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ABSTRACT
Multi-layered networks have recently emerged as a new network
model, which naturally finds itself in many high-impact applica-
tion domains, ranging from critical inter-dependent infrastructure
networks, biological systems, organization-level collaborations, to
cross-platform e-commerce, etc. Cross-layer dependency, which
describes the dependencies or the associations between nodes across
different layers/networks, often plays a central role in many data
mining tasks on such multi-layered networks. Yet, it remains a
daunting task to accurately know the cross-layer dependency a prior.
In this paper, we address the problem of inferring the missing cross-
layer dependencies on multi-layered networks. The key idea behind
our method is to view it as a collective collaborative filtering prob-
lem. By formulating the problem into a regularized optimization
model, we propose an effective algorithm to find the local optima
with linear complexity. Furthermore, we derive an online algo-
rithm to accommodate newly arrived nodes, whose complexity is
just linear wrt the size of the neighborhood of the new node. We
perform extensive empirical evaluations to demonstrate the effec-
tiveness and the efficiency of the proposed methods.

1. INTRODUCTION
In an increasingly connected world, networks from many high-

impact areas are often collected from multiple inter-dependent do-
mains, leading to the emergence of multi-layered networks [4, 9,
26, 29, 30]. A typical example of multi-layered networks is inter-
dependent critical infrastructure network. As illustrated in Figure 1,
the full functioning of the telecom network, the transportation net-
work and the gas pipeline network is dependent on the power sup-
ply from the power grid. While for the gas-fired and coal-fired
generators in the power grid, their functioning is fully dependent
on the gas and coal supply from the transportation network and the
gas pipeline network. Moreover, to keep the whole complex sys-
tem working in order, extensive communications are needed across
the networks, which are in turn supported by the telecom network.
Another example is biological system, where the protein-protein
interaction network (PPI/gene network) is naturally linked to the
disease similarity network by the known disease-gene associations,
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Figure 1: An illustrative example of multi-layered networks. Each
gray ellipse is a critical infrastructure network (e.g., Telecom net-
work, power grid, transportation network, etc). A thick arrow be-
tween two ellipses indicates a cross-layer dependency between the
corresponding two networks (e.g., a router in the telecom network
depends on one or more power plants in the power grid).

and the disease network is in turn coupled with the drug network
by drug-disease associations. Multi-layered networks also appear
in many other application domains, such as organization-level col-
laboration platform [5] and cross-platform e-commerce [6, 16, 21,
36].

Compared with single-layered networks, a unique topological
characteristic of multi-layered networks lies in its cross-layer de-
pendency structure. For example, in the critical infrastructure net-
work, the full functioning of the telecom layer depends on the suf-
ficient power supply from the power grid layer, which in turn relies
on the functioning of the transportation layer (e.g., to deliver the
sufficient fuel). While in the biological systems, the dependency is
represented as the associations among diseases, genes and drugs.
In practice, the cross-layer dependency often plays a central role in
many multi-layered network mining tasks. For example, in the crit-
ical infrastructure network, the existence of the cross-layer depen-
dency is in general considered as a major factor of the vulnerability
of the entire system. This is because a small disturbance on one
supporting layer/network (e.g., power grid) might cause a ripple ef-
fect to all the dependent layers, leading to a catastrophic/cascading
failure of the entire system. On the other hand, the cross-layer de-
pendency in the biological system is often the key to new discover-
ies, such as new treatment associations between existing drugs and
new diseases (e.g., drug re-purposing).

Despite its key importance, it remains a daunting task to ac-
curately know the cross-layer dependency in a multi-layered net-



work, due to a number of reasons, ranging from noise, incomplete
data sources, limited accessibility to network dynamics. For ex-
ample, an extreme weather event might significantly disrupt the
power grid, the transportation network and the cross-layer depen-
dencies in between at the epicenter. Yet, due to limited accessibility
to the damage area during or soon after the disruption, the cross-
layer dependency structure might only have a probabilistic and/or
coarse-grained description. On the other hand, for a newly identi-
fied chemical in the biological system, its cross-layer dependencies
wrt proteins and/or the diseases might be completely unknown due
to clinical limitations.(i.e., the zero-start problem).

In this paper, we aim to tackle the above challenges and develop
effective and efficient methods to infer cross-layer dependency on
multi-layered networks. The main contributions of the paper can
be summarized as

• Problem Formulations. We formally formulate the cross-
layer dependency inference problem as a regularized opti-
mization problem. The key idea of our formulation is to col-
lectively leverage the within-layer topology as well as the
observed cross-layer dependency to infer a latent, low-rank
representation for each layer, based on which the missing
cross-layer dependencies can be inferred.

• Algorithms and Analysis. We propose an effective algorithm
(FASCINATE) for cross-layer dependency inference on multi-
layered networks, and analyze its optimality, convergence
and complexity. We further present its variants and gener-
alizations, including an online algorithm to address the zero-
start problem.

• Evaluations. We perform extensive experiments on real data-
sets to validate the effectiveness, efficiency and scalability of
the proposed algorithms. Specially, our experimental eval-
uations show that the proposed algorithms outperform their
best competitors by 8.2%-41.9% in terms of inference accu-
racy while enjoying linear complexity. Specifically, the pro-
posed FASCINATE-ZERO algorithm can achieve up to 107×
speedup with barely no compromise on accuracy.

The rest of the paper is organized as follows. Section 2 gives the
formal definitions of the cross-layer dependency inference prob-
lems. Section 3 proposes FASCINATE algorithm with its analysis.
Section 4 introduces the zero-start algorithm FASCINATE-ZERO.
Section 5 presents the experiment results. Section 6 reviews the
related works. Section 7 summarizes the paper.

2. PROBLEM DEFINITION
In this section, we give the formal definitions of the cross-layer

dependency inference problems. The main symbols used through-
out the paper are listed in Table 1. Following the convention, we
use bold upper-case for matrices (e.g., A), bold lower-case for vec-
tors (e.g., a) and calligraphic for sets (e.g., A). A′ denotes the
transpose of matrix A. We use the ˆ sign to denote the notations

after a new node is accommodated to the system (e.g., Ĵ , Â1), and
the ones without the ˆ sign as the notations before the new node
arrives.

While several multi-layered network models exist in the litera-
ture (See Section 6 for a review), we will focus on a recent model
proposed in [5], due to its flexibility to model more complicated
cross-layer dependency structure. We refer the readers to [5] for
its full details. For the purpose of this paper, we mainly need the
following notations to describe a multi-layered network with g lay-
ers. First, we need a g×g layer-layer dependency matrix G, where

Table 1: Main Symbols.

Symbol Definition and Description

A,B the adjacency matrices (bold upper case)
a,b column vectors (bold lower case)
A,B sets (calligraphic)

A(i, j) the element at ith row jth column
in matrix A

A(i, :) the ith row of matrix A
A(:, j) the jth column of matrix A
A′ transpose of matrix A

Â the adjacency matrix of A with the newly added node

G the layer-layer dependency matrix
A within-layer connectivity matrices of the network

A = {A1, . . . ,Ag}
D cross-layer dependency matrices

D = {Di,j i, j = 1, ..., g}
Wi,j weight matrix for Di,j

Fi low-rank representation for layer-i (i = 1, ..., g)
mi, ni number of edges and nodes in graph Ai

mi,j number of dependencies in Di,j

g total number of layers
r the rank for {Fi}i=1,...,g

t the maximal iteration number
ξ the threshold to determine the iteration

G(i, j) = 1 if layer-j depends on layer-i, and G(i, j) = 0 other-
wise. Second, we need a set of g within-layer connectivity matri-
ces: A = {A1, ...,Ag} to describe the connectivities/similarities
between nodes within the same layer. Third, we need a set of cross-
layer dependency matrices D = {Di,j i, j = 1, ..., g}, where
Di,j describes the dependencies between the nodes from layer-i
and the nodes from layer-j if these two layers are directly dependent
(i.e., G(i, j) = 1). When there is no direct dependencies between
the two layers (i.e., G(i, j) = 0), the corresponding dependency
matrix Di,j is absent. Taking the multi-layered network in Fig-
ure 2 for an example, the abstract layer-layer dependency network
G of this biological system can be viewed as a line graph. The
four within-layer similarity matrices inA are the chemical network
(A1), the drug network (A2), the disease network (A3) and the
protein-protein interaction (PPI) network (A4). Across those lay-
ers, we have three non-empty dependency matrices, including the
chemical-drug dependency matrix (D1,2), the drug-disease inter-
action matrix (D2,3) and the disease-protein dependency matrix
(D3,4).

As mentioned earlier, it is often very hard to accurately know the
cross-layer dependency matrices {Di,j i, j = 1, ..., g}. In other
words, such observed dependency matrices are often incomplete
and noisy. Inferring the missing cross-layer dependencies is an es-
sential prerequisite for many multi-layered network mining tasks.
On the other hand, real-world networks are evolving over time.
Probing the cross-layer dependencies is often a time-consuming
process in large complex networks. Thus, a newly added node
could have no observed cross-layer dependencies for a fairly long
period of time since its arrival. Therefore, inferring the dependen-
cies of such kind of zero-start nodes is an important problem that
needs to be solved efficiently. Formally, we define the cross-layer
dependency inference problem (CODE) and its corresponding zero-
start variant (CODE-ZERO) as follows.

PROBLEM 1. (CODE) Cross-Layer Dependency Inference
Given: a multi-layered network with (1) layer-layer dependency ma-
trix G; (2) within-layer connectivity matrices A = {A1, ...,Ag};
and (3) observed cross-layer dependency matricesD = {Di,j i, j =
1, ..., g};



Figure 2: A simplified 4-layered network for biological systems.

Output: the true cross-layer dependency matrices {D̃i,j i, j =
1, ..., g} .

PROBLEM 2. (CODE-ZERO) Cross-Layer Dependency In-
ference for zero-start Nodes

Given: (1) a multi-layered network {G,A,D}; (2) a newly added
node p in the lth layer; (3) a 1 × nl vector s that records the con-
nections between p and the existing nl nodes in layer l;

Output: the true dependencies between node p and nodes in depen-
dent layers of layer-l, i.e., D̃l,j(p, :) (j = 1, ..., g, G(l, j) = 1).

3. FASCINATE FOR PROBLEM 1
In this section, we present our proposed solution for Problem 1

(CODE). We start with the proposed optimization formulation, and
then present our algorithm (FASCINATE), followed by some effec-
tiveness and efficiency analysis.

3.1 FASCINATE: Optimization Formulation
The key idea behind our formulation is to treat Problem 1 as

a collective collaborative filtering problem. To be specific, if we
view (1) nodes from a given layer (e.g., power plants) as objects
from a given domain (e.g., users/items), (2) the within-layer con-
nectivity (e.g., communication networks) as an object-object sim-
ilarity measure, and (3) the cross-layer dependency (e.g., depen-
dencies between computers in the communication layer and power
plants in power grid layer) as the ‘ratings’ from objects of one do-
main to those of another domain; then inferring the missing cross-
layer dependencies can be viewed as a task of inferring the miss-
ing ratings between the objects (e.g., users, items) across different
domains. Having this analogy in mind, we propose to formulate
Problem 1 as the following regularized optimization problem

min
Fi≥0(i=1,...,g)

J =
∑

i,j: G(i,j)=1

‖Wi,j � (Di,j − FiFj
′)‖2F

︸ ︷︷ ︸
C1: Matching Observed Cross-Layer Dependencies

(1)

+ α

g∑
i=1

tr(Fi
′(Ti −Ai)Fi)︸ ︷︷ ︸

C2: Node Homophily

+β

g∑
i=1

‖Fi‖2F︸ ︷︷ ︸
C3: Regularization

where Ti is the diagonal degree matrix of Ai with Ti(u, u) =∑ni
v=1 Ai(u, v); Wi,j is an ni × nj weight matrix to assign dif-

ferent weights to different entries in the corresponding cross-layer
dependency matrix Di,j ; and Fi is the low-rank representation for
layer i. For now, we set the weight matrices as follows: Wi,j(u, v)
= 1 if Di,j(u, v) is observed, and Wi,j(u, v) ∈ [0, 1] if Di,j(u, v)
= 0 (i.e., unobserved). To simplify the computation, we set the
weights of all unobserved entries to a global value w. We will dis-
cuss alternative choices for the weight matrices in Section 3.3.

In this formulation (Eq. (1)), we can think of Fi as the low-rank
representations/features of the nodes in layer i in some latent space,
which is shared among different layers. The cross-layer dependen-
cies between the nodes from two dependent layers can be viewed
as the inner product of their latent features. Therefore, the intuition
of the first term (i.e. C1) is that we want to match all the cross-
layer dependencies, calibrated by the weight matrix Wi,j . The
second term (i.e., C2) is used to achieve node homophily, which
says that for a pair of nodes u and v from the same layer (say
layer-i), their low-rank representations should be similar (i.e., small
‖Fi(u, :) − Fi(v, :)‖2) if the within-layer connectivity between
these two nodes is strong (i.e., large Ai(u, v)). The third term (i.e.
C3) is to regularize the norm of the low-rank matrices {Fi}i=1,...,g

to prevent over-fitting.
Once we solve Eq. (1), for a given node u from layer-i and a

node v from layer-j, the cross-layer dependency between them can
be estimated as D̃i,j(u, v) = Fi(u, :)Fj(v, :)

′.

3.2 FASCINATE: Optimization Algorithm
The optimization problem defined in Eq. (1) is non-convex. Thus,

we seek to find a local optima by the block coordinate descent
method, where each Fi naturally forms a ‘block’. To be specific,
if we fix all other Fj(j = 1, . . . , g, j �= i) and ignore the constant
terms, Eq. (1) can be simplified as

Ji
Fi≥0

=
∑

j: G(i,j)=1

‖Wi,j � (Di,j − FiFj
′)‖2F (2)

+ αtr(Fi
′(Ti −Ai)Fi) + β‖Fi‖2F

The derivative of Ji wrt Fi is

∂Ji

∂Fi
=2(

∑
j: G(i,j)=1

[−(Wi,j �Wi,j �Di,j)Fj (3)

+ (Wi,j �Wi,j � (FiFj
′))Fj ]

+ αTiFi − αAiFi + βFi)

A fixed-point solution of Eq. (3) with non-negativity constraint
on Fi leads to the following multiplicative updating rule for Fi

Fi(u, v)← Fi(u, v)

√
X(u, v)

Y(u, v)
(4)

where

X =
∑

j: G(i,j)=1

(Wi,j �Wi,j �Di,j)Fj + αAiFi (5)

Y =
∑

j: G(i,j)=1

(Wi,j �Wi,j � (FiFj
′))Fj + αTiFi + βFi

Recall that we set Wi,j(u, v) = 1 when Di,j(u, v) > 0, and
Wi,j(u, v) = w when Di,j(u, v) = 0. Here, we define IOi,j
as an indicator matrix for the observed entries in Di,j , that is,
IOi,j(u, v) = 1 if Di,j(u, v) > 0, and IOi,j(u, v) = 0 if Di,j(u, v) =
0. Then, the estimated dependencies over the observed data can be
represented as R̃i,j = IOi,j� (FiFj). With these notations, we can



further simplify the update rule in Eq. (5) as follows

X =
∑

j: G(i,j)=1

Di,jFj + αAiFi (6)

Y =
∑

j: G(i,j)=1

((1− w2)R̃i,j + w2FiFj
′)Fj + αTiFi + βFi

(7)

The proposed FASCINATE algorithm is summarized in Alg. 1.
First, it randomly initializes the low-rank matrices for each layer
(line 1 - line 3). Then, it begins the iterative update procedure.
In each iteration (line 4 - line 10), the algorithm alternatively up-
dates {Fi}i=1,...,g one by one. We use two criteria to terminate
the iteration: (1) either the Frobenius norm between two successive
iterations for all {Fi}i=1,...,g is less than a threshold ξ, or (2) the
maximum iteration number t is reached.

Algorithm 1 The FASCINATE Algorithm

Input: (1) a multi-layered network with (a) layer-layer depen-
dency matrix G, (b) within-layer connectivity matrices A =
{A1, ...,Ag}, and (c) observed cross-layer node dependency
matrices D = {Di,j i, j = 1, ..., g}; (2) the rank size r; (3)
weight w; (4) regularized parameters α and β;

Output: low-rank representations for each layer {Fi}i=1,...,g

1: for i = 1 to g do
2: initialized Fi as ni × r non-negative random matrix
3: end for
4: while not converge do
5: for i = 1 to g do
6: compute X as Eq. (6)
7: compute Y as Eq. (7)
8: update Fi as Eq. (4)
9: end for

10: end while
11: return {Fi}i=1,...,g

3.3 Proof and Analysis
Here, we analyze the proposed FASCINATE algorithm in terms

of its effectiveness as well as its efficiency.

A - Effectiveness Analysis.
In terms of effectiveness, we show that the proposed FASCINATE

algorithm indeed finds a local optimal solution to Eq. (1). To see
this, we first give the following theorem, which says that the fixed
point solution of Eq. (4) satisfies the KKT condition.

THEOREM 1. The fixed point solution of Eq. (4) satisfies the
KKT condition.

PROOF. The Lagrangian function of Eq. (2) can be written as

Li =
∑

j: G(i,j)=1

‖Wi,j � (Di,j − FiFj
′)‖2F (8)

+ αtr(Fi
′TiFi)− αtr(Fi

′AiFi) + β‖Fi‖2F − tr(Λ′Fi)

where Λ is the Lagrange multiplier. Setting the derivative of Li wrt
Fi to 0, we get

2(
∑

j: G(i,j)=1

[−(Wi,j �Wi,j �Di,j)Fj (9)

+ (Wi,j �Wi,j � (FiFj
′))Fj ]

+ αTiFi − αAiFi + βFi) = Λ

By the KKT complementary slackness condition, we have

[
∑

j: G(i,j)=1

(Wi,j �Wi,j � (FiFj
′))Fj + αTiFi + βFi

︸ ︷︷ ︸
Y

(10)

− (
∑

j: G(i,j)=1

(Wi,j �Wi,j �Di,j)Fj + αAiFi)

︸ ︷︷ ︸
X

](u, v)Fi(u, v) = 0

Therefore, we can see that the fixed point solution of Eq. (4) satis-
fies the above equation.

The convergence of the proposed FASCINATE algorithm is given
by the following lemma.

LEMMA 1. Under the updating rule in Eq. (4), the objective
function in Eq. (2) decreases monotonically.

PROOF. Omitted for brevity.

According to Theorem 1 and Lemma 1, we conclude that Alg. 1
converges to a local minimum solution for Eq. 2 wrt each individual
Fi.

B - Efficiency Analysis.
In terms of efficiency, we analyze both the time complexity as

well as the space complexity of the proposed FASCINATE algo-
rithm, which are summarized in Lemma 2 and Lemma 3. We can
see that FASCINATE scales linearly wrt the size of the entire multi-
layered network.

LEMMA 2. The time complexity of Alg. 1 is O([
g∑

i=1

(
∑

j: G(i,j)=1

(mi,jr + (ni + nj)r
2) +mir)]t).

PROOF. In each iteration in Alg. 1 for updating Fi, the com-
plexity of calculating X by Eq. (6) is O(

∑
j: G(i,j)=1

mi,jr +mir)

due to the sparsity of Di,j and Ai. The complexity of computing

R̃i,j in Y is O(mi,jr). Computing Fi(F
′
jFj) requires O((ni +

nj)r
2) operations and computing αTiFi + βFi requires O(nir)

operations. So, it is of O(
∑

j: G(i,j)=1

(mi,jr + (ni + nj)r
2)) com-

plexity to get Y in line 7. Therefore, it takes O(
∑

j: G(i,j)=1

(mi,jr+

(ni + nj)r
2) +mir) to update Fi. Putting all together, the com-

plexity of updating all low-rank matrices in each iteration is O(
g∑

i=1

(
∑

j: G(i,j)=1

(mi,jr + (ni + nj)r
2) + mir)). Thus, the overall

complexity of Alg. 1 is O([
g∑

i=1

(
∑

G(i,j)=1

(mi,jr + (ni + nj)r
2) +

mir)]t), where t is the maximum number of iterations in the algo-
rithm.

LEMMA 3. The space complexity of Alg. 1 is O(
∑g

i=1(nir +
mi) +

∑
i,j: G(i,j)=1

mi,j) .

PROOF. It takes O(
∑g

i=1 nir) to store all the low-rank matri-
ces, and O(

∑g
i=1 mi +

∑
i,j: G(i,j)=1

mi,j) to store all the within-

layer connectivity matrices and dependency matrices in the multi-
layered network. To calculate X for Fi, it costs O(nir) to com-
pute

∑
j: G(i,j)=1

Di,jFj and αAiFi. For Y, the space cost of com-

puting R̃i,j and Fi(F
′
jFj) is O(mi,j) and O(nir) respectively.



Therefore, the space complexity of calculating
∑

j: G(i,j)=1

((1 −

w2)R̃i,j + w2FiFj
′)Fj is O( max

j: G(i,j)=1
mi,j + nir). On the

other hand, the space required to compute αTiFi+βFi is O(nir).
Putting all together, the space cost of updating all low-rank matri-
ces in each iteration is of O( max

i,j: G(i,j)=1
mi,j +maxi nir). Thus,

the overall space complexity of Alg. 1 is O(
∑g

i=1(nir + mi) +∑
i,j: G(i,j)=1

mi,j).

C - Variants.
Here, we discuss some variants of the proposed FASCINATE al-

gorithm. First, by setting all the entries in the weight matrix Wi,j

to 1, FASCINATE becomes a clustering algorithm (i.e., Fi can be
viewed as the cluster membership matrix for nodes in layer-i). Fur-
thermore, if we restrict ourselves to two-layered networks (i.e.,
g = 2), FASCINATE becomes a dual regularized co-clustering algo-
rithm [20]. Second, by setting w ∈ (0, 1), FASCINATE can be used
to address one class collaborative filtering problem, where implicit
dependencies extensively exist between nodes from different lay-
ers. Specifically, on two-layered networks, FASCINATE is reduced
to a weighting-based, dual-regularized one class collaborative fil-
tering algorithm [37]. Third, when the within-layer connectivity
matricesA = {A1, . . . ,Ag} are absent, the proposed FASCINATE

can be viewed as a collective matrix factorization method [32].
While the proposed FASCINATE includes these existing methods

as its special cases, its major advantage lies in its ability to collec-
tively leverage all the available information (e.g., the within-layer
connectivity, the observed cross-layer dependency) for dependency
inference. As we will demonstrate in the experimental section, such
a methodical strategy leads to a substantial and consistent inference
performance boosting. Nevertheless, a largely unanswered ques-
tion for these methods (including FASCINATE) is how to handle
zero-start nodes. That is, when a new node arrives with no ob-
served cross-layer dependencies, how can we effectively and effi-
ciently infer its dependencies without rerunning the algorithm from
scratch. In the next section, we present a sub-linear algorithm to
solve this problem (i.e., Problem 2).

4. FASCINATE-ZERO FOR PROBLEM 2
A multi-layered network often exhibits high dynamics, e.g., the

arrival of new nodes. For example, for a newly identified chemical
in the biological system, we might know how it interacts with some
existing chemicals (i.e., the within-layer connectivity). However,
its cross-layer dependencies wrt proteins and/or diseases might be
completely unknown . This section addresses such zero-start prob-
lems (i.e., Problem 2). Without loss of generality, we assume that
the newly added node resides in layer-1, indexed as its (n1 + 1)th

node. The within-layer connectivity between the newly added node
and the existing n1 nodes is represented by a 1× n1 row vector s,
where s(u) (u = 1, ..., n1) denotes the (within-layer) connectivity
between the newly added node and the uth existing node in layer-1.

We could just rerun our FASCINATE algorithm on the entire multi-
layered network with the newly added node to get its low-rank rep-
resentation (i.e., a 1 × r row vector f ), based on which its cross-
layer dependencies can be estimated. However, the running time
of this strategy is linear wrt the size of the entire multi-layered
network. For example, on a three-layered infrastructure network
whose size is in the order of 14 million, it would take FASCINATE

2, 500+ seconds to update the low-rank matrices {Fi} for a zero-
start node with rank r = 200, which might be too costly in online
settings. In contrast, our upcoming algorithm is sub-linear, and it

only takes less than 0.001 seconds on the same network without
jeopardizing the accuracy.

There are two key ideas behind our online algorithm. The first
is to view the newly added node as a perturbation to the original
network. In detail, the updated within-layer connectivity matrix

Â1 for layer-1 can be expressed as

Â1 =

[
A1 s′

s 0

]
(11)

where A1 is the within-layer connectivity matrix for layer-1 before
the arrival of the new node.

Correspondingly, the updated low-rank representation matrix for

layer-1 can be expressed as F̂1 = [F̂′
1(n1×r) f ′]′, where F̂1(n1×r)

is the updated low-rank representation for the existing n1 nodes

in layer-1. Then the new objective function Ĵ in Eq. (1) can be
reformatted as

Ĵ =
∑

i,j: G(i,j)=1
i,j �=1

‖Wi,j � (Di,j − F̂iF̂
′
j)‖2F (12)

+
∑

j: G(1,j)=1

‖Ŵ1,j � (D̂1,j − F̂1F̂
′
j)‖2F

+

g∑
i=2

α

2

ni∑
u=1

ni∑
v=1

Ai(u, v)‖F̂i(u, :)− F̂i(v, :)‖22

+
α

2

n1∑
u=1

n1∑
v=1

A1(u, v)‖F̂1(u, :)− F̂1(v, :)‖22

+ β

g∑
i=2

‖F̂i‖2F + β‖F̂′
1(n1×r)‖2F

+ α

n1∑
v=1

s(v)‖f − F̂1(v, :)‖22 + β‖f‖22

Since the newly added node has no dependencies, we can set

Ŵ1,j =

[
W(1,j)

0(1×nj)

]
, D̂1,j =

[
D(1,j)

0(1×nj)

]
Therefore, the second term in Ĵ can be simplified as∑

j: G(1,j)=1

‖W1,j � (D1,j − F̂1(n1×r)F̂
′
j)‖2F (13)

Combining Eq. (12), Eq. (13) and J in Eq. (1) together, Ĵ can be
expressed as

Ĵ = J + J1
(14)

where J1 = α
∑n1

v=1 s(v)‖f − F̂1(v, :)‖22 + β‖f‖22, and J is the
objective function without the newly arrived node.

The second key idea of our online algorithm is that in Eq. (14),
J is often orders of magnitude larger than J1. For example, in the
BIO dataset used in Section 5.2.2, J is in the order of 103, while
J1 is in the order of 10−1. This naturally leads to the following ap-
proximation strategy, that is, we (1) fix J with {F∗

i }i=1,...,g (i.e.,
the previous local optimal solution to Eq. (1) without the newly
arrived node), and (2) optimize J1 to find out the low-rank repre-
sentation f for the newly arrived node. That is, we seek to solve the
following optimization problem

f = argmin
f≥0

J1
subject to: F̂1(n1×r) = F∗

1 (15)

with which, we can get an approximate solution {F̂i}i=1,...,g to Ĵ .



To solve f , we take the derivative of J1 wrt f and get

1

2

∂J1

∂f
= βf + α

n1∑
v=1

s(v)(f − F∗
1(v, :)) (16)

= (β + α

n1∑
v=1

s(v))f − αsF∗
1

Since α and β are positive, the Hessian matrix of J1 is a positive
diagonal matrix. Therefore, the global minimum of J1 can be ob-
tained by setting its derivative to zero. Then the optimal solution to
J1 can be expressed as

f =
αsF∗

1

β + α
∑n1

v=1 s(v)
(17)

For the newly added node, f can be viewed as the weighted average
of its neighbors’ low-rank representations. Notice that in Eq. (17),
the non-negativity constraint on f naturally holds. Therefore, we
refer to this solution (i.e., Eq. (17)) as FASCINATE-ZERO. In this
way, we can successfully decouple the cross-layer dependency in-
ference problem for zero-start node from the entire multi-layered
network and localize it only among its neighbors in layer-1. The
localization significantly reduces the time complexity, as summa-
rized in Lemma 4, which is linear wrt the number of neighbors of
the new node (and therefore is sub-linear wrt the size of the entire
network).

LEMMA 4. Let nnz(s) denotes the total number of within-layer
links between the newly added node and the original nodes in layer-
1 (i.e., nnz(s) is the degree for the newly added node). Then the
time complexity of FASCINATE-ZERO is O(nnz(s)r).

PROOF. Since the links between the newly added node and the
original nodes in layer-1 are often very sparse, the number of non-
zero elements in s (nnz(s)) is much smaller than n1. Therefore,
the complexity of computing sF∗

1 can be reduced to O(nnz(s)r).
The multiplication between α and sF∗

1 takes O(r). Computing∑n1
v=1 s(v) takes O(nnz(s)). Thus, the overall complexity of com-

puting f is O(nnz(s)r).

5. EVALUATIONS
In this section, we evaluate the proposed FASCINATE algorithms.

All experiments are designed to answer the following questions:

• Effectiveness. How effective are the proposed FASCINATE

algorithms in inferring the missing cross-layer dependencies?

• Efficiency. How fast and scalable are the proposed algo-
rithms?

5.1 Experimental Setup

5.1.1 Datasets Description
We perform our evaluations on four different datasets, including

(1) a three-layer Aminer academic network in the social collabora-
tion domain (SOCIAL); (2) a three-layer CTD (Comparative Tox-
icogenomics Database) network in the biological domain (BIO);
(3) a five-layer Italy network in the critical infrastructure domain
(INFRA-5); and (4) a three-layer network in the critical infrastruc-
ture domain (INFRA-3). The statistics of these datasets are shown
in Table 2, and the abstract layer-layer dependency graphs of these
four datasets are summarized in Figure 3. In all these four data-
sets, the cross-layer dependencies are binary and undirected (i.e.,
Di,j(u, v) = Dj,i(v, u)).

Table 2: Statistics of Datasets.

Dataset # of Layers # of Nodes # of Links # of CrossLinks
SOCIAL 3 125,344 214,181 188,844

BIO 3 35,631 253,827 75,456
INFRA-5 5 349 379 565
INFRA-3 3 15,126 29,861 28,023,500

(a) SOCIAL (b) BIO (c) INFRA-5 (d) INFRA-3

Figure 3: The abstract dependency structure of each dataset.

SOCIAL. This dataset contains three layers, including a col-
laboration network among authors, a citation network between pa-
pers and a venue network [33]. The number of nodes in each layer
ranges from 899 to 62, 602, and the number of within-layer links
ranges from 2, 407 to 201, 037. The abstract layer-layer depen-
dency graph of SOCIAL is shown in Figure 3(a). The collab-
oration layer is connected to the paper layer with the authorship
dependency, while the venue layer is connected to the paper layer
with publishing dependency. For the Paper-Author dependency,
we have 126,242 links cross the two layers; for the Paper-Venue
dependency, we have 62,602 links.

BIO. The construction of CTD network is based on the works
in [7, 27, 34]. It contains three layers, which are chemical, dis-
ease and gene similarity networks. The number of nodes in these
networks ranges from 4, 256 to 25, 349, and the number of within-
layer links ranges from 30, 551 to 154, 167. The interactions be-
tween chemicals, genes, and diseases form the cross-layer depen-
dency network as shown in Figure 3(b). For Chemical-Gene de-
pendency, we have 53,735 links cross the two layers; for Chemical-
Disease dependency, we have 19,771 links; and for Gene-Disease
dependency, we have 1,950 links.

INFRA-5. The construction of this critical infrastructure net-
work is based on the data implicated from an electrical blackout
in Italy in Sept 2003 [28]. It contains five layers, including four
layers of regional power grids and one Internet network [28]. The
regional power grids are partitioned by macroregions1. To make
the regional networks more balanced, we merge the Southern Italy
power grid and the Island power grid together. The power transfer
lines between the four regions are viewed as cross-layer dependen-
cies. For the Italy Internet network, it is assumed that each Internet
center is supported by the power stations within a radius of 70km.
Its abstract dependency graph is shown in Figure 3(c). The small-
est layer in the network has 39 nodes and 50 links; while the largest
network contains 151 nodes and 158 links. The number of depen-
dencies is up to 307.

INFRA-3. This dataset contains the following three critical in-
frastructure networks: an airport network2, an autonomous system
network3 and a power grid [35]. We construct a three-layered net-
work in the same way as [5]. The three infrastructure networks
are functionally dependent on each other. Therefore, they form
a triangle-shaped multi-layered network as shown in Figure 3(d).
The construction of the cross-layer dependencies is based on geo-
graphic proximity. The number of nodes in each layer varies from

1https://en.wikipedia.org/wiki/First-
level_NUTS_of_the_European_Union
2http://www.levmuchnik.net/Content/Networks/NetworkData.html
3http://snap.stanford.edu/data/



2, 833 to 7, 325, and the number of within-layer links ranges from
6, 594 to 15, 665. The number of cross-layer dependencies ranges
from 4, 434, 116 to 14, 921, 765.

For all datasets, we randomly select 50% cross-layer dependen-
cies as the training set and use the remaining 50% as the test set.

5.1.2 Comparing Methods
We compare FASCINATE with the following methods, including

(1) FASCINATE-CLUST - a variant of the proposed method for the
purpose of dependency clustering, (2) MulCol - a collective ma-
trix factorization method [32], (3) PairSid - a pairwise one-class
collaborative filtering method proposed in [37], (4) PairCol - a
pairwise collective matrix factorization method degenerated from
MulCol (5) PairNMF - a pairwise non-negative matrix factoriza-
tion (NMF) based method [19], (6) PairRec - a pairwise matrix
factorization based algorithm introduced in [15], (7) FlatNMF -
an NMF based method that treats the input multi-layered network
as a flat-structured single network (i.e., by putting the within-layer
connectivity matrices in the diagonal blocks, and the cross-layer
dependency matrices in the off-diagonal blocks), and (8) FlatRec
- a matrix factorization based method using the same techniques
as PairRec but treating the input multi-layered network as a single
network as in FlatNMF.

For the experimental results reported in this paper, we set rank
r = 100, maximum iteration t = 100, termination threshold ξ =
10−8, weight w2 = 0.1 and regularization parameters α = 0.1,
β = 0.1 unless otherwise stated.

5.1.3 Evaluation Metrics
We use the following metrics for the effectiveness evaluations.

• MAP. It measures the mean average precision over all enti-
ties in the cross-layer dependency matrices [18]. A larger
MAP indicates better inference performance.

• R-MPR. It is a variant of Mean Percentage Ranking for one-
class collaborative filtering [12]. MPR is originally used to
measure the user’s satisfaction of items in a ranked list. In
our case, we can view the nodes from one layer as users,
and the nodes of the dependent layer(s) as items. The ranked
list therefore can be viewed as ordered dependencies by their
importance. Smaller MPR indicates better inference perfor-
mance. Specifically, for a randomly produced list, its MPR is
expected to be 50%. Here, we define R-MPR = 0.5−MPR,
so that larger R-MRP indicates better inference performance.

• HLU. Half-Life Utility is also a metric from one-class col-
laborative filtering. By assuming that the user will view each
consecutive items in the list with exponential decay of possi-
bility, it estimates how likely a user will choose an item from
a ranked list [25]. In our case, it measures how likely a node
will establish dependencies with the nodes in the ranked list.
A larger HLU indicates better inference performance.

• AUC. Area Under ROC Curve is a metric that measures the
classification accuracy. A larger AUC indicates better infer-
ence performance.

• Prec@K. Precision at K is defined by the proportion of true
dependencies among the top K inferred dependencies. A
larger Prec@K indicates better inference performance.

5.1.4 Machine and Repeatability
All the experiments are performed on a machine with 2 proces-

sors Intel Xeon 3.5GHz with 256GB of RAM. The algorithms are

programmed with MATLAB using single thread. We will release
the code and the non-proprietary datasets after the paper is pub-
lished.

5.2 Effectiveness
In this section, we aim to answer the following three questions,

(1) how effective is FASCINATE for Problem 1 (i.e., CODE)? (2)
how effective is FASCINATE-ZERO for Problem 2 (i.e., CODE-
ZERO)? and (3) how sensitive are the proposed algorithms wrt the
model parameters?

5.2.1 Effectiveness of FASCINATE

We compare the proposed algorithms and the existing methods
on all the four datasets. The results are shown in Table 3 through
Table 6. There are several interesting observations. First is that
our proposed FASCINATE algorithm and its variant (FASCINATE-
CLUST) consistently outperform all other methods in terms of all
the five evaluation metrics. Second, by exploiting the structure of
multi-layered network, FASCINATE, FASCINATE-CLUST and Mul-
Col have significantly better performance than the pairwise meth-
ods. Third, among the pairwise baselines, PairSid and PairCol are
better than PairNMF and PairRec. The main reason is that the first
two algorithms utilize both within-layer connectivity matrices and
cross-layer dependency matrix for matrix factorization, while the
latter two only use the observed dependency matrix. Finally, the
relatively poor performance of FlatNMF and FlatRec implies that
simply flattening the multi-layered network into a single network
is insufficient to capture the intrinsic correlations across different
layers.

We also test the sensitivity of the proposed algorithms wrt the
sparsity of the observed cross-layer dependency matrices (i.e., the
ratio of the missing values) on INFRA-3. The results in Fig-
ure 4 demonstrate that both FASCINATE and FASCINATE-CLUST

perform well even when 90%+ entries in the dependency matrices
are missing.

5.2.2 Effectiveness of FASCINATE-ZERO

To evaluate the effectiveness of FASCINATE-ZERO, we randomly
select one node from the Chemical layer in the BIO dataset as the
newly arrived node and compare the inference performance be-
tween FASCINATE-ZERO and FASCINATE. The average results
over multiple runs are presented in Figure 5. We can see that
FASCINATE-ZERO bears a very similar inference power as FAS-
CINATE, but it is orders of magnitude faster. We observe similar
performance when the zero-start nodes are selected from the other
two layers (i.e., Gene and Disease).

5.2.3 Parameter Studies
There are three parameters α, β and r in the proposed FASCI-

NATE algorithm. α is used to control the impact of node homophily,
β is used to avoid over-fitting, and r is the number of columns of the
low-rank matrices {Fi}. We fix one of these parameters, and study
the impact of the remaining two on the inference results. From Fig-
ure 6, we can see that MAP is stable over a wide range of both α
and β. Specifically, a relatively high MAP can be achieved when α
is between 0.1 to 1 and β is less than 1. As for the third parameter r,
the inference performance quickly increases wrt r until it hits 200,
after which the MAP is almost flat. This suggests that a relatively
small size of the low-rank matrices might be sufficient to achieve a
satisfactory inference performance.

5.3 Efficiency
The scalability results of FASCINATE and FASCINATE-ZERO

are presented in Figure 7. As we can see in Figure 7(a), FASCI-



Table 3: Cross-Layer Dependency Inference on SOCIAL

Methods MAP R-MPR HLU AUC Prec@10
FASCINATE 0.0660 0.2651 8.4556 0.7529 0.0118

FASCINATE-CLUST 0.0667 0.2462 8.2160 0.7351 0.0108

MulCol 0.0465 0.2450 6.0024 0.7336 0.0087
PairSid 0.0308 0.1729 3.8950 0.6520 0.0062
PairCol 0.0303 0.1586 3.7857 0.6406 0.0056

PairNMF 0.0053 0.0290 0.5541 0.4998 0.0007
PairRec 0.0056 0.0435 0.5775 0.5179 0.0007

FlatNMF 0.0050 0.0125 0.4807 0.5007 0.0007
FlatRec 0.0063 0.1009 0.6276 0.5829 0.0009

Table 4: Cross-Layer Dependency Inference on BIO.

Methods MAP R-MPR HLU AUC Prec@10
FASCINATE 0.3979 0.4066 45.1001 0.9369 0.1039

FASCINATE-CLUST 0.3189 0.3898 37.4089 0.9176 0.0857

MulCol 0.3676 0.3954 42.8687 0.9286 0.0986
PairSid 0.3623 0.3403 40.4048 0.8682 0.0941
PairCol 0.3493 0.3153 38.4364 0.8462 0.0889

PairNMF 0.1154 0.1963 15.8486 0.6865 0.0393
PairRec 0.0290 0.2330 3.6179 0.7105 0.0118

FlatNMF 0.2245 0.2900 26.1010 0.8475 0.0615
FlatRec 0.0613 0.3112 8.4858 0.8759 0.0254

Table 5: Cross-Layer Dependency Inference on INFRA-5.

Methods MAP R-MPR HLU AUC Prec@10
FASCINATE 0.5040 0.3777 67.2231 0.8916 0.2500

FASCINATE-CLUST 0.4297 0.3220 56.8215 0.8159 0.2340

MulCol 0.4523 0.3239 59.8115 0.8329 0.2413
PairSid 0.3948 0.2392 49.5484 0.7413 0.2225
PairCol 0.3682 0.2489 48.5966 0.7406 0.2309

PairNMF 0.1315 0.0464 15.7148 0.5385 0.0711
PairRec 0.0970 0.0099 9.4853 0.5184 0.0399

FlatNMF 0.3212 0.2697 44.4654 0.7622 0.1999
FlatRec 0.1020 0.0778 11.5598 0.5740 0.0488

Table 6: Cross-Layer Dependency Inference on INFRA-3.

Methods MAP R-MPR HLU AUC Prec@10
FASCINATE 0.4780 0.0788 55.7289 0.6970 0.5560

FASCINATE-CLUST 0.5030 0.0850 49.1223 0.7122 0.4917

MulCol 0.4606 0.0641 49.3585 0.6706 0.4930
PairSid 0.4253 0.0526 47.7284 0.5980 0.4773
PairCol 0.4279 0.0528 48.1314 0.5880 0.4816

PairNMF 0.4275 0.0511 48.8478 0.5579 0.4882
PairRec 0.3823 0.0191 38.9226 0.5756 0.3895

FlatNMF 0.4326 0.0594 45.0090 0.6333 0.4498
FlatRec 0.3804 0.0175 38.0550 0.5740 0.3805
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Figure 4: Performance of FASCINATE and FASCINATE-CLUST on
INFRA-3 dataset under different missing value percentages.
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Figure 5: Effectiveness of FASCINATE-ZERO in BIO network wrt
different rank r.

NATE scales linearly wrt the overall network size (i.e.,
∑

i(ni +
mi) +

∑
i,j mi,j), which is consistent with our previous analysis

in Lemma 2. As for FASCINATE-ZERO, it scales sub-linearly wrt
the entire network size. This is because, by Lemma 4, the running
time of FASCINATE-ZERO is only dependent on the neighborhood

size of the newly added node, rather than that of the entire network.
Finally, we can see that FASCINATE-ZERO is much more efficient
than FASCINATE. To be specific, on the entire INFRA-3 dataset,
FASCINATE-ZERO is 10, 000, 000+ faster than FASCINATE (i.e.,
1.878× 10−4 seconds vs. 2.794× 103 seconds)

6. RELATED WORK
In this section, we review the related literature, which can be

classified into two categories: (1) multi-layered network, and (2)
collaborative filtering.

Multi-layered Network. Multi-layered networks (also referred
as Network of Networks in some scenarios), have attracted a lot
research attentions in recent years. In [13], Kivela et al. pro-
vide a comprehensive survey about different types of multi-layered
networks, including multi-modal networks [11], multi-dimensional
networks [2], multiplex networks [1] and inter-dependent networks
[4]. The network studied in our paper belongs to the category of
inter-dependent networks. One of the mostly studied problems in
inter-dependent networks is network robustness [8]. Most of the
previous researches are based on two-layered networks [4, 9, 26,
31], with a few exceptions that focus on arbitrarily structured multi-
layered networks [5]. Other remotely related studies in the context
of multi-layered networks include cross-network ranking [23] and
clustering [24]. Notice that all these existing works assume that the
network structure (including both the within-layer connectivity and
the cross-layer dependency) is given a prior. From this perspective,
our proposed algorithms in this paper might benefit these works by
providing a more accurate input network.

Collaborative Filtering. As mentioned earlier, the cross-layer
dependency inference problem is conceptually related to collabo-
rative filtering [10]. Commonly used collaborative filtering meth-
ods can be roughly classified into two basic models: neighborhood
models [3] and latent factor models [15]. As the latent factor model
is more effective in capturing the implicit dependencies between
users and items, many variants have been proposed to address im-
plicit feedback problems [12, 22], one class collaborative filtering
(OCCF) problems [25], feature selection problems [17], etc. In-
stead of only using the user-item rating matrix for preference in-
ference, Li et al. propose a method that can effectively incorporate
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Figure 6: The parameter studies of the BIO dataset.
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Figure 7: Wall-clock time vs. the size of the network.

user information into OCCF to improve the performance [18]. To
further exploit more data resources for preference inference, Yao et
al. propose wiZAN-Dual to take both user similarity network and
item similarity network as side information for OCCF [37]. In [38],
multiple similarity networks of users and items are integrated to-
gether for drug-target interaction prediction. In [16, 36], user and
item features are incorporated into the traditional collaborative fil-
tering algorithms for cross-domain recommendation. To deal with
domains with multiple dependencies, Singh et al. propose a col-
lective matrix factorization model to learn the dependencies across
any two inter-dependent domains [32]. A less studied scenario in
collaborative filtering is to handle user/item dynamics [14] (e.g.,
the arrival a new user or item, a new rating between an user and an
item, etc).

7. CONCLUSIONS
In this paper, we address the cross-layer dependency inference

problem (CODE) and the corresponding zero-start problem (CODE-
ZERO) in multi-layered networks. By formulating CODE as a
collective collaborative filtering problem, we propose an effective
algorithm (FASCINATE), and prove its optimality, correctness and
scalability. Moreover, by viewing the zero-start node as a perturba-
tion to the multi-layered network system, we derive an effective and
efficient algorithm (FASCINATE-ZERO) to approximate the depen-
dencies of newly added nodes, whose complexity is sub-linear wrt
the overall network size. We experiment on four real-world datasets
from three different domains, which demonstrates the effectiveness
and efficiency of FASCINATE and FASCINATE-ZERO.
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