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ABSTRACT

In this paper, we propose Task-Adversarial co-Generative
Nets (TAGN) for learning from multiple tasks. It aims to
address the two fundamental issues of multi-task learning, i.e.,
domain shift and limited labeled data, in a principled way. To
this end, TAGN first learns the task-invariant representations
of features to bridge the domain shift among tasks. Based
on the task-invariant features, TAGN generates the plausi-
ble examples for each task to tackle the data scarcity issue.
In TAGN, we leverage multiple game players to gradually
improve the quality of the co-generation of features and exam-
ples by using an adversarial strategy. It simultaneously learns
the marginal distribution of task-invariant features across
different tasks and the joint distributions of examples with
labels for each task. The theoretical study shows the desired
results: at the equilibrium point of the multi-player game, the
feature extractor exactly produces the task-invariant features
for different tasks, while both the generator and the classifier
perfectly replicate the joint distribution for each task. The
experimental results on the benchmark data sets demonstrate
the effectiveness of the proposed approach.
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1 INTRODUCTION

Domain shift [2] and limited labeled data are the two fun-
damental issues for deep multi-task learning. On one hand,
although deep learning has achieved impressive success in
various areas, the deep features learned on millions of exam-
ples are susceptible to domain shift [7], which usually refers
to the difference of distributions between the data collected
from the related tasks or domains. For example, the typical
causes of visual domain shift include changes in the cam-
era, image resolution, lighting, background, viewpoint, and
post-processing [25]. On the other hand, it is expensive or
unrealistic to collect a large amount of labeled data for each
task. For instance, the tagged cancer images are very limited
in each hospital, which severely hampers the generalization
performance of the image analysis system [6].

In this paper, we propose Task-Adversarial co-Generative
Nets (TAGN) for deep multi-task learning. The goal is to
tackle the both issues, i.e., the domain shift and sparse la-
beled data, in a principled way. TAGN uses an adversarial
strategy to generate both ‘good’ features and ‘good’ exam-
ples. Here, we regard the ‘good’ features as the task-invariant
features shared across different tasks, which help bridge the
domain gap. Also, we regard the ‘good’ examples as those
generated examples which could act as the real training data
to build the classifier. TAGN accommodates multiple game
players, i.e., feature extractor, domain discriminator, clas-
sifier, generator, and label discriminator. They play in an
adversarial way to co-generate the task-invariant features and
the plausible examples. Specifically, TAGN first learns the
task-invariant features by using a task-adversarial strategy.
It encourages the feature extractor to generate the features
which is indistinguishable by the domain discriminator. Based
on the task-invariant features, TAGN not only builds the
classifier to predict the label, but also builds the generator
to generate the fake examples. Then, TAGN adopts the label
discriminator to discern whether the pair (example, label)
generated by either the generator or the classifier is fake or
not. Since the task-invariant features encode the knowledge
shared among different tasks, it could help both the generator
and the classifier to generate high-quality pairs. Therefore,
the generations of either task-invariant features or plausible
examples are coupled together in TAGN.

The effectiveness of the task-adversarial co-generative nets
is verified theoretically and empirically. We present the the-
oretical study of the TAGN approach. It shows that at the
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equilibrium point of the multi-player game, the feature ex-
tractor exactly produces the domain-invariant features across
different tasks, while both the generator and the classifier
perfectly duplicate the joint data distribution for each task.
In other words, TAGN perfectly generates both features and
examples in a unified model. Also, we conduct the detailed
experiments on the benchmark data sets. The experimental
results demonstrate that TAGN outperforms state-of-the-art
methods by smoothing the domain shift and alleviating the
scarcity of the labeled data. The main contributions of this
work are summarized as follows:

∙ Adversarial co-generation of domain-invariant features
and plausible examples to bridge the domain gap and
tackle sparse data issue in a principled way.

∙ Guarantee of game equilibrium regarding the marginal
distribution of the task-invariant features and the joint
distributions of the plausible examples with labels.

∙ Experiments on the benchmark data demonstrating the
effectiveness of the proposed method.

The rest of the paper is organized as follows. Section 2
reviews the related work. The proposed TAGN approach is
introduced in Section 3, followed by the theoretical study
in Section 4. We show the experimental results in Section 5,
and conclude the paper in Section 6.

2 RELATED WORK

We review the related work on shallow or deep multi-task
learning, as well as the related generative adversarial nets.

Multi-task learning [4] aims to improve the performance
of each task by borrowing knowledge learned from relat-
ed tasks. Different assumptions on task relatedness lead to
different multi-task learning models. Some typical work in-
clude: multi-task feature learning [1], clustered multi-task
learning [34], low-dimensional subspace learning [14], multi-
task relationship learning [33], robust multi-task learning [5],
sparsity-regularized multi-task learning [12, 17, 31], etc.

Recently, deep multi-task learning or deep domain adapta-
tion becomes to receive attentions since it harnesses the power
of deep learning [16] and multi-task learning [4] (or domain
adaptation [2]). Although multi-task learning and domain
adaptation (or transfer learning) are distinctive with each oth-
er, they technically share much commonness. Therefore, below
we introduce them indiscriminately. The related approaches
of deep multi-task learning can be roughly divided into four
categorizations: domain-adversarial networks [3, 9, 23, 27, 28],
domain distance-based method [10, 19, 21, 29], deep models
with tensor regularization [20, 32], and adaptation based on
image translation [13, 24].

First, inspired by idea of generative adversarial nets (GAN)
[11], the domain-adversarial neural network [9] used adver-
sarial training to promote the emergence of domain-invariant
features via the use of a gradient reversal layer. In [27],
they simultaneously aligned domains via domain confusion
and aligned source and target classes via soft labels. The
adversarial discriminative domain adaptation model [28] com-
bined discriminative modeling, untied weight sharing, and a

domain-adversarial loss into a unified framework. The multi-
adversarial domain adaptation approach [23] captured multi-
mode structures to enable fine-grained alignment of domains
based on multiple domain discriminators. The domain sep-
aration networks [3] explicitly modeled both private and
shared components of domain representations. Second, the
joint adaptation networks [21] adopted an adversarial train-
ing strategy to maximize a joint maximum mean discrepancy
(MMD) criterion. The domain adaptive neural network [10]
incorporated MMD measure as a regularization embedded in
the supervised back-propagation training. The deep domain
confusion (DDC) model [29] had the MMD loss at one layer,
while deep adaptation network (DAN) [19] had the MMD
losses at multiple layers. Third, the deep multi-task learning
model with tensor factorization [32] learned the shared fea-
ture subspace from multilayer parameter tensors, while the
multilinear relationship networks (MRN) [20] learned multi-
linear task relationships from multiplayer parameter tensors.
There are no pseudo example generation for the above three
types of methods. In contrast, the translation-based methods
adapted source images to appear as if drawn from the target
domain. The cycle-consistent adversarial adaptation model
[13] enforced both structural and semantic consistency during
adaptation using a cycle-consistency loss and semantics loss.
The bi-directional adaptive GAN [24] used the symmetric
adversarial strategy to encourage the network to produce
both target-like and source-like images.

Our proposed method is distinctive from the existing works
in the following aspects. The domain-adversarial networks
[3, 9, 23, 27] based on gradient reversal layer [9] could not
guarantee that the feature extractor and the domain dis-
criminator will finally reach the equilibrium. We remedy this
defect and propose a task-adversarial method for feature
generation with equilibrium guarantee. For the generation of
examples, we do not start from the scratch as done by the
translation-based adaptation methods [13, 24]. In contrast,
we use the task-invariant features to generate the plausible
pairs. Similar to the Triple-GAN [18] and the Triangle-GAN
[8], we have to discern the multiple joint distributions. How-
ever, Triple-GAN [18] uses an asymmetrical objective and
has to provide the explicit density form of conditional proba-
bility, while Triangle-GAN [8] couples the two discriminators
in the objective which may render difficulty in optimization.
Instead we use two decoupled discriminators to distinguish
among three joint distributions in our objective. To summing
up, we propose a novel task-adversarial co-generative nets
with equilibrium guarantee.

3 THE TAGN METHOD

In this section, we introduce the proposed task-adversarial
co-generative nets and the optimization algorithm.

3.1 Task-adversarial co-generative nets

Suppose we have multiple related learning tasks. Here, we
focus on classification issue. For example, the categorization
of the images is a multi-class classification problem. Also, the



images may come from different domains, and each domain
corresponds to a task. For instance, the artistic images include
the paintings and artistic depictions, while the real-world
images are the regular pictures captured with cameras, and
they may have the same classes. The goal is to improve the
performance of all the learning tasks by sharing the strength
of each task via the proposed task-adversarial co-generative
nets.

Figure 1 shows the high-level architecture of the proposed
TAGN model. Suppose we have 𝑇 related tasks. 𝑥𝑡 is the
data example from the 𝑡𝑡ℎ task. Each example 𝑥𝑡 ∈ 𝒳 is
associated with a class label 𝑦𝑡 ∈ 𝒴 and a domain (or task)
label 𝑑(1 ≤ 𝑑 ≤ 𝑇 ). Denote the number of classes by 𝑐. The
feature extractor 𝐹 accepts the example 𝑥𝑡 and produces the
latent representation 𝑧𝑡. The domain discriminator 𝐷 tries to
discern which task the latent representation 𝑧𝑡 belongs to. The
classifier 𝐶𝑡 takes 𝑧𝑡 as input and attempts to predict its label
𝑦𝑡. The generator 𝐺𝑡 accepts the latent representation 𝑧𝑡 and
a random signal 𝑣 (e.g., standard normal distribution), and
endeavors to generate the plausible example for the 𝑡𝑡ℎ task.
Then, we use a label discriminators 𝑄𝑡 to determine whether
the pair (𝑥𝑡, 𝑦𝑡) is real or not. Either the feature extractor 𝐹
or the domain discriminator 𝐷 is shared by multiple tasks.
Denote 𝐺 = {𝐺𝑡}, 𝐶 = {𝐶𝑡}, and 𝑄 = {𝑄𝑡} for simplicity,
where 1 ≤ 𝑡 ≤ 𝑇 . In TAGN, the aforementioned components
are parameterized as neural networks.
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Figure 1: Task-adversarial co-generative nets.

We aim to address the two fundamental issues of deep
multi-task learning, i.e., domain shift and limited training
data, in a principled way. Our proposed strategy is to learn
the ‘good’ features to bridge the domain gap, and generate
the ‘good’ examples to tackle the sparse labeled data issue.
As shown in Figure 1, TAGN has two pipelines. The first
pipeline consists of the feature extractor 𝐹 and the domain
discriminator 𝐷, with the goal to learn the task-invariant
features. The second pipeline is composed of the feature
extractor 𝐹 , the classifier 𝐶𝑡, the generator 𝐺𝑡, and the label
discriminator 𝑄𝑡, in order to generate the plausible examples
for each task. The two pipelines are integrated into a unified
way. Both pipelines share the feature extractor and the latent
representation. The learned task-invariant features are used
to build the high-quality classifiers and generators. Next, we
elaborate the two pipelines in more details.

3.1.1 Adversarial feature generation. Although the domain-
adversarial networks [3, 9, 23, 27] using gradient reversal
layer [9] are popular for adversarial adaptation, they could
not guarantee that the feature extractor and the domain
discriminator will finally reach the game equilibrium. To
remedy this drawback, we propose a novel task-adversarial
method with equilibrium guarantee.

In the proposed TAGN model, the domain discriminator
𝐷 and the feature extractor 𝐹 compete with each other to
learn the task-invariant features. The feature extractor tries
to generate the features which are indistinguishable by the
domain discriminator. The domain discriminator acts as a
multi-class classifier to handle the multi-class discrimination.
Therefore,𝐷 has 𝑇 outputs. Denote the 𝑡𝑡ℎ output of𝐷 by𝐷𝑡,
which corresponds to the discrimination of the 𝑡𝑡ℎ(1 ≤ 𝑡 ≤ 𝑇 )
task from the other tasks. For the discrimination of the 𝑡𝑡ℎ

task, 𝑧𝑡 is viewed as the real example, while 𝑧𝑘(𝑘 ̸= 𝑡, 1 ≤ 𝑘 ≤
𝑇 ) from all the other tasks is viewed as the fake one. Let 𝑝𝑡(𝑧)
be the probability distribution of the latent representation
𝑧𝑡, i.e., 𝑧𝑡 ∼ 𝑝𝑡(𝑧). Define the mean distribution 𝑝𝑡(𝑧) of
the latent representation 𝑧𝑘(𝑘 ̸= 𝑡) for all the other tasks
(1 ≤ 𝑘 ≤ 𝑇 ) as:

𝑝𝑡(𝑧) =
1

𝑚− 1

∑︁
𝑘 ̸=𝑡

𝑝𝑘(𝑧).

The domain discriminator 𝐷 tries to distinguish the task-
specific distribution 𝑝𝑡(𝑧) from the mean distribution 𝑝𝑡(𝑧)
of the other tasks. Therefore, the loss function of feature
generation for the 𝑡𝑡ℎ task is as follows:

𝐿𝑓 (𝐹,𝐷𝑡) =E𝑧∼𝑝𝑡(𝑧)

[︁
𝑙𝑜𝑔

(︀
𝐷𝑡(𝑧)

)︀]︁
+ E𝑧∼𝑝𝑡(𝑧)

[︁
𝑙𝑜𝑔

(︀
1−𝐷𝑡(𝑧)

)︀]︁ (1)

The feature extractor 𝐹 and the domain discriminator 𝐷
play an adversarial game in order to achieve the equilibrium
such that

𝑝1(𝑧) = 𝑝2(𝑧) = · · · = 𝑝𝑇 (𝑧).

It means that the marginal distribution of the latent repre-
sentation for each task is equal with each other. The formal
proof will be presented in the next section. The equilibrium
indicates that although different tasks have different data
distributions in the original feature spaces, it is possible for
them to have the same marginal distribution in the latent
space. In this ideal situation, the domain distance among
tasks is approaching to zero.

3.1.2 Adversarial example generation. In this pipeline, the
multi-players including the feature extractor, generator, clas-
sifier, and label discriminator play an adversarial game to
generate the plausible example, as well as accurate prediction.

Based on the task-invariant features, the classifier predicts
its label for the unlabeled example. For the labeled example,
the generator takes both its latent representation and the
random signal as input, and produces the plausible exam-
ple. Therefore, we have three types of pair fed to the label
discriminator, i.e., true example with true label (𝑥, 𝑦), true
example with predicted label (𝑥, 𝑦), and pseudo example



with true label (𝑥̂, 𝑦). The label discriminator tries to discern
the fake pair from the real one, while either the classifier or
the generator attempts to generate the fake pair which is
indistinguishable by the label discriminator.

For the 𝑡𝑡ℎ task, let 𝑝𝑡(𝑥, 𝑦) be the true joint distribution,
𝑝𝑐𝑡(𝑥, 𝑦) the joint distribution produced by the classifier, and
𝑝𝑔𝑡 (𝑥, 𝑦) the joint distribution produced by the generator. The
label discriminator 𝑄𝑡 uses two sub-networks to discriminate
among the three types of joint distributions. The first sub-
network is to distinguish 𝑝𝑡(𝑧, 𝑦) from the mean of the fake
distributions 𝑝𝑡(𝑥, 𝑦) which is defined as:

𝑝𝑡(𝑥, 𝑦) =
𝑝𝑐𝑡(𝑥, 𝑦) + 𝑝𝑔𝑡 (𝑥, 𝑦)

2
.

The loss function for the first sub-network of 𝑄𝑡 is as follows:

𝐿𝑒(𝐹,𝐺𝑡, 𝐶𝑡, 𝑄
1
𝑡 ) =E(𝑥,𝑦)∼𝑝𝑡(𝑥,𝑦)

[︁
𝑙𝑜𝑔

(︀
𝑄1

𝑡 (𝑥, 𝑦)
)︀]︁

+ E(𝑥,𝑦)∼𝑝𝑡(𝑥,𝑦)

[︁
𝑙𝑜𝑔

(︀
1−𝑄1

𝑡 (𝑥, 𝑦)
)︀]︁
(2)

The second sub-network of 𝑄𝑡 is to distinguish between
𝑝𝑐𝑡(𝑧, 𝑦) and 𝑝𝑔𝑡 (𝑧, 𝑦):

𝐿𝑒(𝐹,𝐺𝑡, 𝐶𝑡, 𝑄
2
𝑡 ) =E(𝑥,𝑦)∼𝑝𝑐𝑡 (𝑥,𝑦)

[︁
𝑙𝑜𝑔

(︀
𝑄2

𝑡 (𝑥, 𝑦)
)︀]︁

+ E(𝑥,𝑦)∼𝑝
𝑔
𝑡 (𝑥,𝑦)

[︁
𝑙𝑜𝑔

(︀
1−𝑄2

𝑡 (𝑥, 𝑦)
)︀]︁
(3)

In total, the loss function of example generation for the
𝑡𝑡ℎ task is as follows:

𝐿𝑒(𝐹,𝐺𝑡, 𝐶𝑡, 𝑄𝑡) =

2∑︁
𝑖=1

𝐿𝑒(𝐹,𝐺𝑡, 𝐶𝑡, 𝑄
𝑖
𝑡). (4)

The label discriminator 𝑄𝑡 plays the adversarial game with
the other components {𝐹,𝐺𝑡, 𝐶𝑡} to guarantee that the gen-
erated fake joint distributions, 𝑝𝑐𝑡(𝑥, 𝑦) and 𝑝𝑔𝑡 (𝑥, 𝑦), are in-
distinguishable from the real joint distribution 𝑝𝑡(𝑥, 𝑦) for
each task (1 ≤ 𝑡 ≤ 𝑇 ), i.e.,

𝑝𝑡(𝑥, 𝑦) = 𝑝𝑐𝑡(𝑥, 𝑦) = 𝑝𝑔𝑡 (𝑥, 𝑦).

The equilibrium suggests that it is possible for both the gen-
erator and the classifier to precisely duplicate the true joint
distribution of each task. We will prove the game equilibrium
in the next section.

3.1.3 Overall objective. We couple the two pipelines in a
principled fashion. By learning the task-invariant features,
we are able to bridge the domain gap, and better manipulate
the knowledge sharing among different tasks. Also, since the
task-invariant features encode the common knowledge shared
between tasks, it allows both the generator and the classifier
to make use of these knowledge to generate high-quality pairs.
In summary, the co-generation of feature and example allows
us to learn both the ‘good’ features which are transferable
across domains, and generate ‘reliable’ examples which could
act as the real labeled data.

The overall objective of the proposed TAGN method is as
follows:

min
𝐹,𝐺,𝐶

max
𝐷,𝑄

𝐿(𝐹,𝐺,𝐶,𝐷,𝑄)

= min
𝐹,𝐺,𝐶

max
𝐷,𝑄

𝑇∑︁
𝑡=1

[︁
𝐿𝑒(𝐹,𝐺𝑡, 𝐶𝑡, 𝑄𝑡) + 𝛼𝐿𝑓 (𝐹,𝐷𝑡)

]︁ (5)

where 𝛼 is the non-negative trade-off parameter.
Specifically, there are two min-max games in TAGN. The

first min-max game is played between the domain discrimi-
nator 𝐷 and the feature extractor 𝐹 , in which 𝐹 attempts
to minimize the feature generation loss 𝐿𝑓 , while 𝐷 tries
to maximize it. The second min-max game is played among
𝑄𝑡 and {𝐹,𝐺𝑡, 𝐶𝑡}, in which 𝑄𝑡 endeavors to maximize the
example generation loss 𝐿𝑒, while {𝐹,𝐺𝑡, 𝐶𝑡} try to minimize
it. Therein the feature extractor 𝐹 shared by both pipelines
is responsible for generating both transferable features and
reliable examples. In such a way, TAGN simultaneously learns
both the marginal distribution of task-invariant features and
the joint distributions of examples with labels for each task.

3.2 Algorithm

The proposed TAGN algorithm is summarized Algorithm 1.
The outer loop iterates over the number of training epochs,
while the inner loop iterates over the number of tasks. In
Lines 3-4, we sample a batch data from the 𝑡𝑡ℎ task and
pass it through the network. Lines 5-6 compute the loss of
adversarial feature generation and update the domain discrim-
inator. Lines 7-18 compute the loss of adversarial example
generation and update label discriminator, the generator, and
the classifier. Therein, Lines 7-12 handle the labeled data,
while Lines 13-17 deal with the unlabeled data. The feature
extractor involves in both pipelines, which is updated in Line
19. After training 𝜏𝑚𝑎𝑥 iterations, we append the generated
pairs (𝑥̂, 𝑦) into the training data, and rebuild the classifier
to get the final prediction for the unlabeled data.

Since the sizes of labeled examples for each task are very
small, the label discriminator learned from limited training
data may reject the other types of examples from the true data
distribution. Following the similar strategy used in [8, 18], we
pick out some unlabeled examples with the high confidence
(> 0.85), and use the pairs of unlabeled example and pseudo
label as real examples to train the label discriminators.

4 THEORETICAL ANALYSIS

We analysis the multi-player game equilibrium of the pro-
posed task-adversarial co-generative nets in this section.

As mentioned above, TAGN involves two min-max games
played among three teams, i.e., {𝐹,𝐺,𝐶}, {𝑄}, and {𝐷}.
It is important to investigate whether the game among the
multiple players could achieve the equilibrium. Theorem 1
shows that the game has a global optimum.

Theorem 1 (Multi-player Game Equilibrium). In
TAGN, the multi-player game among the three teams achieves
the equilibrium if and only if

𝑝𝑡(𝑥, 𝑦) = 𝑝𝑐𝑡(𝑥, 𝑦) = 𝑝𝑔𝑡 (𝑥, 𝑦)(1 ≤ 𝑡 ≤ 𝑇 )



Algorithm 1 The TAGN Algorithm

Input: input data 𝒳 ×𝒴 from 𝑇 tasks, trade-off parameter
𝛼, batch size 𝑏, number of iterations 𝜏𝑚𝑎𝑥.

Output: predictions for unlabeled data.
1: for number of iterations 𝜏𝑚𝑎𝑥 do
2: for number of tasks 𝑇 do
3: Sample a batch of data {(𝑥𝑡, 𝑦𝑡)} of size 𝑏 from the

𝑡𝑡ℎ task;
4: Forward pass the batch through the network includ-

ing {𝐹,𝐷,𝐺𝑡, 𝐶𝑡} and generate the task-invariant
features 𝑧𝑡, pseudo label 𝑦𝑡, and fake example 𝑥̂𝑡;

5: Compute the loss of adversarial feature generation
𝐿𝑓 ;

6: Update the domain discriminator 𝐷 by ascending
along its stochastic gradient ∇𝐷𝛼𝐿𝑓 ;

7: if labeled data then
8: Forward pass the batch {(𝑥𝑡, 𝑦𝑡)} through 𝑄𝑡;
9: Forward pass the batch {(𝑥̂𝑡, 𝑦𝑡)} through 𝑄𝑡;

10: Compute the loss of adversarial example genera-
tion 𝐿𝑒;

11: Update the label discriminator 𝑄𝑡 by ascending
along its stochastic gradient ∇𝑄𝑡𝐿𝑒;

12: Update the generator 𝐺𝑡 by descending along its
stochastic gradient ∇𝐺𝑡𝐿𝑒;

13: else
14: Forward pass the batch {(𝑥𝑡, 𝑦𝑡)} through 𝑄𝑡;
15: Compute the loss of adversarial example genera-

tion 𝐿𝑒;
16: Update the label discriminator 𝑄𝑡 by ascending

along its stochastic gradient ∇𝑄𝑡𝐿𝑒;
17: Update the classifier 𝐶𝑡 by descending along its

stochastic gradient ∇𝐶𝑡𝐿𝑒;
18: end if
19: Update the feature extractor 𝐹 by descending along

its stochastic gradient ∇𝐹 (𝐿𝑒 + 𝛼𝐿𝑓 );
20: end for
21: end for
22: Append the generated pairs (𝑥̂, 𝑦) into training data;
23: Rebuild the classifier to get the final prediction.

and

𝑝1(𝑧) = 𝑝2(𝑧) = · · · = 𝑝𝑇 (𝑧).

At the equilibrium point, the multiple teams of game players
reach their optimal values:

(i) For fixed {𝐹,𝐺,𝐶,𝑄}, the domain discriminator D ar-
rives at its maximum:

𝐷*
𝑡 (𝑧) =

𝑝𝑡(𝑧)

𝑝𝑡(𝑧) + 𝑝𝑡(𝑧)
(6)

(ii) For fixed {𝐹,𝐺,𝐶,𝐷}, the label discriminators 𝑄𝑡 (1 ≤
𝑡 ≤ 𝑇 ) arrives at its maximums:

𝑄1*
𝑡 (𝑥, 𝑦) =

𝑝𝑡(𝑥, 𝑦)

𝑝𝑡(𝑥, 𝑦) + 𝑝𝑡(𝑥, 𝑦)
(7)

𝑄2*
𝑡 (𝑥, 𝑦) =

𝑝𝑐𝑡(𝑥, 𝑦)

𝑝𝑐𝑡(𝑥, 𝑦) + 𝑝𝑔𝑡 (𝑥, 𝑦)
(8)

(iii) Given the optimal 𝐷*(𝑧) and 𝑄*(𝑥, 𝑦), the global mini-
mum of objective Eq. 5 is:

𝐿*(𝐹,𝐺,𝐶,𝐷*, 𝑄*) = −(2 + 𝛼)𝑇 𝑙𝑜𝑔4 (9)

Proof. In the multi-player game, the team {𝐹,𝐺,𝐶} tries
to minimize the objective Eq. 5 while both teams, {𝐷} and
{𝑄}, attempt to maximize this objective.

i) First, given {𝐹,𝐺,𝐶,𝑄}, the training criterion for the
domain discriminator 𝐷 regarding its 𝑡𝑡ℎ output is to maxi-
mize:

𝐿𝑓 (𝐹,𝐷𝑡)

=E𝑧∼𝑝𝑡(𝑧)

[︁
𝑙𝑜𝑔

(︀
𝐷𝑡(𝑧)

)︀]︁
+ E𝑧∼𝑝𝑡(𝑧)

[︁
𝑙𝑜𝑔

(︀
1−𝐷𝑡(𝑧)

)︀]︁
=

∫︁
𝑝𝑡(𝑧)𝑙𝑜𝑔

(︀
𝐷𝑡(𝑧)

)︀
𝑑𝑧 +

∫︁
𝑝𝑡(𝑧)

[︁
𝑙𝑜𝑔

(︀
1−𝐷𝑡(𝑧)

)︀]︁
𝑑𝑧

For any (𝑎, 𝑏) ∈ R2∖{0, 0}, the function 𝑓 → 𝑎𝑙𝑜𝑔(𝑓) +
𝑏𝑙𝑜𝑔(1 − 𝑓) achieves its maximum at 𝑎

𝑎+𝑏
. Therefore, the

domain discriminator reaches its maximum at

𝐷*
𝑡 (𝑧) =

𝑝𝑡(𝑧)

𝑝𝑡(𝑧) + 𝑝𝑡(𝑧)

for 1 ≤ 𝑡 ≤ 𝑇 .
ii) Second, given {𝐹,𝐺,𝐶,𝐷}, the training criterion for

the discriminator 𝑄𝑡 regarding its first output is to maximize:

𝐿𝑑(𝐹,𝐺,𝐶,𝑄1
𝑡 )

=E(𝑥,𝑦)∼𝑝𝑡(𝑥,𝑦)

[︁
𝑙𝑜𝑔

(︀
𝑄1

𝑡 (𝑥, 𝑦)
)︀]︁

+ E(𝑥,𝑦)∼𝑝𝑡(𝑥,𝑦)

[︁
𝑙𝑜𝑔

(︀
1−𝑄1

𝑡 (𝑥, 𝑦)
)︀]︁

=

∫︁ ∫︁
𝑝𝑡(𝑥, 𝑦)𝑙𝑜𝑔

(︀
𝑄1

𝑡 (𝑥, 𝑦)
)︀
𝑑𝑥𝑑𝑦

+

∫︁ ∫︁
𝑝𝑡(𝑥, 𝑦)

[︁
𝑙𝑜𝑔

(︀
1−𝑄1

𝑡 (𝑥, 𝑦)
)︀]︁
𝑑𝑥𝑑𝑦.

The label discriminator 𝑄𝑡 achieves its maximum for its first
output at

𝑄1*
𝑡 (𝑥, 𝑦) =

𝑝𝑡(𝑥, 𝑦)

𝑝𝑡(𝑥, 𝑦) + 𝑝𝑡(𝑥, 𝑦)
.

The training criterion for the discriminator 𝑄𝑡 regarding its
second output is to maximize:

𝐿𝑑(𝐹,𝐺,𝐶,𝑄2
𝑡 )

=E(𝑥,𝑦)∼𝑝𝑐𝑡 (𝑥,𝑦)

[︁
𝑙𝑜𝑔

(︀
𝑄2

𝑡 (𝑥, 𝑦)
)︀]︁

+ E(𝑥,𝑦)∼𝑝
𝑔
𝑡 (𝑥,𝑦)

[︁
𝑙𝑜𝑔

(︀
1−𝑄2

𝑡 (𝑥, 𝑦)
)︀]︁

=

∫︁ ∫︁
𝑝𝑐𝑡(𝑥, 𝑦)𝑙𝑜𝑔

(︀
𝑄2

𝑡 (𝑥, 𝑦)
)︀
𝑑𝑥𝑑𝑦

+

∫︁ ∫︁
𝑝𝑔𝑡 (𝑥, 𝑦)

[︁
𝑙𝑜𝑔

(︀
1−𝑄2

𝑡 (𝑥, 𝑦)
)︀]︁
𝑑𝑥𝑑𝑦.

The label discriminator 𝑄𝑡 achieves its maximum for its
second output at

𝑄2*
𝑡 (𝑥, 𝑦) =

𝑝𝑐𝑡(𝑥, 𝑦)

𝑝𝑐𝑡(𝑥, 𝑦) + 𝑝𝑔𝑡 (𝑥, 𝑦)
.



iii) Third, given the optimal 𝐷*(𝑧) and 𝑄*(𝑥, 𝑦), the global
minimum of objective Eq. 5 is:

𝐿*(𝐹,𝐺,𝐶,𝐷*, 𝑄*)

=

𝑇∑︁
𝑡=1

[︁
𝐿𝑒(𝐹,𝐺𝑡, 𝐶𝑡, 𝑄

*
𝑡 ) + 𝛼𝐿𝑓 (𝐹,𝐷

*
𝑡 )
]︁

=

𝑇∑︁
𝑡=1

[︂
E(𝑥,𝑦)∼𝑝𝑡(𝑥,𝑦)

[︁
𝑙𝑜𝑔

𝑝𝑡(𝑥, 𝑦)

𝑝𝑡(𝑥, 𝑦) + 𝑝𝑡(𝑥, 𝑦)

]︁
+ E(𝑥,𝑦)∼𝑝𝑡(𝑥,𝑦)

[︁
𝑙𝑜𝑔

𝑝𝑡(𝑥, 𝑦)

𝑝𝑡(𝑥, 𝑦) + 𝑝𝑡(𝑥, 𝑦)

]︁]︂
+

𝑇∑︁
𝑡=1

[︂
E(𝑥,𝑦)∼𝑝𝑐𝑡 (𝑥,𝑦)

[︁
𝑙𝑜𝑔

𝑝𝑐𝑡(𝑥, 𝑦)

𝑝𝑐𝑡(𝑥, 𝑦) + 𝑝𝑔𝑡 (𝑥, 𝑦)

]︁
+ E(𝑥,𝑦)∼𝑝

𝑔
𝑡 (𝑥,𝑦)

[︁
𝑙𝑜𝑔

𝑝𝑔𝑡 (𝑥, 𝑦)

𝑝𝑐𝑡(𝑥, 𝑦) + 𝑝𝑔𝑡 (𝑥, 𝑦)

]︁]︂
+ 𝛼

𝑇∑︁
𝑡=1

[︂
E𝑧∼𝑝𝑡(𝑧)

[︁
𝑙𝑜𝑔

𝑝𝑡(𝑧)

𝑝𝑡(𝑧) + 𝑝𝑡(𝑧)

]︁
+ E𝑧∼𝑝𝑡(𝑧)

[︁
𝑙𝑜𝑔

𝑝(𝑧)

𝑝𝑡(𝑧) + 𝑝𝑡(𝑧)

]︁]︂
=2

𝑇∑︁
𝑡=1

[︁
𝐽𝑆𝐷

(︀
𝑝𝑡(𝑥, 𝑦), 𝑝𝑡(𝑥, 𝑦)

)︀
+ 𝐽𝑆𝐷

(︀
𝑝𝑐𝑡(𝑥, 𝑦), 𝑝

𝑔
𝑡 (𝑥, 𝑦)

)︀]︁
− (2 + 𝛼)𝑇 𝑙𝑜𝑔4 + 2𝛼

𝑇∑︁
𝑡=1

𝐽𝑆𝐷
(︁
𝑝𝑡(𝑧), 𝑝𝑡(𝑧)

)︁
≥− (2 + 𝛼)𝑇 𝑙𝑜𝑔4.

where 𝐽𝑆𝐷(·) is the Jensen-Shannon divergence. The objec-
tive achieves its global minimum −(2 + 𝛼)𝑇 𝑙𝑜𝑔4 if and only
if the following conditions are satisfied:

(1) 𝑝𝑡(𝑥, 𝑦) = 𝑝𝑡(𝑥, 𝑦)
(2) 𝑝𝑐𝑡(𝑥, 𝑦) = 𝑝𝑔𝑡 (𝑥, 𝑦)
(3) 𝑝𝑡(𝑧) = 𝑝𝑡(𝑧)

where 1 ≤ 𝑡 ≤ 𝑇 .
Based on the first two equilibrium conditions, we have

𝑝𝑡(𝑥, 𝑦) = 𝑝𝑐𝑡(𝑥, 𝑦) = 𝑝𝑔𝑡 (𝑥, 𝑦), where 1 ≤ 𝑡 ≤ 𝑇 .
Now, consider the third equilibrium condition. Denote the

matrix

A =

⎡⎢⎢⎢⎣
𝑇 − 1 −1 · · · −1
−1 𝑇 − 1 · · · −1
...

...
. . .

...
−1 −1 · · · 𝑇 − 1

⎤⎥⎥⎥⎦
and the column vector

p =
[︀
𝑝1(𝑧), 𝑝2(𝑧), · · · , 𝑝𝑇 (𝑧)

]︀𝑇
.

The equilibrium conditions 𝑝𝑡(𝑧) = 𝑝𝑡(𝑧)(1 ≤ 𝑡 ≤ 𝑇 ) corre-
sponds to the linear system

Ap = 0. (10)

Denote the rank of A by 𝑟(A). Since 𝑟(A) = 𝑇 −1, the linear
system Ap = 0 has one fundamental solution, i.e.,

𝑝1(𝑧) = 𝑝2(𝑧) = · · · = 𝑝𝑇 (𝑧).

In summary, the objective Eq. 5 achieves its global mini-
mum if and only if 𝑝𝑡(𝑥, 𝑦) = 𝑝𝑐𝑡(𝑥, 𝑦) = 𝑝𝑔𝑡 (𝑥, 𝑦) and 𝑝1(𝑧) =
𝑝2(𝑧) = · · · = 𝑝𝑇 (𝑧). �

Theorem 1 provides the insights into the proposed TAGN
model regarding the game equilibrium among the multiple
players. At the equilibrium point, the feature extractor exact-
ly produces the task-invariant features across different tasks,
while both the generator and the classifier precisely replicate
the joint data distribution for each task. In other words, the
task-adversarial co-generative nets perfectly generates both
transferable features and reliable examples at the same time.

5 EXPERIMENTAL RESULTS

In order to verify the effectiveness of the proposed method, we
compare TAGN with a variety of state-of-the-art algorithms
on the image datasets, which are the standard benchmarks
for the evaluation of multi-task learning algorithms.

5.1 Data sets

The Office-Home1 [30] dataset consists of 15500 images from
4 different domains: 1) Artistic images (paintings, sketches
and artistic depictions); 2) Clip art (clipart images); 3) Prod-
uct images (images without background); and 4) Real-world
images (regular images captured with a camera). For each
domain, the dataset contains images of 65 object categories
found typically in office and home settings. The images in the
dataset were crawled through several search engines and on-
line image directories. Therefore, we have four learning tasks
corresponding four domains including Artistic (A), Clipart
(C), Product (P), and Real-world images (R). Each learning
task is a multi-class (c=65) classification problem.

The Office-Caltech dataset consists of 2533 images selected
from the 10 common categories shared by the Office-312 [25]
dataset and the Caltech-2563 dataset. The Office-31 dataset
is a collection of 4652 images in 31 categories collected from
three distinct domains, i.e., Amazon, DSLR, and Webcam.
The Amazon domain consists of images at medium resolu-
tion typically taken in an environment with studio lighting
conditions. The DSLR domain consists of images that are
captured with a digital camera in realistic environments. The
Webcam domain is composed of images recorded with a sim-
ple webcam at low resolution. For the Caltech-256 dataset,
it is a collection of 30607 images in 256 categories download-
ed from Google Images. Hence, it yields four learning tasks
corresponding to four domains: Amazon (A), Webcam (W),
DSLR (D), and Caltech (C). Likewise, each learning task is
a multi-class (c=10) classification problem.

5.2 Comparison methods

We compare TAGN with a variety of methods including the
classic convolutional neural network (CNN) such as AlexNet
[15] or VGG [26] , multi-task feature learning (MTFL) [1],

1http://hemanthdv.org/OfficeHome-Dataset/
2https://people.eecs.berkeley.edu/∼jhoffman/domainadapt/
3http://www.vision.caltech.edu/Image Datasets/Caltech256/

http://hemanthdv.org/OfficeHome-Dataset/
https://people.eecs.berkeley.edu/~jhoffman/domainadapt/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/


Table 1: The network architecture of TAGN.

Feature extractor Domain discriminator Classifier Generator Label discriminator

CNN Linear(256,1024) Linear(256,1024) ConvTranspose2d(512,2048) Conv2d(3,64)
Dropout ReLU ReLU BatchNorm2d, ReLU LeakyReLU

Linear(512*7*7,4096) Dropout Dropout ConvTranspose2d(2048,1024) Conv2d(64,128)
BatchNorm1d, ReLU Linear(1024,1024) Linear(1024,1024) BatchNorm2d, ReLU BatchNorm2d, LeakyReLU

Dropout ReLU ReLU ConvTranspose2d(1024,512) Conv2d(128,256)
Linear(4096,4096) Dropout Dropout BatchNorm2d, ReLU BatchNorm2d, LeakyReLU

BatchNorm1d, ReLU Linear(1024,T) Linear(1024,c) ConvTranspose2d(512,256) Conv2d(256,512)
Dropout Softmax Softmax BatchNorm2d, ReLU BatchNorm2d, LeakyReLU

Linear(4096,256) ConvTranspose2d(256,128) Conv2d(512,1024)
BatchNorm1d, ReLU BatchNorm2d, ReLU BatchNorm2d, LeakyReLU

Dropout ConvTranspose2d(128,64) Conv2d(1024,2048)
BatchNorm2d, ReLU BatchNorm2d, LeakyReLU

ConvTranspose2d(64,3) Conv2d(2048,512)
Tanh BatchNorm2d

Linear(512,c)
Softmax

Table 2: Classification accuracy on Office-Caltech.

Method
5% 10% 20%

A W D C Avg A W D C Avg A W D C Avg

AlexNet ([15]) 88.9 73.0 80.4 88.7 82.8 92.2 80.9 88.2 88.9 87.6 91.3 83.3 93.7 94.9 90.8
MTFL ([1]) 90.0 78.9 90.2 86.9 86.5 92.4 85.3 89.5 89.2 89.1 93.5 89.0 95.2 92.6 92.6
RMTL ([5]) 91.3 82.3 88.8 89.1 87.9 92.6 85.2 93.3 87.2 89.6 94.4 87.0 96.7 93.4 92.4
MTRL ([33]) 86.4 83.0 95.1 89.1 88.4 91.1 87.1 97.0 87.6 90.7 90.0 88.8 99.2 94.3 93.1
DMTRL ([32]) 91.2 88.3 92.5 85.6 89.4 92.2 91.9 97.4 86.8 92.0 92.6 97.6 94.5 88.4 93.3
MRN ([20]) 92.5 97.5 97.9 87.5 93.8 93.6 98.6 98.6 87.3 94.5 94.4 98.3 99.9 89.1 95.5
TAGN 92.8 93.9 98.2 91.1 94.0 93.9 95.9 98.8 91.0 94.9 94.8 98.7 98.9 93.8 96.6

multi-task relationship learning (MTRL) [33], robust multi-
task learning (RMTL) [5], deep multi-task learning with
tensor factorization (DMTRL) [32], and multilinear relation-
ship networks (MRN) [20]. MTFL [1], MTRL [33], and RMTL
[5] are shallow multi-task learning algorithm, while DMTRL
[32] and MRN [20] are deep multi-task learning methods
proposed recently. MTFL [1] extracts the low-rank shared
feature representations by learning feature covariance, while
RMTL [5] extends MTFL [1] to further capture the task
relationships using a low-rank structure and identify outlier
tasks using a group-sparse structure. MTRL [33] captures the
task relationships using task covariance of a matrix normal
distribution. DMTRL [32] tackles multi-task deep learning by
tensor factorization, which learns shared feature subspace in-
stead of multilinear task relationship in multilayer parameter
tensors. The multilinear relationship networks (MRN) [20]
simultaneously learns transferable features and multilinear
relationships of tasks and deep features.

5.3 Network architecture

The TAGN algorithm is implemented using the open source
PyTorch [22] package4. It can be trained using the standard
backpropagation algorithms based on min-batch stochastic
gradient descent or its modifications. We adopt learning rate
decaying strategy. The initial learning rate is set to 0.001,
and the momentum is 0.9. The number of training iterations
is set as 𝜏𝑚𝑎𝑥 = 2000, and the sampling batch size 𝑏 is 20.
For the trade-off parameter, we empirically set 𝛼 = 1.

4https://github.com/pytorch

The network structure of TAGN is showed in Table 1. It
consists of five components, i.e., feature extractor, domain
discriminator, classifier, generator, and label discriminator.
Specifically, the feature extractor is based on the classic
CNNs, followed by multiple linear layers, ReLU, batch nor-
malization, and Dropout layers. We adopt AlexNet [15] and
VGG [26] for the Office-Caltech and Office-Home datasets,
respectively. The Dropout layer randomly zeroes some of the
elements of the input tensor using samples from a Bernoulli
distribution. The non-linear activation ReLU applies the recti-
fied linear unit function element-wise, 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥),
to the input data. Both of the domain discriminator and
the classifier are composed of multiple linear layers, ReLU,
Dropout, and Softmax layers. For the generator, it is made
of multiple ConvTranspose2d layers and the batch normal-
ization. The ConvTranspose2d layer applies a 2D transposed
convolution operator over an input image composed of sev-
eral input planes. The last layer Tanh applies the element-

wise function, 𝑇𝑎𝑛ℎ(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 , to its input. The label

discriminator has two sub-networks, which have the same
structure as shown in Table 1. Their differences lie in type-
s of pairs fed to the sub-networks. The label discrimina-
tor mainly consists of multiple Conv2d, LeakyReLU, and
batch normalization layers. The Conv2d layer applies a 2D
convolution over an input signal composed of several input
planes. The LeakyReLU layer applies the element-wise func-
tion, 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥)+𝜆*𝑚𝑖𝑛(0, 𝑥), to its input,
where 𝜆 controls the angle of the negative slope.

https://github.com/pytorch


Table 3: Classification accuracy on Office-Home.

Method
5% 10% 20%

A C P R Avg A C P R Avg A C P R Avg

VGG ([26]) 35.8 31.2 67.8 62.5 49.3 51.0 40.7 75.0 68.8 58.9 56.1 54.6 80.4 71.8 65.7
MTFL ([1]) 40.1 30.4 61.5 59.5 47.9 50.3 35.0 66.3 65.0 54.2 55.2 38.8 69.1 70.0 58.3
RMTL ([5]) 42.3 32.8 62.3 60.6 49.5 49.7 34.6 65.9 64.6 53.7 55.2 39.2 69.9 70.5 58.6
MTRL([33]) 42.7 33.3 62.9 61.3 50.1 51.6 36.3 67.7 66.3 55.5 55.8 39.9 70.2 71.2 59.3
DMTRL ([32]) 49.2 34.5 67.1 62.9 53.4 57.2 42.3 73.6 69.9 60.8 58.3 56.1 79.3 72.1 66.5
MRN ([20]) 53.3 36.4 70.5 67.7 57.0 59.9 42.7 76.3 73.0 63.0 58.5 55.6 80.7 72.8 66.9
TAGN 57.8 44.7 73.8 66.1 60.6 64.5 61.3 80.6 78.9 71.3 66.4 65.9 84.7 76.9 73.5

5.4 Performance comparison

We follow the standard protocol [20, 33] for multi-task learn-
ing and randomly select 5%, 10%, and 20% (training ratio)
examples from each task as trainset and use the rest as test-
set, respectively. We repeat five random experiments and
report the average classification accuracy on the testset.

Tables 2-3 show the classification accuracy on Office-Caltech
and Office-Home datasets, respectively. The results of the
comparison methods are quoted from the related papers
[1, 5, 20, 32, 33]. We have the following observations from
the experiment results.

∙ CNN performs better than the shallow multi-task learn-
ing approaches such as MTFL [1], MTRL [33], and
RMTL [5] on the Office-Home dataset when the training
ratio is relatively large (e.g., 10% or 20%), verifying the
superiority of CNN for feature learning. However, when
the labeled data turn sparser (e.g., 5% in Office-Home)
or the domains are more similar (as in Office-Caltech),
the shallow multi-task learning methods outperform CN-
N, demonstrating the advantages of sharing the strength
among the related tasks.

∙ All the deep multi-task learning methods including TAG-
N, DMTRL [32], and MRN [20] outperform both classic
CNNs and the shallow multi-task learning approaches. It
demonstrates that deep multi-task learning can further
promote the performance by simultaneously learning the
hierarchical features from data and sharing knowledge
across tasks.

∙ Our proposed TAGN method outperforms all the com-
parison algorithms on both datasets in most case. The
performance superiority of TAGN is more significant
on the relatively difficult problem (i.e., Office-Home).
It verifies the effectiveness of the proposed approach.
TAGN co-learns the transferable features and plausible
examples to bridge the domain gap and alleviate the
scarcity of labeled data, leading to better performance.

5.5 Ablation study

We further conduct an ablation study to investigate how the
individual component of TAGN impacts the classification
performance. We setup the experiment with three settings:

∙ 𝑇𝐴𝐺𝑁 : the proposed TAGN algorithm.
∙ 𝑇𝐴𝐺𝑁𝑓 : TAGN with the generation of feature only.
∙ 𝑇𝐴𝐺𝑁𝑛: the näıve implementation of TAGN, which has
no the generation of features and examples.
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Figure 2: Ablation study on Office-Caltech dataset.
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Figure 3: Ablation study on Office-Home dataset.

Specifically, both 𝑇𝐴𝐺𝑁𝑓 and 𝑇𝐴𝐺𝑁𝑛 are the reduced
version of TAGN. For 𝑇𝐴𝐺𝑁𝑓 , we disable the generator. For
𝑇𝐴𝐺𝑁𝑛, we disable both the generator and the domain dis-
criminator, and use the classification loss to back-propagate
the gradient. The ablation study is conducted on both the
Office-Home and Office-Caltech datasets. The training ratio
is fixed to 10%. We set the numbers of training iterations as
1000 and 2000 for Office-Caltech and Office-Home, respec-
tively. Figures 2-3 plot the performance curves varying with
the training epoch for the two datasets, respectively.

From the figures, we can see that 𝑇𝐴𝐺𝑁𝑓 outperforms
𝑇𝐴𝐺𝑁𝑛 by learning the task-invariant features, which facili-
tate the knowledge sharing among tasks. Furthermore, the



inadequacy of labeled data could be alleviated by leveraging
the generated examples, and as a result 𝑇𝐴𝐺𝑁 performs
better than 𝑇𝐴𝐺𝑁𝑓 . The results suggest that either the
extraction of transferable features or the generation of the
plausible examples is indispensable, and both of them help
improve the performance.

Also, the classification accuracy of all the three algorithms
improves along the training epochs, and finally converge to
the stable values.

6 CONCLUSION

We propose TAGN, task-adversarial co-generative nets for
deep multi-task learning. TAGN employs multiple game-
players to simultaneously generate the task-invariant features
and plausible examples, in order to smooth the domain shift
and tackle the limited training data issue. Theoretically we
prove the equilibrium of the multi-player game. The effective-
ness of the proposed approach is also empirically verified on
the benchmark data sets. Although we focus on multi-task
learning in this paper, the proposed approach is flexible and
widely applicable to other areas. As on-going work, we will
adapt the proposed method to multi-modal scenarios.
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