942 50.8% |[10.76 0.280 | 9.56 x 10}° 0.900 0.928 7.5% | §10.50
‘ ebiasing th Minﬂlg Results I
Datasets \ Jaccard Index Cosine Similarity I
Diff KL Prec@50 | NDCG@50y| Reduce J Time \Diff KL Prec@50 | NDCG@50\/ Reduce [/ Time
Twitch | 9.035 | 9.75 x 107 0.980 0.986 33.9% J| 0.033  \.101 | 5.84 X 107 0.940 0.958 44.6% | 0.024
PPI | 045 | 1.22x 197 | \.940 0959/ N 27.0%/] 0.020 | 0M12 | 6.97 x 1977 | Q940 0.958/ |\ 45.0%/] 0.019

N N \JV

N S~ UV

* Obs.: effective in mitigating bias while preserving the performance of the
vanilla algorithm with relatively small changes to the original mining results

— Similar observations for spectral clustering and LINE (1st)
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Conclusions S\ s *
®
D
. . . . . . .
* Problem: InFoRM (individual fairness on graph mining)
— fundamental questions: measures, algorithms, cost
e Solutions:
— Measures: Bias(Y,S) = Tr(Y'SY)
— Algorithms: debiasing (1) the input graph, (2) the mining model and (3) the
mining FESU|tS input graph mining model mining results

101010

— Cost: the upper bound of ||Y — Y*||- ot output .
* Upper bound on debiasing the mining results I:> - I:> -
* Case study on debiasing PageRank algorithm o

Results: effective in mitigating individual bias in the graph mining
results while maintaining the performance of vanilla algorithm

° M ore d etal | S in the pa pe r Table 2: Effectiveness results for spectral clustering. Lower
. is better in gray columns. Higher is better in the others.
— proofs and analysis Debiasing the Input Graph
. . . Jaccard Index Cosine Similarity
— detailed experimental settings Datasels | pigr ['NMI | Reduce | Time | Diff [ NMI | Reduce | Time

Twitch | 0.031 | 1.000 5.44% 1698 | 0.107 | 1.000 24.5% 1714

— additional experimental results PPT | 1.035 | 0914 | 195% | 8293 | 0533 0569 | zi.1 | 985




