InFoRM: Individual Fairness on Graph Mining

Jian Kang Jingrui He Ross Maciejewski Hanghang Tong
Graph Mining: Applications

Graph Mining: How To

• **Graph Mining Pipeline**
 - Input graph
 - Mining model
 - Mining results

• **Example:** job application classification

• **Question:** are the mining results fair or biased?

- (male): 50%
- (female): 50%

- (male): ?%
- (female): ?%

- (male): ?%
- (female): ?%
Algorithmic Fairness in Machine Learning

- **Goal**: minimize unintentional bias caused by machine learning algorithms

- **Existing Measures**
 - Group fairness
 - Disparate impact [1]
 - Statistical parity [2]
 - Equal odds [3]
 - Counterfactual fairness [4]
 - Individual fairness [5]

Group Fairness: Statistical Parity

• **Definition:** candidates in protected and unprotected groups have equal probability of being assigned to a predicted class c
 \[
 \Pr_{+}(y = c) = \Pr_{-}(y = c)
 \]
 \[= \Pr_{+}(y = c): \text{probability of being assigned to } c \text{ for protected group; } \Pr_{-}(y = c) \text{ is for unprotected group}
 \]

• **Illustrative Example:** job application classification

• **Advantages:**
 – Intuitive and well-known
 – No impact of sensitive attributes

• **Disadvantage:** fairness can still be ensured when
 – Choose qualified candidates in one group
 – Choose candidates randomly in another group
Individual Fairness

- **Problem of Group Fairness:** different forms of bias in different settings
 - **Question:** which fairness notion should we apply?
- **Principle:** similar individuals should receive similar algorithmic outcomes [1]
 - **Rooted in definition of fairness [2]:** lack of favoritism from one side or another
- **Definition:** given two distance metrics d_1 and d_2, a mapping M satisfies individual fairness if for every x, y in a collection of data D
 $$d_1(M(x), M(y)) \leq d_2(x, y)$$
- **Illustrative Example:**

- **Advantage:** finer granularity than group fairness
- **Disadvantage:** hard to find proper distance metrics

Algorithmic Fairness in Machine Learning

• **Goal:** minimize unintentional discrimination caused by machine learning algorithms

• **Existing Measures**
 – Group fairness
 • Disparate impact [1]
 • Statistical parity [2]
 • Equal odds [3]
 – Counterfactual fairness [4]
 – Individual fairness [5]

• **Limitation:** IID assumption in traditional machine learning
 – Might be violated by the non-IID nature of graph data

Algorithmic Fairness in Graph Mining

- **Fair Spectral Clustering** [1]
 - **Fairness notion:** disparate impact

- **Fair Graph Embedding**
 - Fairwalk [2], compositional fairness constraints [3]
 - **Fairness notion:** statistical parity
 - MONET [4]
 - **Fairness notion:** orthogonality of metadata and graph embedding

- **Fair Recommendation**
 - Information neural recommendation [5]
 - **Fairness notion:** statistical parity
 - Fairness for collaborative filtering [6]
 - **Fairness notion:** four metrics that measure the differences in estimation error between ground-truth and predictions across protected and unprotected groups

Compositional Fairness Constraints for Graph Embeddings [1]

- **Goal:** learn graph embeddings that is fair w.r.t. a combination of different sensitive attributes
- **Fairness definition:** mutual information between sensitive attributes and embedding is 0
 - Imply statistical parity
- **Method:** adversarial training
 - **Key idea:** train filters for each sensitive attribute so that embeddings fail to predict this attribute

Algorithmic Fairness in Graph Mining

• **Fair Spectral Clustering** [1]
 – **Fairness notion:** disparate impact

• **Fair Graph Embedding**
 – **Fairwalk** [2], compositional fairness constraints [3]
 • **Fairness notion:** statistical parity
 – **MONET** [4]
 • **Fairness notion:** orthogonality of metadata and graph embedding

• **Fair Recommendation**
 – Information neural recommendation [5]
 • **Fairness notion:** statistical parity
 – Fairness for collaborative filtering [6]
 • **Fairness notion:** four metrics that measure the differences in estimation error between ground-truth and predictions across protected and unprotected groups

• **Observation:** all of them focus on group-based fairness!

InFoRM: Individual Fairness on Graph Mining

• Research Questions

Q1. Measures: how to quantitatively measure individual bias?
Q2. Algorithms: how to enforce individual fairness?
Q3. Cost: what is the cost of individual fairness?
Graph Mining Algorithms

- **Graph Mining: An Optimization Perspective**

 - **Input:**
 - Input graph A
 - Model parameters θ

 - **Output:** mining results Y

 - **Examples:** ranking vectors, class probabilities, embeddings

 - Minimize loss function $l(A, Y, \theta)$
Classic Graph Mining Algorithms

Examples of Classic Graph Mining Algorithm

<table>
<thead>
<tr>
<th>Mining Task</th>
<th>Loss Function $L()$</th>
<th>Mining Result Y^*</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>PageRank</td>
<td>$\min_r cr'(I - A)r + (1 - c)|r - e|^2_F$</td>
<td>PageRank vector r</td>
<td>damping factor c</td>
</tr>
<tr>
<td>Spectral Clustering</td>
<td>$\min_u \text{Tr} (U'LU)$ s.t. $U'U = I$</td>
<td>eigenvectors U</td>
<td># clusters k</td>
</tr>
<tr>
<td>LINE (1st)</td>
<td>$\min_x \sum_{i=1}^{n} \sum_{j=1}^{n} A[i, j] (\log g(\langle X[j,:]; X[i,:]\rangle))$ $+ b \sum_{j' \sim p_n} \log g(\langle X[j',:]; X[i,:]\rangle)$</td>
<td>embedding matrix X</td>
<td>embedding dimension d</td>
</tr>
</tbody>
</table>

Diagrams

- **PageRank**
 - Ranking algorithm

- **Spectral Clustering**
 - Eigenvectors

- **LINE (1st)**
 - Embedding matrix

- **Network**
 - Adjacency matrix

- **Vector based representation**
 - Low dimensional space
Roadmap

• Motivations ✓
• InFoRM Measures
• InFoRM Algorithms
 – Debiasing the Input Graph
 – Debiasing the Mining Model
 – Debiasing the Mining Results
• InFoRM Cost
• Experimental Results
• Conclusions
Problem Definition: InFoRM Measures

• Questions
 – How to determine if the mining results are fair?
 – How to quantitatively measure the overall bias?

• Input
 – Node-node similarity matrix S
 • Non-negative, symmetric
 – Graph mining algorithm $l(A, Y, \theta)$
 • Loss function $l(\cdot)$
 • Additional set of parameters θ
 – Fairness tolerance parameter ϵ

• Output
 – Binary decision on whether the mining results are fair
 – Individual bias measure $\text{Bias}(Y, S)$
Measuring Individual Bias: Formulation

- **Principle:** similar nodes \rightarrow similar mining results

- **Mathematical Formulation**
 \[
 \|\mathbf{Y}[i, :] - \mathbf{Y}[j, :]\|_F^2 \leq \frac{\epsilon}{S[i,j]} \quad \forall i, j = 1, \ldots, n
 \]

 - **Intuition:** if $S[i,j]$ is high, $\frac{\epsilon}{S[i,j]}$ is small \Rightarrow push $\mathbf{Y}[i, :]$ and $\mathbf{Y}[j, :]$ to be more similar
 - **Observation:** Inequality should hold for every pairs of nodes i and j
 - **Problem:** too restrictive to be fulfilled

- **Relaxed Criteria:**
 \[
 \sum_{i=1}^{n} \sum_{j=1}^{n} \|\mathbf{Y}[i, :] - \mathbf{Y}[j, :]\|_F^2 S[i,j] = 2\text{Tr}(\mathbf{Y}'\mathbf{L}\mathbf{S}\mathbf{Y}) \leq m\epsilon = \delta
 \]
Measuring Individual Bias: Solution

• InFoRM (Individual Fairness on Graph Mining)
 – Given (1) a graph mining results Y, (2) a symmetric similarity matrix S and (3) a constant fairness tolerance δ
 – Y is individually fair w.r.t. S if it satisfies
 \[\text{Tr}(Y'LSY) \leq \frac{\delta}{2} \]
 – Overall individual bias is $\text{Bias}(Y, S) = \text{Tr}(Y'LSY)$

Lipschitz Property of Individual Fairness

• Connection to Lipschitz Property
 – (D_1, D_2)-Lipschitz property [1]: a function f is (D_1, D_2)-Lipschitz if it satisfies
 $$D_1(f(i), f(j)) \leq LD_2(i, j), \forall (x, y)$$
 • L is Lipschitz constant
 – InFoRM naturally satisfies (D_1, D_2)-Lipschitz property as long as
 • $f(i) = Y[i,:]$
 • $D_1(f(i), f(j)) = ||Y[i,:] - Y[j,:]||^2_2, D_2(i, j) = \frac{1}{s[i,j]}$
 – Lipschitz constant of InFoRM is ϵ
Roadmap

• Motivations ✓
• InFoRM Measures ✓
• InFoRM Algorithms
 – Debiasing the Input Graph
 – Debiasing the Mining Model
 – Debiasing the Mining Results
• InFoRM Cost
• Experimental Results
• Conclusions
Problem Definition: InFoRM Algorithms

• **Question**: how to mitigate the bias of the mining results?

• **Input**
 – Node-node similarity matrix S
 – Graph mining algorithm $l(A, Y, \theta)$
 – Individual bias measure $Bias(Y, S)$
 • Defined in the previous problem (InFoRM Measures)

• **Output**: a revised mining results Y^* that minimizes
 – Loss function $l(A, Y, \theta)$
 – Individual bias measure $Bias(Y, S)$
Mitigating Individual Bias: How To

• **Graph Mining Pipeline**
 - input graph A
 - mining model w/ parameter θ
 - mining results Y
 - minimize $l(A, Y, \theta)$

• **Observation**: Bias can be introduced/amplified in each component
 - **Solution**: bias can be mitigated in each part

• **Algorithmic Frameworks**
 - Debiasing the input graph
 - Debiasing the mining model
 - Debiasing the mining results
 - mutually complementary
Debiasing the Input Graph

• **Goal:** bias mitigation via a pre-processing strategy

• **Intuition:** learn a new topology of graph \tilde{A} such that
 – \tilde{A} is as similar to the original graph A as possible
 – Bias of mining results on \tilde{A} is minimized

• **Optimization Problem**

$$\min_Y J = \|\tilde{A} - A\|_F^2 + \alpha \text{Tr}(Y' L_S Y)$$

subject to $Y = \arg\min_Y l(\tilde{A}, Y, \theta)$

• **Challenge:** bi-level optimization
 – **Solution:** exploration of KKT conditions [1, 2]

Debiasing the Input Graph

• Considering the KKT conditions,

\[
\min_Y J = \|\tilde{A} - A\|_F^2 + \alpha \text{Tr}(Y' L_S Y)
\]

s. t. \(\partial_Y l(\tilde{A}, Y, \theta) = 0 \)

• **Proposed Method**

 (1) Fix \(\tilde{A} \) (\(\tilde{A} = A \) at initialization), find \(Y \) using current \(\tilde{A} \)

 (2) Fix \(Y \), update \(\tilde{A} \) by gradient descent

 (3) Iterate between (1) and (2)

• **Problem:** how to calculate gradient w.r.t. \(\tilde{A} \)?
Debiasing the Input Graph

• Calculating Gradient

\[
\frac{\partial J}{\partial A} = 2(\tilde{A} - A) + \alpha \left[\text{Tr} \left(2\tilde{Y}L_s \frac{\partial \tilde{Y}}{\partial A[i,j]} \right) \right]
\]

\[
\frac{dJ}{dA} = \begin{cases}
\frac{\partial J}{\partial A} + \left(\frac{\partial J}{\partial A} \right)' - \text{diag} \left(\frac{\partial J}{\partial A} \right), & \text{if undirected} \\
\frac{\partial J}{\partial A}', & \text{if directed}
\end{cases}
\]

- \(\tilde{Y} \) satisfies \(\partial_Y l(\tilde{A}, Y, \theta) = 0 \)
- \(H = \left[\text{Tr} \left(2\tilde{Y}L_s \frac{\partial \tilde{Y}}{\partial A[i,j]} \right) \right] \) is a matrix with \(H[i,j] = \text{Tr} \left(2\tilde{Y}L_s \frac{\partial \tilde{Y}}{\partial A[i,j]} \right) \)

• Question: how to efficiently calculate \(H \)?
Instantiation #1: PageRank

- **Goal:** efficiently calculate H for PageRank
- **Mining Results Y:** $r = (1 - c)Qe$
- **Partial Derivatives H:** $H = 2cQ'L_Sr'r'$
- **Remarks:** $Q = (I - cA)^{-1}$
- **Time Complexity**
 - Straightforward: $O(n^3)$
 - Ours: $O(m_1 + m_2 + n)$
 - m_A: number of edges in A
 - m_S: number of edges in S
 - n: number of nodes
Instantiation #2: Spectral Clustering

- **Goal:** efficiently calculate H for spectral clustering
- **Mining Results Y:** $U = \text{eigenvectors with } k \text{ smallest eigenvalues}$
- **Partial Derivatives H:**
 \[H = 2 \sum_{i=1}^{k} (\text{diag}(M_i L_S u_i u_i')) 1_{n \times n} - M_i L_S u_i u_i' \]
- **Remarks:** $(\lambda_i, u_i) = i$-th smallest eigenpair, $M_i = (\lambda_i I - L_A)^+$
- **Time Complexity**
 - Straightforward: $O(k^2 (m + n) + k^3 n + kn^3)$
 - Ours: $O(k^2 (m + n) + k^3 n)$
Instantiation #3: LINE (1st)

- **Goal:** efficiently calculate H for LINE (1st)

- **Mining Results Y:** $Y[i, :]Y[j, :]' = \log \frac{T(\tilde{A}[i,j]+\tilde{A}[j,i])}{d_id_j^{3/4}+d_i^{3/4}d_j} - \log b$
 - $d_i =$ outdegree of node i, $T = \sum_{i=1}^{n} d_i^{3/4}$ and $b =$ number of negative samples

- **Partial Derivatives H:** $H = 2f(\tilde{A} + \tilde{A}') \circ L_S - 2\text{diag}(BL_S)1_{n \times n}$

- **Remarks**
 - $f()$ calculates Hadamard inverse, \circ calculates Hadamard product
 - $B = \frac{3}{4}f \left(d^{5/4}(d^{-1/4})' + \mathbf{d1}_{n \times n} \right) + f \left(d^{3/4}(d^{1/4})' + \mathbf{d1}_{n \times n} \right)$ with $d^x[i] = d_i^x$

- **Time Complexity**
 - Straightforward: $O(n^3)$
 - Ours: $O(m_1 + m_2 + n)$
 - m_A: number of edges in A
 - m_S: number of edges in S
 - n: number of nodes
Debiasing the Mining Model

• **Goal:** bias mitigation during model optimization
• **Intuition:** optimizing a regularized objective such that
 – Task-specific loss function is minimized
 – Bias of mining results as regularization penalty is minimized

• **Optimization Problem**
 \[
 \min_Y J = l(A, Y, \theta) + \alpha \text{Tr}(Y' L_S Y)
 \]

• **Solution**
 – **General:** solve by (stochastic) gradient descent
 \[
 \frac{\partial J}{\partial Y} = \frac{\partial l(A, Y, \theta)}{\partial Y} + 2\alpha L_S Y
 \]
 – **Task-specific:** solve by specific algorithm designed for the graph mining problem

• **Advantage**
 – Linear time complexity incurred in computing the gradient
Debiasing the Mining Model: Instantiations

- **PageRank**
 - **Objective Function:** \(\min_r c r'(I - A)r + (1 - c)\|r - e\|^2_F + \alpha r'L_S r \)
 - **Solution:** \(r^* = c \left(A - \frac{\alpha}{c} L_S \right) r^* + (1 - c)e \)
 - PageRank on new transition matrix \(A - \frac{\alpha}{c} L_S \)
 - If \(L_S = I - S \), then \(r^* = \left(\frac{c}{1+\alpha} A + \frac{\alpha}{1+\alpha} S \right) r^* + \frac{1-c}{1+\alpha} e \)

- **Spectral Clustering**
 - **Objective Function:** \(\min_U \text{Tr}(U' L_A U) + \alpha \text{Tr}(U' L_S U) = \text{Tr}(U' (L_A + \alpha S) U) \)
 - **Solution:** \(U^* = \) eigenvectors of \(L_A + \alpha S \) with \(k \) smallest eigenvalues
 - spectral clustering on an augmented graph \(A + \alpha S \)

- **LINE (1st)**
 - **Objective Function:** \(\max_{x_i, x_j} \log g(x_j x_i') + b \mathbb{E}_{j' \in P_n} \left[\log g(-x_j, x_i') \right] - \alpha \|x_i - x_j\|^2_F S[i, j] \) \(\forall i, j = 1, \ldots, n \)
 - **Solution:** stochastic gradient descent
Debiasing the Mining Results

• **Goal:** bias mitigation via a post-processing strategy

• **Intuition:** no access to either the input graph or the graph mining model

• **Optimization Problem**

\[
\min_Y J = \|Y - \bar{Y}\|_F^2 + \alpha \text{Tr}(Y'L_S Y)
\]

– \(\bar{Y}\) is the vanilla mining results

• **Solution:** \((I + \alpha S)Y^* = \bar{Y}\)

– convex loss function as long as \(\alpha \geq 0 \rightarrow\) global optima by \(\frac{\partial J}{\partial Y} = 0\)

– solve by conjugate gradient (or other linear system solvers)

• **Advantages**

– No knowledge needed on the input graph

– Model-agnostic
Roadmap

• Motivations ✓
• InFoRM Measures ✓
• InFoRM Algorithms ✓
 – Debiasing the Input Graph
 – Debiasing the Mining Model
 – Debiasing the Mining Results
• InFoRM Cost
• Experimental Results
• Conclusions
Problem Definition: InFoRM Cost

• **Question:** how to quantitatively characterize the cost of individual fairness?

• **Input**
 – Vanilla mining results \overline{Y}
 – Debiased mining results Y^*
 • Learned by the previous problem (InFoRM Algorithms)

• **Output:** an upper bound of $\|\overline{Y} - Y^*\|_F$

• **Debiasing Methods**
 – Debiasing the input graph
 – Debiasing the mining model
 – Debiasing the mining results

depend on specific graph topology/mining model

main focus of this paper
Cost of Debiasing the Mining Results

• Given
 – A graph with n nodes and adjacency matrix A
 – A node-node similarity matrix S
 – Vanilla mining results \bar{Y}
 – Debiased mining results $Y^* = (I + \alpha S)^{-1}\bar{Y}$

• If $\|S - A\|_F = \delta$, we have
 $$\|\bar{Y} - Y^*\|_F \leq 2\sqrt{n} \left(\delta + \sqrt{\text{rank}(A)\sigma_{\max}(A)} \right) \|\bar{Y}\|_F$$

• Observation: the cost of debiasing the mining results depends on
 – The number of nodes n (i.e. size of the input graph)
 – The difference δ between A and S
 – The rank of A could be small due to low-rank structures in real-world graphs
 – The largest singular value of A could be small if A is normalized
Cost of Debiasing the Mining Model: Case Study on PageRank

• Given
 – A graph with \(n \) nodes and symmetrically normalized adjacency matrix \(\mathbf{A} \)
 – A symmetrically normalized node-node similarity matrix \(\mathbf{S} \)
 – Vanilla PageRank vector \(\bar{\mathbf{r}} \)
 – Debiased PageRank vector \(\mathbf{r}^* = (\mathbf{I} + \alpha \mathbf{S})^{-1} \hat{\mathbf{Y}} \)

• If \(\| \mathbf{S} - \mathbf{A} \|_F = \delta \), we have
 \[
 \| \bar{\mathbf{r}} - \mathbf{r}^* \|_F \leq \frac{2\alpha n}{1 - c} \left(\delta + \sqrt{\text{rank}(\mathbf{A})} \sigma_{\text{max}}(\mathbf{A}) \right)
 \]

• Observation: the cost of debiasing PageRank depends on
 – The number of nodes \(n \) (i.e. size of the input graph)
 – The difference \(\delta \) between \(\mathbf{A} \) and \(\mathbf{S} \)
 – The rank of \(\mathbf{A} \) could be small due to low-rank structures in real-world graphs
 – The largest singular value of \(\mathbf{A} \) upper bounded by 1
Roadmap

• Motivations
• InFoRM Measures
• InFoRM Algorithms
 – Debiasing the Input Graph
 – Debiasing the Mining Model
 – Debiasing the Mining Results
• InFoRM Cost
• Experimental Results
• Conclusions
Experimental Settings

• Questions:
 RQ1. What is the impact of individual fairness in graph mining performance?
 RQ2. How effective are the debiasing methods?
 RQ3. How efficient are the debiasing methods?

• Datasets: 5 publicly available real-world datasets

<table>
<thead>
<tr>
<th>Name</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>AstroPh</td>
<td>18,772</td>
<td>198,110</td>
</tr>
<tr>
<td>CondMat</td>
<td>23,133</td>
<td>93,497</td>
</tr>
<tr>
<td>Facebook</td>
<td>22,470</td>
<td>171,002</td>
</tr>
<tr>
<td>Twitter</td>
<td>7,126</td>
<td>35,324</td>
</tr>
<tr>
<td>PPI</td>
<td>3,890</td>
<td>76,584</td>
</tr>
</tbody>
</table>

• Baseline Methods: vanilla graph mining algorithm
• Similarity Matrix: Jaccard index, cosine similarity
Experimental Settings

Metrics

<table>
<thead>
<tr>
<th>RQ</th>
<th>Metric</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ1</td>
<td>$\text{Diff} = \frac{</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$KL(\frac{Y^*}{</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prec@50</td>
<td>precision</td>
</tr>
<tr>
<td></td>
<td>NDCG@50</td>
<td>normalized discounted cumulative gain</td>
</tr>
<tr>
<td>spectral clustering</td>
<td>$\text{NMI}(\mathcal{C}_{Y^*}, \mathcal{C}_Y)$</td>
<td>normalized mutual information</td>
</tr>
<tr>
<td></td>
<td>$\text{ROC} - AUC(Y^*, \bar{Y})$</td>
<td>area under ROC curve</td>
</tr>
<tr>
<td></td>
<td>$F1(Y^*, \bar{Y})$</td>
<td>F1 score</td>
</tr>
<tr>
<td>RQ2</td>
<td>$\text{Reduce} = 1 - \frac{\text{Tr}((Y^)'L_SY^)}{\text{Tr}(Y'\bar{Y}L_S\bar{Y})}$</td>
<td>degree of reduce in individual bias</td>
</tr>
<tr>
<td>RQ3</td>
<td>Running time in seconds</td>
<td>running time</td>
</tr>
</tbody>
</table>
Experimental Results

Table 1: Effectiveness results for PageRank. Lower is better in gray columns. Higher is better in the others.

<table>
<thead>
<tr>
<th>Datasets</th>
<th>Jaccard Index</th>
<th>Cosine Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diff</td>
<td>KL</td>
</tr>
<tr>
<td>Twitch</td>
<td>0.109</td>
<td>5.37 × 10^{-3}</td>
</tr>
<tr>
<td>PPI</td>
<td>0.185</td>
<td>1.90 × 10^{-3}</td>
</tr>
</tbody>
</table>

• **Obs.**: effective in mitigating bias while preserving the performance of the vanilla algorithm with relatively small changes to the original mining results
 – Similar observations for spectral clustering and LINE (1st)
Roadmap

• Motivations ✓
• InFoRM Measures ✓
• InFoRM Algorithms ✓
 – Debiasing the Input Graph
 – Debiasing the Mining Model
 – Debiasing the Mining Results
• InFoRM Cost ✓
• Experimental Results ✓
• Conclusions
Conclusions

• **Problem:** InFoRM (individual fairness on graph mining)
 – **fundamental questions:** measures, algorithms, cost

• **Solutions:**
 – **Measures:** $\text{Bias}(Y, S) = \text{Tr}(Y'SY)$
 – **Algorithms:** debiasing (1) the input graph, (2) the mining model and (3) the mining results
 – **Cost:** the upper bound of $\|\bar{Y} - Y^*\|_F$
 • Upper bound on debiasing the mining results
 • Case study on debiasing PageRank algorithm

• **Results:** effective in mitigating individual bias in the graph mining results while maintaining the performance of vanilla algorithm

• More details in the paper
 – proofs and analysis
 – detailed experimental settings
 – additional experimental results

Table 2: Effectiveness results for spectral clustering. Lower is better in gray columns. Higher is better in the others.

<table>
<thead>
<tr>
<th>Debiasing the Input Graph</th>
<th>Jaccard Index</th>
<th>Cosine Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datasets</td>
<td>Diff</td>
<td>NMI</td>
</tr>
<tr>
<td>Twitch</td>
<td>0.031</td>
<td>1.000</td>
</tr>
<tr>
<td>PPI</td>
<td>1.035</td>
<td>0.914</td>
</tr>
</tbody>
</table>