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Why Network Alignment?

TheYear Ahead

" Find Someone Like You

= Q: what if someone lives in a different universe
(network)?
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More Applications

Cross Network Information

Identify Species-Specific Pathways Diffusion [Zhan’16]
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Why Network Alignment: How to

= EXisting Methods

— IsoRank [Singh’08], NetAlign [Bayati’'09], BigAlign [Koutra'13],
UMA [Zhang’195]

= Key ldea: topological consistency

— Network G, is a noisy permutation of network G,

-G, = STGl e
Permutation Alignment e @
@

G, .
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Topology Consistency: Limitations

= Topological consistency could be easily violated
— Same nodes may behave differently across different networks

— Different nodes may have similar connectivity structures

9\ /e @\ /g Nodes 2=3=4=5

K K Nodes 2'=3'=4’=5’
@ )

G, G,

Only topology Is not enough!
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Topology Consistency: How to Rescue

= Real networks have rich attributes on nodes and/or edges

L

Node Attribute: different shapes

Edge Attribute: straight vs. curved lines
N W

)

= Q: how to calibrate topology-based alignment by
leveraging attributes?
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Challenges: Attributed Network Alignment

= C1: Formulation
= C2: Optimality
= C3: Scalable Computation
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C1l. Formulation

= Typical Network Alignment

NetAlign [Bayati’09] UMA [Zhang'15]
maximize ah’s + (g) sTWs minirSnize ISTAS — B||%
X
subject to As < 1,s;;r € {0,1} st st < 1Ml
ST1n1X1 < 1n2><1

= Obs: only encode topological information

= Q: what are their attributed counterparts?
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C2. Optimality

= Obs #1: many topology-based approaches are non-convex

or even NP-hard —find the local minima W
A,
\

local minima
global minimum

= Obs #2: attribute may complicate the optimization problem

msin J(S) = Z

a,b,x,y

? S(x, S(y,b
S(x,a) S(y,b)] i J(S) = z (x,a) (v, b)

2
- - A,(a, b)A(x,y)
\/f(x' a) \/f(y' b) a,b,x,y \/f(x’ Cl) \/f(yr b)] e 25

x A1 (a, b)A,(x,y) x I(Ny(a,a) = N5 (x,x))I(N;(b,b) = N,(v,¥))
X H(El(a, b) = Ez(x,y))
without attributes with attributes

= Q #1: what is the exact optimality of the attributed network
alignment?

= Q #2: how to get the optimal solution, with a comparable
complexity (as the topology-alone alignment)?
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C3. Scalable Computation

= Obs #1: most existing methods have an 0 (mn) complexity
[Singh’08].
= Obs #2: best empirical scalability is near-linear [Koutra’'13].
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= Q: how to scale up attributed network alignment?
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C3. Scalable Computation

= Obs: cross-network search — to find similar users in one

network for a given user in another network.
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= Q: how to speed up on-gquery network alignment, without
solving the full alignment problem?
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Prob. Def: Attributed Network Alignment

= Given:

— (1) two attributed networks G; = {44, N{,E;} and G, =
{Az,NzyEz};

— (2 — optional) a prior alignment preference H.

= Find: alignment/similarity matrix S

= An lllustrative Example
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Prob. Def: On-query Attributed Network Alignment

= Given:

— (1) two attributed networks G; = {44, N{,E;} and G, =
{Az,NzyEz};

— (2 — optional) a prior alignment preference H;

— (3) a query node-a in G,

" Find: a vector s, (similarities of node-a vs. all nodes Iin G;)

4 A ©

2 w -

Query é -
node-a < o\e ) ¢€:;_/Eif_ .

G, G, N |

. . . T
Node Attribute: different shapes S'mllar'w ’ G
Edge Attribute: straight vs. curved lines LGI vector Sq 2 )
v
Given Find
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FINAL Formulation #1: Topological Consistency

= |ntuition: similar node-pairs tend to have similar
neighboring node-pairs

= Example:

— large S(a, x)

— large A1(a,b) and A,(x,y) | large S(b,y)

= Mathematical Details: msin S(a,x) —S(b,y)]?A.(a,x)A,(b,y)
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FINAL Formulation #2: Node Attribute Consistency

= Intuition: similar node-pairs share same node attributes

= Example:
— large S(a,x) —— node-a and node-x share same node attribute
= Mathematical Details: if N;(a,a) = N,(x,x) and N,(b,b) = N,(y,y),
min [S(a, ) = $(b,7)1*A1(a, )45 (b, )
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FINAL Formulation #3: Edge Attribute Consistency

= |[ntuition: similar node-pairs connect to their neighbor-pairs
via same edge attributes

= Example:
— large S(a, x) |
_large S(b, y) — edge (a, b) and (x,y) share same attribute

= Mathematical Details: if E;(a, b) = E,(x,y),

msirl [S(a,x) —S(b,y)]*A1(a,x)A5(b,y)
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Putting everything together

= Objective Function:

. S(x,a)  S(y,b)
($) = -
e ,,zy Jiea JFob)

x I(N1(a,a) = N,(x,x))I(N,(b,b) = N»(v,¥))
X [(E1(a,b) = E;(x,¥)) #2. Node Attribute Consistency
#3. Edge Attribute Consistency

2#1. Topology Consistency
Al(aJ b)AZ(xr y)

" f(x,a):

— ‘joint degree’ of node-a and node-x

— normalization to make the optimization problem convex
= Generalization:

— replacing I(-) by an attribute similarity function

— can handle numerical attributes on nodes and/or edges.
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FINAL Formulation: Matrix Form

= Matrix-Form Objective Function
min /(5) = min Z s@) sw)

s % s Li|Dwv) JDw,w)
s = vec(S) msin sT(I — W)S

—W =N[E ® (4; ® 4,)]N, i.e, the attributed Kronecker product
— D is the degree matrix of W

W(v,w)

— _1 _1 : L
W = D 2WD z is the symmetrically normalization of W
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FINAL Formulation: Matrix Form with Regularization

= Add a regularization term h = vec(H)
msin asT(I-W)s+ (1 —a)lls —j%

— h is default as a uniform vector

— h encodes the prior knowledge of alignment preferences

— h avoids trivial solution, e.g., optimal solution s = 0 w/o h

— teleport vector in PageRank, restart vector in RWR (on the
attributed Kronecker product graph)
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Relationship with Existing Methods
= FINAL vs. IsoRank [Singh’08]

— w/o attribute, FINAL = IsoRank (by a scaling factor D%)

= FINAL vs. Random Walk Graph Kernel (RWGK) [Vishwanathan'10]
- k(Gy,G3) = X,;q(i)s(i), where q is the stopping probability vector

" FINAL vs. SimRank (Node Proximity) [Jeh'02]
— G, = G, and w/o attribute, FINAL = SimRank by a scaling factor D%

= FINAL vs. Random Walk with Restart (RWR) [Tong’06]
— s = RWR vector (defined on the attributed Kronecker graph)
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FINAL Solutions = 0TI (85 0 4)0(81 O ) + 1 -

msin asT(I-W)s+ (1 — a)lls — h||3

= Obs: a convex optimization problem
= Benefits: a fixed-point solution converging to the global

optimal solution

s=aWs+(1—-a)h = s=1-a)(I - aW)_lh (closed form)

= Intuition: a similarity propagation to neighboring node-

pairs, which is additionally filtered by node/edge attributes
= Challenges: computationally VERY expensive

— Iterative solution: O (m?tmax) (due to Kronecker product)

— Closed form solution: 0(m?®) (due to matrix inversion)

= Q: how to scale up and speed up?
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FINAL — Speed-up Full Alignment

= Obs: FINAL vs. RWGK and RWR

= Solution: leverage the existing fast solutions for RWGK
and/or RWR [Kang 2012]

= An Example: only consider node attributes1
1 1\
s=(1-a) (1 —aD,?N(4; ® AZ)ND,?) h
= Key ldea: low rank approximation of 4; and A,

T 4 1 A
A; = U1A, U, ‘ s~(1—a) (1 + aDNZNUAUTNDNZ) h
A, ~ U,A,U} |Sherman-

Morrison Lemma where U = U, Q U,
A =[(A; ®A,) 1 —aU'NDy'NU] Y

= Complexity: 0(n?r*)

= Challenge: it is still 0(n?).Can we do better?
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FINAL — Speed-up On-query Alignment

= Obs: only need one column, or one segment of §

= Key ldeas:

— Low-rank approximation (same as for the full alignment)
— Relax the degree matrix Dy = D; @ D,
" Details: s, =1 —a) [H(:,a) + a(D4(q, a)Dz)_%Na]
< [[wi(a) ® v [A[UN 0, ® D,) 2] |

0(nr?) (1) same trick as 0(n?r?)
for full alignment

p K 1 1
1 —_= —_
g=U'N(D,®D,) 2h = Z Z o; {U{N’fplva) 0% ([U£N§D22ui}

i=1k=1
(2) SVD on matrlx O(nr) O(nr)

— VP T

= Benefits: linear complexity o((Kr? + pKr + p®)n + mr + myp + r°)

-25 - DG.LA Arizona State University



Outline

= Motivations v~

lQl: —
IQZ: —
IQB: —

NA
NA
NA

_ Formulation v~

_ A

| S

= Experimenta

= Conclusions

gorithms v~
need-up Computation v~

Results

- 26 -

DATA
Lab

Arizona State University



Experimental Setup

= Datasets:

— DBLP co-author networks (nodes: 9,143 vs. 9,143)

— Douban online & offline networks (nodes: 3,906 vs. 1,118)
— Flickr & Last.fm networks (nodes: 12,974 vs. 15,436)

— Flickr & Myspace networks (nodes: 6,714 vs. 10,733)

= Evaluation Objectives:

— Effectiveness: one-to-one alignment accuracy

— Efficiency: running time

= Comparison Methods:

FINAL (Our Methods)

Baseline Methods

O FINAL-N (with node attributes)
O FINAL-E (with edge attributes)
O FINAL-N+ (speed-up FINAL-N)

O FINAL-NE (with node & edge attributes)

O IsoRank [Singh’08]
O NetAlign [Bayati’'09]
O UniAlign [Koutra'13]
O Klau's Algorithm [Klau’09]
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R1. Effectiveness Results

Accuracy
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Obs: attributes help improve network alignment
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R2. Quality-Speed Balance

1 — . . —
1 —¥—=FINAL-N
A —@-FINAL-E
0.84 m 08} —A-FINAL-NE
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9 # —7~IsoRank
506 206} —©-NetAlign
© © UniAlign
- 3
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0.2¢ —~IsoRank 0.2}
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ol . UniAlign 0|_ o .
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Running Time (second) Running Time (second)
Obs: FINAL gain a better quality-speed balance.
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R3. Scalability of FINAL-N+

Running Time (second)

——r=1

Obs: FINAL-N+ has a quadratic time complexity w.r.t the

number of nodes.
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R4. Quality-Speed of FINAL On-Query

1 s e
0.8 'K"
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Obs: FINAL On-Query gains around 90% accuracy
relative to exact FINAL-N, but more than 100 times
faster.
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R5. Scalability of FINAL On-Query
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Obs: FINAL On-Query has a linear time complexity

DATA
Lab

Arizona State University



Qutline

= Motivations v~

= Q1.
= Q2.
= Q3.

FINA
FINA
-INA

_ Formulation v~

_ A

| S

= Experimenta

® Conclusions

gorithms v~
need-up Computation v~

Results v~

-33-

DATA
Lab

Arizona State University



Conclusions
= Attributed Network Alignment

— Q1: Formulation | ] s sob |
| min J(5)= - A4,(a,h)A5(x,y)
— Al: FINAL family ——| ¢ S, W a) Jf(,b)
o x I(N1(a,a) = N (x,x))I(N1(b,b) = N,(y,¥))
— Q2: Optimality U(Eia ) = ExGoy)

— A2: Convex optimization problem —— global optimal solution

— Q3: Scalable computation

- A3: Fast algorithms (FINAL-N+ & FINAL On-Query) "ja &
" Results N )
— FINAL outperform other baseline methods g e oot
— FINAL On-Query linear complexity >’fx
= More in Paper o)
— Proof of optimality & more experimental results £ E T
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