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ABSTRACT

Latent factor models have become a prevalent method in recom-

mender systems, to predict users’ preference on items based on the

historical user feedback. Most of the existing methods, explicitly

or implicitly, are built upon the �rst-order rating distance principle,

which aims to minimize the di�erence between the estimated and

real ratings. In this paper, we generalize such �rst-order rating dis-

tance principle and propose a new latent factor model (HoORaYs)

for recommender systems. �e core idea of the proposed method is

to explore high-order rating distance, which aims to minimize not

only (i) the di�erence between the estimated and real ratings of the

same (user, item) pair (i.e., the �rst-order rating distance), but also

(ii) the di�erence between the estimated and real rating di�erence

of the same user across di�erent items (i.e., the second-order rating

distance). We formulate it as a regularized optimization problem,

and propose an e�ective and scalable algorithm to solve it. Our

analysis from the geometry and Bayesian perspectives indicate that

by exploring the high-order rating distance, it helps to reduce the

variance of the estimator, which in turns leads to be�er general-

ization performance (e.g., smaller prediction error). We evaluate

the proposed method on four real-world data sets, two with ex-

plicit user feedback and the other two with implicit user feedback.

Experimental results show that the proposed method consistently

outperforms the state-of-the-art methods in terms of the prediction

accuracy.
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1 INTRODUCTION

In recent years, researchers have devoted great e�orts to the de-

velopment of recommender systems in many real-world applica-

tions [4, 6, 11]. �e key task of recommender systems is to predict

the users’ preference on items. Collaborative �ltering (CF) methods

and content-based methods have been widely used to achieve this

task. For example, matrix factorization [11] takes ratings as input

and outputs the latent vectors for users and items; it becomes a

popular base for recommender systems, largely due to its great suc-

cess at the Net�ix Prize. To further improve the recommendation

accuracy, Wang et al. [20] propose the collaborative topic regres-

sion (CTR) rating model to incorporate item content; Ma et al. [12]

model social trust (Sorec) by incorporating social relationships and

ratings. �e combination of CTR and Sorec is also explored [2, 17].

A line of existing work has focused on employing di�erent types

of data (e.g., ratings, item content, social relationships, etc.) so as

to make more informed and accurate recommendations. In this

work, we focus on an orthogonal line work, i.e., the optimization

formulation aspect.

From the optimization viewpoint, most of the existing methods,

explicitly or implicitly, are built upon the �rst-order rating distance

principle. �at is, these methods seek for an ‘optimal’ latent rep-

resentations for users and items, which minimize the di�erences

between the estimated and real ratings of the same (user, item) pair.

Conceptually, minimizing the �rst-order distance (between the real

rating to estimated rating) can be viewed as a self-calibration pro-

cess. However, the solution space of the optimization problem could

be large, especially when the available user feedback information

is sparse, which might result in a biased estimator for the latent

vectors of users and items.

In this paper, we generalize the �rst-order distance principle and

propose to leverage the high-order distance to improve the recom-

mendation performance. �e core idea of the proposed method is

to explore high-order rating distance, which aims to minimize not

only (i) the di�erence between the estimated and real ratings of the
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same (user, item) pair (i.e., the �rst-order rating distance), but also

(ii) the di�erence between the estimated and real rating di�erence

of the same user across di�erent items (i.e., the second-order rating

distance). We hypothesize that by exploring high-order distance,

it will help shrink the solution space of the corresponding opti-

mization problem. By doing so, the variance of the estimator (i.e.,

the latent representations of users and items) could be mitigated,

which will in turn lead to be�er generalization performance (e.g., a

smaller prediction error).

�e main contributions of this paper include:

• NewModel and Algorithm that embrace the high-order

rating distance in the latent factor methods for recom-

mender systems. �e proposed model HoORaYs can han-

dle both explicit and implicit user feedback, as well as the

case when content information is available. �e proposed

algorithm is able to �nd local optima with a linear time

complexity.

• Analysis from both the geometric perspective and the

Bayesian perspective for the proposed model, which pro-

vides key insight on how the high-order distance reduces

the variance, and how to generalize the high-order distance

based optimization to other recommendation models.

• Experimental evaluations on four real-world data sets

showing the e�ectiveness of the proposed method. For ex-

ample, the proposed method outperforms the best competi-

tors by up to 24.3% improvement in terms of the prediction

accuracy.

�e rest of the paper is organized as follows. In Section 2, we

present the problem statement. In Section 3, we describe the pro-

posed model with the geometric interpretation, Bayesian inter-

pretation, and algorithm analysis. In Section 4, we present the

experimental results. In Section 5, we review the related work.

Finally, we conclude the paper in Section 6.

2 PROBLEM STATEMENT

In this section, we provide the problem statement and some back-

ground knowledge of our proposed model.

2.1 �e Recommendation Problem

In recommender systems, the two kinds of fundamental elements

are users and items. We assume there are M users and N items in

the recommender system. We denote the latent vectors for users as

U = {ui }
m
i=1

, and the latent vectors for items as V = {vj }
n
j=1

. �e

length of these latent vectors is K . �e observed ratings are usually

denoted as R = {ri j |ri j ∈ [1, rmax ]}, where ri j represents the rating

that user i gives to item j, and the value rmax is the scale of rating

in the target recommender system (e.g., 5 stars on MovieLens).

Based on the above notations, we de�ne the target problem as

follows

Problem 1. �e Recommendation Problem

Given: (1) the set of existing ratings R from users to items, (2)

a user i , and (3) an item j;
Find: the estimated rating r̂i j from user i to item j.

As we can see from the de�nition, the input of our problem

includes the existing ratings. Our focus is on the optimization aspect

instead of employing more types of data, although the proposed

method can be similarly applied when more types data are available.

�e goal is to predict the unobserved ratings from users to items,

and we can directly obtain the ratings as long as we have learned

the latent vectors U and V .

2.2 Latent Factor Models: Matrix Factorization

In recent years, matrix factorization based collaborative �ltering [11]

becomes one of the most popular methods to solve the recommen-

dation problem. In the view of matrix factorization, the users and

items could be represented by factors in the same latent factor space.

For example, user i is represented by a latent factor vector ui , and

item j is represented by a latent factor vector vj . So we predict the

rating that user i gives to item j with the inner product of the two

corresponding latent factor vectors

r̂i j = u
T
i vj (1)

We use the observed ratings to learn the latent factor vectors. Com-

monly, we minimize the following optimization function

min

U ∗,V ∗

∑
ri j ∈R

(ri j − u
T
i vj )

2
(2)

where square loss is used as the loss function, and R is the set of

the observed ratings.

2.3 Model Variance Reduction

From statistical learning perspective, a good estimator (e.g., latent

vectors in our recommendation problem) should have small pre-

diction errors (PE) on both training and the new data. With the

bias-variance decomposition [5], the expected prediction error is

the sum of three terms: the irreducible errors , Bias , and Variance

PE = σ 2 + Bias2 +Variance (3)

It is well known that the local curvature can be picked up to �t the

training data when the model becomes more complex. However,

such a complex model su�ers from the highvariance , and hence to a

high PE when estimating on the new data (over��ing). To deal with

the over��ing in Eq. (1), researchers added ridge constraints (i.e.,

L2-regularization) on the parameters ui and vj by controlling their

sum of squares, so that the original unconstrained optimization

problem becomes

minimize
∑
ri j ∈R

(ri j −u
T
i vj )

2 s .t .
m∑
i=1

(ui )
2 ≤ tu ,

n∑
j=1

(vj )
2 ≤ tv (4)

where tu > 0 and tv > 0. �e above optimization problem can be

re-wri�en as

L =
∑
ri j ∈R

(ri j − u
T
i vj )

2 + λu

m∑
i=1

| |ui | |
2 + λv

n∑
j=1

| |vj | |
2

(5)

where λu and λv are the parameters to control the L2 regulariza-

tion terms. With the proper λu and λv , Eq. (5) balances bias and

variance to reach the lower PE.
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3 HIGH-ORDER OPTIMIZATION OF RATING

DISTANCE

In this section, we describe the proposed HoORaYs model (Subsec-

tion 3.1). �en, we analyze why the proposed model can reduce the

variance of the estimator from two di�erent perspectives, including

geometric interpretation (Subsection 3.2) and Bayesian interpreta-

tion (Subsection 3.3). Finally, we present a brief algorithm analysis

in terms of its optimality and complexity (Subsection 3.4).

3.1 �e HoORaYs Model

�e core idea of HoORaYs is to use high-order rating distance

to reduce the variance of the estimator (i.e., the latent factors for

users and items) by shrinking the solution space of the optimization

problem in Eq. (4). �e intuition is as follows. By optimizing the

�rst-order distance, we basically want to �nd a good estimator

which matches a user’s preference on each of the observed items.

By introducing the additional high-order distance, we require the

learnt latent factors to also capture the subtle preference di�erence

of a user across di�erent item pairs.

In particular, the error between the real rating ri j and the esti-

mated rating r̂i j in Eq. (4) can be treated as the distance between

two ratings. In addition the rating distance of < ri j , r̂i j > pair,

other rating errors from di�erent kinds of pairs (e.g., < ri j′ , r̂i j >,

< ri j′ , ri j >, and so on) can also be measured as rating distances.

�ese rating distances have their own meaning in the context of

recommender systems. For example, the distance between ri j′ and

ri j (denoted by D) means the real di�erence between item j and

item j ′ under user i; the distance between ri j′ and r̂i j (denoted by

D̂) means the estimated di�erence between item j and item j ′ under

user i a�er estimating r̂i j . Furthermore, when ri j′ is �xed for both

D and D̂, we can measure the distance between D and D̂. �e error

between D and D̂ re�ects the accuracy of learned latent vectors

of user i and item j. �is error is the distance between two rating

distances, and we call this distance of distance as second-order

rating distance.

As we can see, both �rst-order and second-order distances re�ect

the learned latent vectors of user/items. If we add second-order

rating distance to the optimization problem in Eq. (4) as an addi-

tional constraint, we could further reduce thevariance of the latent

vectors of users/items in recommender systems. �e optimization

problem of our proposed HoORaYs is wri�en as below

minimize
∑
ri j ∈R

(ri j − u
T
i vj )

2

s .t .
m∑
i=1

(ui )
2 ≤ tu ,

n∑
j=1

(vj )
2 ≤ tv∑

ri j

∑
ri′ j′

Ii ji′j′ (σ (u
T
i vj , ri′j′ ) − σ (ri j , ri′j′ ))

2 = 0

(6)

where σ (x ,y) = 1/(1 + e−(x−y ) ), and Ii ji′j′ = 1 if ratings ri j and

ri′j′ exist with i ′ = i
∧

j ′ , j
∨
i ′ , i

∧
j ′ = j. �e optimization

problem with second-order rating distance constraint can be re-

wri�en as follow

argmin

U ∗,V ∗

∑
ri j

(ri j − u
T
i vj )

2 + λu

m∑
i=1

| |ui | |
2 + λv

n∑
j=1

| |vj | |
2

+ λd
∑
ri j

∑
ri′ j′

Ii ji′j′ (σ (u
T
i vj , ri′j′ ) − σ (ri j , ri′j′ ))

2

(7)

where λd is the parameter to control the e�ect of second-order

rating distance.

Speed Gear. Since the complexity of second-order distance in

Eq. (7) is roughly O ( |R |( |Ru | + |Rv |)), we propose to speedup the

model learning process based on two key observations: (i) the rating

scale is usually small for recommender systems (e.g., 1-5 stars), and

(ii) the contributions of di�erent ratings from other users/items are

equal to each other if they share the same rating value. Hence, the

loss function in Eq. (7) could be re-wri�en as

argmin

U ∗,V ∗

∑
ri j

(ri j − u
T
i vj )

2 + λu

m∑
i=1

| |ui | |
2 + λv

n∑
j=1

| |vj | |
2

+ λd
∑
ri j

rmax∑
r=1

|Ωri j ,r |(σ (u
T
i vj , r ) − σ (ri j , r ))

2

(8)

where rmax is the maximal rating value (e.g., rmax = 5 in Movie-

Lens), and |Ωri j ,r | is the total number of ratings that the user i rated

to other items with value r or the item j received from other users

with value r .

Update Rules. We use stochastic gradient descent to optimize

Eq. (8). In detail, we alternatively optimize U , V in each iteration.

In each iteration, we take the partial derivatives of Eq. (8) with

respect to ui and vj , which lead to the following update rules

ui ←− λuui + (ri j − uTi vj )vj

+ λd
rmax∑
r=1

|Ωri j ,r |(σ (ri j , r )σ (u
T
i vj , r ) (1 − σ (u

T
i vj , r ))vj

− σ (uTi vj , r )
2 (1 − σ (uTi vj , r ))vj )

(9)

vj ←− λvvj + (ri j − uTi vj )ui

+ λd
rmax∑
r=1

|Ωri j ,r |(σ (ri j , r )σ (u
T
i vj , r ) (1 − σ (u

T
i vj , r ))ui

− σ (uTi vj , r )
2 (1 − σ (uTi vj , r ))ui )

(10)

We summarize our fast learning algorithm in Alg. 1, where α is

the learning rate, ∇ is the partial derivative operator, and we use

stochastic gradient descent method to learn the parameters.

3.2 Geometric Interpretation of HoORaYs

Here we present the geometric interpretation of the proposed

HoORaYs. By adding the constraint of second-order rating dis-

tance to the optimization problem in Eq. (4), the solution space to

U and V can be further shrunk, which leads to the decrease on

variance .

�e illustrative example in Fig. 1 shows how the constraint of

second-order rating distance could shrink the original solution

space. Suppose that the latent factor space is 2-dimensional, and

each user/item has its place, which is presented as the latent vector

in the space. In Fig. 1(a), taking user i and item j for example
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uT
i vj = rij + ✏

uT
i vj = ✏� rij uT

i vj = rij

uT
i v0j = rij0

(a) �e solution space of matrix factorization

rij0

rij

r̂ijD

D̂

D̂

r̂ij

uT
i vj = rij + ✏

uT
i vj = ✏� rij uT

i vj = rij

uT
i v0j = rij0

(b) �e solution space with the constraint of second-order

rating distance (before optimization)

rij0

rij

r̂ij

D

D̂

D̂

r̂ij

uT
i vj = rij + ✏

uT
i vj = ✏� rij uT

i vj = rij

uT
i v0j = rij0

(c) �e solution space with the constraint of second-order

rating distance (a�er optimization)

Figure 1: �e illustrative example of applying the constraint of second-order rating distance to matrix factorization. We can

see that second-order distance further shrinks the solution space, which means to reduce variance of prediction error for the

optimization problem. Notice that, the second-order distance will also shrink the solution space on the other side, for clarify,

we do not indicate that in the �gure.

Algorithm 1: Learning HoORaYs

Input: the set of observed ratings R, and the maximal rating

scale rmax
Output: latent vectors of users U , latent vectors of items V

1 initialize U , V

2 repeat

3 for ri j ∈ R do

4 for r ← 1, ..., rmax do

5 for f ← 1, ...,k do

6 update ui,f ← ui,f − α∇ui, f as de�ned in

Eq. (9)

7 update vj,f ← vj,f − α∇vj, f as de�ned in

Eq. (10)

8 until convergence;

9 returnU ∗, V ∗

and by assuming that vj and ri j are given, we want to �nd ui
by �rst-order rating distance (e.g., matrix factorization). Ideally,

uTi vj = ri j exists for the perfect ui , and this line could be plo�ed

in the space. As shown in Fig. 1(a), any point in this line is a

solution to ui , and all points satisfy the best condition to ri j . �en,

we allow the error to ui , e.g., |uTi vj − ri j | < ϵ . With the two

paralleled lines uTi vj = ri j + ϵ and uTi vj = ri j − ϵ (two red lines

in Fig. 1(a)), any point inside the two bounded lines is a solution

that satis�es to the error ϵ . Now, we consider another item j ′ with

the given vj′ into the space, and the solution space of ui is then

bounded by the four red lines in the Fig. 1(a). In Fig. 1(b), the

black point is the origin of the latent factor space, and the length of

perpendicular distance from origin to line uTi vj = ri j is ri j when

ui is normalized. ri j′ , denoted as a black line segment, can also

measured in the space. A�er coinciding line segment ri j′ to line

segment ri j , several second-order distances appear. In Fig. 1(b), the

second-order distance between ri j and ri j′ is denoted as D. Based

on the two worst estimated r̂i j bounded by ϵ , we could point out

two second-order distances between r̂i j and ri j′ as D̂ in Fig. 1(b). By

the constraint of |D̂ −D |2 = 0, the error bounds would shrink from

both sides. Ideally, as the optimization problem in Eq. (6) reaches

the optima, the shaded area will be compressed by the constraint of

second-order rating distance. Shrinking the solution space reduces

the variance (e.g., almost half of original solution space is shrunk

in Fig. 1(c)), and might reduce the prediction error (PE) of the rating

model in Eq. (1).

3.3 Bayesian Interpretation of HoORaYs

In addition to the geometric interpretation, we present our proposed

HoORaYs from Bayesian perspective. Minh et al. [14] presented

a probabilisitic model for matrix factorization. In probabilistic

matrix factorization, they assumed that ratings are generated by

a speci�c generative process. In order to leverage information

from content (e.g., reviews, tags), researchers used topic modeling

approaches to extract latent topics from items. Collaborative topic

regression (CTR) model was proposed by Wang et al. [20] to deal

with recommendation problem by considering the merit of both

probabilistic topic modeling and collaborative �ltering.

�e proposed HoORaYs can apply to both MF and CTR. Take

CTR model as the rating model, �e graphical model of HoORaYs

is shown in Fig. 2. We treat the constraint of second-order distance

as an observed random variable a�er observing the rating. Next,

instead of simply using the distance between the real ri j and esti-

mated r̂i j as the optimization target in CTR, we optimize over the

second-order distance di ji′j′ which is the distance between the real

rating distance (between ri j and ri′j′ ) and the estimated rating dis-

tance (between r̂i j and ri′j′ ). �e generative process of HoORaYs

is as follows

• For each user i , draw the latent vector ui ∼ N (0, λ−1

u IK)
• For each item j

– Draw topic proportions θ j ∼ Dirichlet (α )

– Draw the latent o�set ϵj ∼ N (0, λ−1

v IK) and set

the item latent vector as vj = ϵj + θ j
– For each word w jnw ,
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Figure 2: �e probabilistic graphical model of HoORaYs.

∗ Draw topic assignment zjnw ∼Mult(θ j )
∗ Draw word w jnw ∼Mult(βzjnw )

• For each pair of user and item, draw the rating

ri j ∼ N (uTi vj , c
−1

i j )

• For each second-order rating distance of ri j vs. ri′j′ (i ′ =
i
∧

j ′ , j
∨
i ′ , i

∧
j ′ = j), draw the distance

di ji′j′ ∼ N (σ (uTi vj , ri′j′ ), λ
−1

d )

where N (x |µ,σ 2) is the Gaussian distribution with mean µ and

variance σ 2
, IK is the K ∗ K identity matrix, the function д is the

sigmoid function where σ (x ,y) = 1/(1 + e−(x−y ) ), and ci j is the

con�dence parameter for the rating ri j , which is introduced by

Wang et al. [20] to solve the one-class collaborative �ltering problem

with implicit feedback. Speci�cally, we set ci j a higher value if

ri j = 1, and we give ci j a lower value if ri j = 0.

�e conditional distribution over the observed high-order dis-

tance is

P (D |R, U , V , λ−1

d ) =
m∏
i

n∏
j

m∏
i′

n∏
j′
N (σ (uTi vj , ri′j′ ), λ

−1

d )Ii ji′ j′ (11)

where Ii ji′j′ = 1 if ratings ri j and ri′j′ exist with i ′ = i
∧

j ′ ,
j
∨
i ′ , i

∧
j ′ = j. �en, we have the following equation for

the posterior probability of the latent vectors of HoORaYs by the

Bayesian inference

p (U ,V |D,R,C, λd , λu , λv )

∝ p (D |R, λd )p (R |U ,V ,C )p (U |λu )p (v |λv )
(12)

Given the topic parameter β , computing the full posterior of ui ,
vj , and θ j directly is intractable. Here, we develop an EM-style

algorithm to learn the maximum a posteriori estimates. Notice that,

maximizing the posterior in Eq. (12) is equivalent to maximizing

the complete log likelihood of θ , U , V , R and D, given λu , λv , λd ,

C , and β .

L∗ = −
λu
2

m∑
i=1

uTi ui −
λv
2

n∑
j=1

(vj − θ j )
T (vj − θ j )

+

n∑
j=1

W∑
nw=1

log(
∑
k

θ jk βk,w jnw
)

−
λd
2

∑
ri j

rmax∑
r=1

|Ωri j ,r |(σ (ri j , r ) − σ (u
T
i vj , r ))

2

−
∑
ri j

ci j

2

(ri j − u
T
i vj )

2

(13)

where rmax is the maximal rating value (e.g., rmax = 5 in Movie-

Lens), and |Ωri j ,r | is the total number of ratings that the user i rated

to other items with value r or the item j received from other users

with value r .

We use stochastic gradient ascent to optimize Eq. (13). In detail,

we iteratively optimize U , V , and the topic proportions θ . Given

the current estimate of θ j , we could �nd optima of U and V via

similar equations to Eq. (9) and Eq. (10). Given the current U and

V , we update the topic proportions θ as follows. We �rst de�ne

q(zjnw = k ) = ϕ jnwk , and then separate the items that contain θ j
and apply Jensen’s inequality as follows

L (θ j ) ≥ −
λv
2

(vj − θ j )
T (vj − θ j )

+
∑
nw=1

∑
k

ϕ jnwk (logθ jk βk,w jnw
− logϕ jnwk )

= L (θ j ,Φj )

(14)

LetΦj = (ϕ jnwk )
W ×K
nw=1,k=1

. L (θ j ) has a tight lower boundL (θ j ,Φj ).

Analytically, we cannot optimize θ j . Hence, we use projection gra-

dient approach to optimize the other parameters U , V , θ1:N, and

ϕ1:N. A�er estimating U , V , and ϕ, we could optimize β as follows

βkw ∝
∑
j

∑
nw

ϕ jnwk [w jnw = w] (15)

A�er the optimal parameters U ∗, V ∗, θ∗1:N, and β∗ are learned,

each rating ri j can be estimated as

ri j ≈ (u∗i )
Tv∗j (16)

3.4 Algorithm Analysis

In this part, we analyze the e�ectiveness and e�ciency of our

algorithms.

�e e�ectiveness of the proposed HoORaYs is summarized in

Lemma 3.1. Overall, it �nds local optima in the solution space of

the latent vectors from users and items. �e proposed optimization

problem (Eq. (8)) is not convex wrt the coe�cients (ui , vj ), and

such a local minimum is acceptable in practice.

Lemma 3.1 (E�ectiveness of HoORaYs). Fixing the ratings in

R, HoORaYs �nds the local minimum for the optimization problem

in Eq. (8).
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Table 1: �e statistics of the four data sets.

Data Lastfm Delicious MovieLens Google Play

#users 1,892 1,867 2,113 170,781

#items 17,632 69,226 10,197 104,061

#tags 11,946 53,388 13,222 N/A

#taggings 186,479 437,593 47,957 N/A

#words N/A N/A N/A 10,569

#reviews N/A N/A N/A 3,367,435

#ratings/hits 92,834 104,799 855,598 3,367,435

rating Scale [1] [1] [0.5-5] [1-5]

Proof Sketch. If we �x either theU matrix or theV matrix, the

optimization problem becomes convex and the corresponding step

in Alg. 1 can �nd the global optima. Next, based on the alternating

procedure of learning parameters U and V in Alg. 1, we have that

Alg. 1 �nds a local minimum for the optimization problem in Eq. (8).

�e time complexity of the proposed HoORaYs is summarized

in Lemma 3.2. �is Lemma shows that HoORaYs requires linear

time for learning latent vectors of users and items (e.g., step 3-7 in

Alg. 1); and it scales linearly wrt the number of observed ratings in

the training phase (e.g., step 2-7 in Alg. 1).

Lemma 3.2 (Time Complexity of HoORaYs). Fixing the set of

ratings R, and rmax , HoORaYs requiresO ( |R |) time for each iteration

in Alg. 1

Proof. For each iteration in Alg. 1, we need O ( |R |) time for

the loop that starts from step 3. �e time cost for the loop that

starts from step 4 is rmax , and step 5-7 costsO (k ) time for updating

parameters. �erefore, the total time cost of the iteration of step 2-7

is O ( |R | · rmax · k ·m), where m is the maximum iteration number

for Alg. 1. Notice that, rmax , k and m are small constants, so the

total time cost of Alg. 1 can be wri�en as O ( |R |). �

4 EXPERIMENTS

In this section, we present the experimental evaluations. All the

experiments help us to answer the following questions:

• How accurate is the proposed method compared to the

state-of-the-art methods?

• How e�cient is the proposed method compared to the

state-of-the-art methods? How scalable is the proposed

method?

• How do the parameters a�ect the performance of our

model?

4.1 Experimental Setup

4.1.1 Data Sets. In this paper, we use four real-world data sets,

i.e., Google Play, MovieLens, Lastfm, and Delicious. �e �rst data

set was collected by Chen et al. [3], and the other three data sets

were provided by Cantador et al. [1]. Table 1 shows the statistics

of the four data sets. For the Lastfm and Delicious data, the user

feedback is implicitly given by listening to a song (on Lastfm) and

bookmarking an item (on Delicious), respectively. Following typical

implicit feedback se�ing, we set the user rating as ’1’ if the implicit

feedback is observed, and ’0’ otherwise. For the MovieLens and

Google Play data, there are explicit ratings from users to items.

�e rating scale is [0.5 ∼ 5] with step 0.5 for MovieLens data,

and [1 ∼ 5] with step 1 for Google Play data. As for the content

information, we use the aggregated review content in the �rst data

set. We follow standard processing steps including stop-words

removal, short-words removal, low-frequency words removal, high-

frequency words removal, and stemming. For the other three data

sets, we directly use the tag information on items as content input.

4.1.2 Evaluation Metrics. In this paper, we use the following

four evaluation metrics. Specially, we use Root Mean Square Error

(RMSE) and Mean Absolute Error (MAE) for the case of explicit

feedback, and use Recall@N and Area Under the Curve (AUC) for

the case of implicit feedback. In other words, RMSE and MAE are

used for the Google Play and MovieLens data, and they are de�ned

as

RMSE =

√∑
ri j ∈T (r̂i j − ri j )

2

|T |

MAE =

∑
ri j ∈T |r̂i j − ri j |

|T |
where T is the set of ratings to be evaluated as the test set.

Recall@N and AUC are used for Lastfm and Delicious. For a

given user, Recall@N is de�ned as the ratio between the number

of items that the user likes in Top N ranking list, and the total

number of items that the user likes; AUC indicates the probability

that a randomly chosen observed example is ranked higher than a

randomly chosen unobserved example. For these two metrics, we

average them over all the users as the �nal result.

4.1.3 Compared methods. In the experiment section, we use

HoORaYs to denote the proposed model that considers content in-

formation, and use HoORaYs0 to denote the proposed model with-

out content information. We compare our methods (HoORaYs0 and

HoORaYs) with some state-of-the-art recommendation algorithms

including probabilistic matrix factorization (PMF) [14], collabora-

tive topic regression (CTR) [20], and Bayesian personalized ranking

(BPR) [18]. Note that BPR is specially designed for the implicit

feedback, and we only compare with BPR in the implicit feedback

case. As for parameters, the dimension of the latent vectors is set to

200 for the proposed methods and all the competitors. �e reported

results come from the best parameters tuned for each model. For

HoORaYs0 and HoORaYs, we set α = 0.01, λu = 0.1, and λv = 0.1

(λv = 0.5 for Google Play), where α is the learning rate. Since λd is

more sensitive to data, we set λd = 0.01 on Google Play and Movie-

Lens data sets, λd = 0.1 on Lastfm data, and λd = 5 on Delicious

data.

For all the four data sets, we randomly select 75% of the user

feedback as training data, the use the remaining data as test set.

4.1.4 Reproducibility of experiments. All the datasets are pub-

licly available. All the parameter se�ings are stated in the previous

subsection. We will release the code of the proposed algorithm

through the �rst author’s website
∗

upon the publication of the

paper.

4.2 Evaluation Results

Here, we present the experimental results.

∗
h�p://moon.nju.edu.cn/people/jingweixu/
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Table 2: �e comparisons of RMSE results on Google Play
andMovieLens data. �e proposed methods (HoORaYs0 and

HoORaYs) outperform the compared methods.

Data set PMF CTR HoORaYs0 HoORaYs

Google Play 1.2958 1.2842 1.2747 1.2733

MovieLens 0.7764 0.7724 0.7645 0.7620

Table 3: �e comparisons of MAE results on for Google Play
andMovieLens data. �e proposed methods (HoORaYs0 and

HoORaYs) outperform the compared methods.

Data set PMF CTR HoORaYs0 HoORaYs

Google Play 1.0132 0.9997 0.9855 0.9827

MovieLens 0.5977 0.5952 0.5814 0.5808
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Figure 3: �e comparisons of Recall@N results on lastfm
and Delicious data.�e proposed methods outperform the

compared methods on both data sets.

Explicit user feedback. We �rst show the performance of the

proposed methods for explicit feedback. Table 2 and Table 3 show

the results on Google Play and MovieLens with RMSE and MAE,

respectively.

We can �rst observe from the tables that, the proposedHoORaYs0

and HoORaYs signi�cantly outperform PMF and CTR in terms of

both RMSE and MAE. For example, in Table 2, HoORaYs achieves

0.85% and 1.35% improvement over the best competitor (CTR) wrt

RMSE on Google Play and MovieLens, respectively. As for the MAE

metric in Table. 3, HoORaYs outperforms the best competitor (CTR)

by 1.70% v.s. 2.42% on Google Play and MovieLens, respectively.

Second, we can see that HoORaYs0 also outperforms CTR on

both data sets, although CTR considers content information while

HoORaYs0 does not. �is indicates the importance of using high-

order distance during the optimization process.

�ird, the performance on the MovieLens data is be�er than that

on the Google Play data. �is is due to the fact that the Google Play

data is much sparser than the MovieLens data (0.02% sparsity on

Google Play and 3.97% sparsity on MovieLens).

Overall, the above results indicate that the proposed methods are

more accurate than the compared methods for the case of explicit

feedback, and that the high-order rating distance plays an important

role for improving the prediction accuracy of recommendation.

Table 4: �e comparisons of AUC results on Lastfm and

Delicious data. �e proposed methods (HoORaYs0 and

HoORaYs) outperform the compared methods on both data

sets.

Data set PMF CTR BPR HoORaYs0 HoORaYs

Lastfm 0.880 0.897 0.896 0.905 0.905

Delicious 0.644 0.657 0.655 0.663 0.667
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data, x-axis is #iterations and y-axis is
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Figure 4: E�ciency and scalability evaluation onGoogle Play
data.

Implicit user feedback. Next, we present the results of the

proposed methods for the implicit feedback case. We compare the

proposed methods with PMF, CTR, and BPR, and show the results

in Fig. 3 and Table 4.

In Fig. 3, we show the Recall results with top N from 10 to 50 with

�xed step 5. As we can see, the two proposed methods HoORaYs0

and HoORaYs signi�cantly outperform the compared methods

in all cases on both Lastfm and Delicious data. In Fig. 3(a), both

HoORaYs0 and HoORaYs are consistently be�er than the best

competitors on Lastfmwith 7% improvement on average. In Fig. 3(b),

the proposed methods outperform the compared methods especially

when number of N is small. For example, when N is 15, HoORaYs0

and HoORaYs achieve 21.7% and 24.3% improvement over the best

competitor. Overall, the proposed methods outperform the best

competitors with averagely 12.6% improvement in this series of

evaluation.

Similar results are observed in Table 4 which shows the AUC

scores. Specially, we can observe that HoORaYs0 outperforms the

BPR method. �is again indicates the usefulness of the proposed

high-order distance minimization as BPR uses an AUC-like opti-

mization target. We also notice that the results on Lastfm is be�er

than that on Delicious. Again, this is due to the data sparsity (0.08%

sparsity on Delicious v.s. 0.28% sparsity on Lastfm).

Together with the results in Table 2, Table 3, Table 4, and Fig. 3,

we can conclude that the proposed methods outperform the com-

pared methods in both explicit feedback case and implicit feedback

case. Moreover, the proposed methods can outperform the com-

pared methods even when the content information is unavailable.

E�ciency and Scalability. Next, we present the results of the

proposed methods in terms of e�ciency and scalability. All the
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Figure 5: �e e�ects of λu , λv , and λd of the proposed

HoORaYs with Recall@50 on Lastfm data.
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Figure 6: �e e�ects of λu , λv , and λd of the proposed

HoORaYs with Recall@50 on Delicious data.
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Figure 7: �e e�ects of λu , λv , and λd of the proposed

HoORaYs on MovieLens data.

experiments are run on a Macbook Pro. �e machine has four

2.5GHz Intel i7 Cores and 16 GB memory.

In Fig 4(a), we show the e�ciency of HoORaYs on Google

Play data. Compared to MF and CTR, the RMSE of the proposed

HoORaYs decreases faster than that of the other two methods. Es-

pecially a�er 13th iteration, HoORaYs still keeps high gradient

descent ratio, and the RMSE value reaches the bo�om as fast as MF

and CTR do. Compared to MF and CTR, the proposed model reveals

the equivalent ability in terms of e�ciency in practice. Fig 4(b)

presents the scalability evaluation for HoORaYs on Google Play

data. We plot the wall-clock time of each iteration with di�erent

number of ratings in training set. As we can see from the �gures,
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Figure 8: �e e�ects of λu , λv , and λd of the proposed

HoORaYs on Google Play data.
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Figure 9: �e e�ects of the latent vector dimension K of

the proposed HoORaYs with Recall on Lastfm and Delicious
data sets.

our proposed HoORaYs scales linearly when number of ratings

increases.

Study of Parameters. Finally, we conduct a parameter study

of the proposed methods. We �rst study the parameters of λu , λv ,

and λd . We use Recall@50 as an example, and plot the results on

Lastfm and Delicious data in Fig. 5 and Fig. 6, respectively. As we

can see from the �gures, HoORaYs can achieve best performance

when λu = λv = 0.1 for both data sets. As for λd , HoORaYs is

sensitive to this parameter, and it achieves the best performance

with di�erent λd for di�erent data sets. In practice, we suggest to

set λu = λv = 0.1 by default, and tune the λd parameter when

using the proposed models. For the e�ects of parameters on data

set with explicit feedback, we study the parameters of λu , λv , and

λd on MovieLens and Google Play data, and the results are plo�ed

In Fig. 7 and Fig. 8. For MovieLens data, HoORaYs have the best

performance when λu = λv = 0.1 in Fig 7(a). As for λd in Fig 7(b),

HoORaYs can achieve good performance when λd < 0.05. As a

result, we select λd = 0.01 in our evaluation. As we can see from

Fig. 8(a), HoORaYs can achieve best performance when λu = 0.1

and λv = 0.5. For λd , we can �nd the similar results in Fig. 8(b) to

the results on MovieLens data. In practice, we select λd = 0.01 for

the evaluation.

Another parameter of the proposed method is the latent vec-

tor’s dimension K . Fig. 9 presents the e�ects of K with Recall@N

on Lastfm and Delicious data. We vary the size of K with K =
10, 20, 50, 100, 150, 200. In general, as shown in Fig. 9(a) and Fig. 9(b),
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a larger K usually brings be�er performance before it over�ts the

data set. Fig. 9(a) shows the performance with di�erent K selection

on Lastfm data. We can also observe from the �gures that, the Recall

performance improves signi�cantly when we increase K from 10

to 100, and the improvement becomes minor when K is larger than

100. In practice, we suggest to set K between 100 and 200 for the

proposed HoORaYs.

5 RELATEDWORK

In this section, we brie�y review some related work.

Collaborative �ltering approaches with user feedback as input

have been widely used in recommender systems [7, 10, 11, 14]. For

example, matrix factorization methods [11, 14] take ratings as input,

and learn the latent vectors of users and items for recommenda-

tion. To improve recommendation accuracy, side information is

also widely explored. For example, Wang et al. [20] and McAuley

and Leskovec [13] incorporate content information; Ma et al. [12]

and Tang et al. [19] incorporate social relationships; Chen et al. [2]

and Purushotham et al. [17] consider both content and social infor-

mation.

While many recommendation algorithms are designed for ex-

plicit user feedback, several researchers put their focus on case

of implicit user feedback. For example, Rendle et al. [18] propose

Bayesian personalized ranking to optimize the rankings instead

of ratings. Formulating the problem as one-class collaborative

�ltering, traditional approaches are also adapted for implicit feed-

back [8, 15, 16], and side information is also considered in this

one-class se�ing [23, 24].

Di�erent from and orthogonal to most of the existing recom-

mendation methods, we propose a new regularized optimization

problem by involving high-order rating distance as the constraint

for shrinking the solution space. By reducing the variance , the bet-

ter recommendation accuracy could be reached. Similar strategies

are also explored in some related problems. For example, Rendle

et al. [18] and Kabbur et al. [9] propose an AUC-like optimization

function. Our high-order optimization problem is di�erent from the

AUC-like optimization as we use the other existing ratings to shrink

the solution space while AUC focuses on the order of observed-

unobserved examples; additionally, we have experimentally shown

that the proposed method outperforms BPR with same input. �is

work generalizes the rating comparison strategy [21, 22], which

can be viewed as a second-order rating distance, primarily designed

for the cold-start case. Moreover, it also justi�es the rationality

behind the higher-order rating distance from two complementary

perspectives (the geometric vs. Bayesian interpretations).

6 CONCLUSION

In this paper, we have proposed a high-order optimization of rating

distance for recommender systems HoORaYs to further reduce the

solution space of latent vectors for users and items. �e proposed

HoORaYsmodel used second-order rating distance as the constraint

to the optimization problem. HoORaYs can be applied for both

explicit and implicit user feedback. We presented a geometric

interpretation to show how HoORaYs helps reduce thevariance of

the estimated latent factors. Based on the Bayesian interpretation,

we further explained the HoORaYs from the generative model

perspective. By connecting to CTR rating model, our HoORaYs can

naturally handle the case when content information is available.

�e experimental evaluations on four real-world data sets show that

the proposed method consistently outperforms the state-of-the-art

methods in terms of prediction accuracy.
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