
Facets: Fast Comprehensive Mining of Coevolving
High-order Time Series

Yongjie Cai
The Graduate Center, CUNY

ycai@gradcenter.cuny.edu

Hanghang Tong
Arizona State University

hanghang.tong@asu.edu

Wei Fan
Big Data Labs - Baidu USA
fanwei03@baidu.com

Ping Ji
The Graduate Center, CUNY

pji@jjay.cuny.edu

Qing He
University at Buffalo, SUNY

qinghe@buffalo.edu

ABSTRACT
Mining time series data has been a very active research area
in the past decade, exactly because of its prevalence in many
high-impact applications, ranging from environmental moni-
toring, intelligent transportation systems, computer network
forensics, to smart buildings and many more. It has posed
many fascinating research questions. Among others, three
prominent challenges shared by a variety of real applications
are (a) high-order; (b) contextual constraints and (c) tempo-
ral smoothness. The state-of-the-art mining algorithms are
rich in addressing each of these challenges, but relatively
short of comprehensiveness in attacking the coexistence of
multiple or even all of these three challenges.

In this paper, we propose a comprehensive method, Facets,
to simultaneously model all these three challenges. We for-
mulate it as an optimization problem from a dynamic graph-
ical model perspective. The key idea is to use tensor fac-
torization to address multi-aspect challenges, and perform
careful regularizations to attack both contextual and tem-
poral challenges. Based on that, we propose an effective
and scalable algorithm to solve the problem. Our experi-
mental evaluations on three real datasets demonstrate that
our method (1) outperforms its competitors in two common
data mining tasks (imputation and prediction); and (2) en-
joys a linear scalability w.r.t. the length of time series.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

Keywords
A network of time series; tensor factorization

1. INTRODUCTION
Mining time series data has been a very active research

area in the past decade, exactly because of its prevalence in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
c© 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783348.

time

s
e
n
s
o
r

ty
p
e 0 1000 2000 3000 4000 5000 6000

14

16

18

20

22

24

26

time

te
m

p
e

ra
tu

re

0 1000 2000 3000 4000 5000 6000
−2

−1

0

1

2

3

4

time

N
or

m
al

iz
ed

 R
ea

di
ng

s

Temperature
Light
Humidity
Voltage

-0.8
-0.4

0.4

0.7

0.4

-0.6

(b) a sensor-time slice
in temperature dimension

(c) a type-time slice from one sensor

(a)

Figure 1: An illustrative example of high-order time series
with rich contextual networks. (Best viewed in color).

many high-impact applications, ranging from environmen-
tal monitoring, intelligent transportation systems, computer
network forensics, to smart buildings and many more. It has
posed many fascinating research questions. We identify and
summarize three prominent challenges as follows:

C1. High-order1. Multiple time series arising from real ap-
plications are often collected from multiple locations
with multiple types (See Fig. 1(a) for an example).
Yet, many classic time series analysis tools, such as
Kalman filtering, often fall short in modeling such multi-
aspect, high-order time series data.

C2. Contextual constraints. Many real time series data is
accompanied by contextual information (e.g., the sen-
sor network in Fig. 1(b)). How to effectively leverage
such contextual information remains an open question
for time series data mining.

C3. Temporal smoothness. This refers to the correlation
among the adjacent observations along the temporal
dimension (e.g., the smooth curves in Fig. 1(b)(c)).
Despite its key importance for some data mining tasks
(e.g., imputation and prediction), temporal smooth-
ness is often ignored in certain time series mining al-
gorithms (e.g., the standard matrix/tensor decompo-
sition), which have been increasingly attracting atten-
tion in the recent years.

1a.k.a multivariate in statistics.

An example of time series that exposes these three chal-
lenges is illustrated in Fig. 1. The time series data are gen-
erated from a set of sensors deployed in a smart building.
Each sensor generates multiple time series by measuring cer-
tain types of room condition (e.g., temperature, humidity,
etc.) over time. As shown in Fig. 1(a), the time series data
can be viewed as a cube, in which sensor, measure type,
and time step are represented in each dimension, respec-
tively (high-order). As shown in Fig. 1(b), by selecting one
measurement type (e.g., temperature in the figure), we ob-
tain a sensor-time slice that consists of multiple temperature
time series from the sensor network. The weight labeled on
the network edge indicates the similarity between connected
nodes. We use the same color to represent time series and
its corresponding network node. It is clear that the time
series in the sensor-time slice are connected with each other
by the underlying sensor network (contextual constraints).
Similarly, if we extract a type-time slice from one sensor, we
can also find the time series of multiple types are essentially
connected by the type network shown in Fig. 1(c). Specifi-
cally, temperature, light, voltage have similar daily patterns,
while humidity shows a trend inverse to those of others. Fi-
nally, we can easily observe temporal smoothness from time
series figures.

The state-of-the-art mining algorithms are rich in deal-
ing with each of the aforementioned challenges, but rela-
tively short of comprehensiveness in overcoming the coex-
istence of multiple or all of the challenges. For example,
dynaMMo [17] applies linear dynamic systems after inter-
polation to learn the temporal dynamics and improve the
accuracy of estimating the missing values. Dynamic Tensor
Analysis (DTA) provides a compact summary for high-order
and high-dimensional data [25]. Note that neither dynaMMo
(as well as its high-order generalization [23]) nor DTA en-
codes the contextual constraints (e.g., the sensor network in
a smart building). On the other hand, the dynamic con-
textual matrix factorization (DCMF) algorithm [5] encodes
both contextual information and temporal dynamics, but
falls short in modeling the high order of time series data.

In this paper, we propose a method of fast comprehensive
mining of coevolving high-order time series (Facets). It
formulates high-order time series as tensors and adopts the
tensor decomposition model to find the latent factors of time
series data. By encoding the contextual constraints, Facets
finds similar latent factors from similar time series. It fur-
ther encodes temporal smoothness with multilinear dynamic
systems.

The main contributions of this paper can be summarized
as follows.

• Problem Definition. To the best of our knowledge,
we are the first to collectively address C1-C3 on mining
high-order time series data.

• Algorithms and Analysis. We propose a compre-
hensive model to solve all of the three challenges, and
propose an effective and scalable algorithm that nat-
urally fits in the tasks of imputation and prediction;
and analyze its effectiveness and complexity.

• Empirical Evaluations. The experimental evalua-
tions on real datasets demonstrate that our method
(1) outperforms its competitors in two common data
mining tasks (i.e., imputation and prediction); and (2)

Table 1: Symbols and Definitions.

Symbol Definition and Description

A,... tensors (calligraphic style)
A,... matrices (bold upper case)
Aij the element at the ith row and the jth col-

umn of matrix A
Aj ,A.j the jth column of matrix A
Ai. the ith row of matrix A
A′ transpose of matrix A
a,b, ... column vectors (bold lower case)
� element-wise multiplication
⊗ kronecker product
~ tensor product
X time series tensor with all time steps
Xt time series tensor at tth time step
W indicator tensor
S contextual matrix set

{S(1), ...,S(M)}
Z time series latent variable
B transition variable
U coefficient latent variable
V contextual latent matrix set

{V(1), ...,V(M)}
M order of Xt
T length of time series
Nm dimensions of X or W on mode m
Lm dimensions of latent variables on mode m
vec(X) vectorization of tensor X
mat(X) matricization of tensor X
X(n) mode-n matricization of tensor X

enjoys a linear scalability w.r.t. the length of time se-
ries.

The rest of this paper is organized as follows: In Section 2,
we introduce the notations and formally define the problem.
Then we briefly introduce the background knowledge in Sec-
tion 3. We present the proposed solution and its analysis in
Section 4, and provide the experimental results in Section 5.
The related work is reviewed in Section 6, followed by the
conclusions in Section 7.

2. PROBLEM DEFINITION
Table 1 lists the main symbols we use throughout this pa-

per. Besides the standard notations, we use an (M + 1)-
order2 tensor X ∈ RN1×...×NM×T to denote time series,
where Nm(1 ≤ m ≤ M) is the dimensionality of the mth

mode and the last mode of the time series tensor repre-
sents the temporal mode with T dimensions (i.e., the time
series has T time steps). We can also rewrite the time se-
ries tensor as a sequence of M -order tensors X1,X2...,XT ,
where each Xt ∈ RN1×...×NM (1 ≤ t ≤ T) denotes the ob-
served data at tth time step. We use an indicator tensor
W ∈ RN1×...×NM×T to indicate whether a single entry in
X is observed or missing. Specifically, Wn1...nM t = 0 if
Xn1...nM t is missing, otherwise Wn1...nM t = 1. Besides, we

have a set of contextual matrices S = {S(1),S(2), ...,S(M)},
where each S(m) ∈ RNm×Nm(1 ≤ m ≤ M) represents the

contextual network of X ’s mth mode and each entry of S(m)

2In this paper, order and mode are interchangeable.

indicates the correlations between the corresponding two di-
mensions in the mth mode.

With the above notations, we generalize the concept of a
Network of Time Series, which was first introduced in [5],
and formally define A Network of High-order Time Se-
ries (Net-HiTs) as follows:

Definition 2.1. A Network of High-order Time Series (Net-
HiTs).
A Network of High-order Time Series is defined as a quadru-
plet R = 〈X ,W,S, ζ〉, where X ∈ RN1×...×NM×T is a par-
tially observed (M+1)-order time series tensor; W is an in-
dicator tensor in the same size with X (W ∈ RN1×...×NM×T),
T in both tensors represents the dimensionality of the time
mode; S contains a set of contextual matrices, which rep-
resent the correlations between any two dimensions in each
mode of X ; and ζ is a one-to-one mapping function, which
maps each dimension of the time series X to a node in S.

Accordingly, the problem of time series missing value re-
covery and prediction can be defined as follows:

Problem 2.1. Net-HiTs Missing Value Recovery.
Given: a network of high-order time seriesR = 〈X ,W,S, ζ〉;
Recover: its missing parts indicated by the indicator tensor
W.

Problem 2.2. Net-HiTs Prediction.
Given: a network of high-order time seriesR = 〈X ,W,S, ζ〉,
and the time step t to predict ;
Predict: t time steps after X .

3. PRELIMINARIES
In this section, we briefly introduce some definitions and

lemmas in multilinear algebra (a.k.a tensor algebra or mul-
tilinear analysis) from tensor related literatures [13, 23].

Definition 3.1. Vectorization.
The vectorization of an M-order tensor X ∈ RN1×...×NM

vec(X) is obtained by iterating elements of X . vec(X) ∈
RN1...NM .

The ordering of the elements does not matter as long as
it is consistent. In this paper, we follow Matlab linear in-
dexing with multidimensional arrays to index the elements.
Specifically, the jth element of vec(X) is given by vec(X)j =

Xn1,...,nM , where j = 1 +
∑M
k=1(nk − 1)

∏k−1
m=1Nm.

Definition 3.2. Matricization.
Let the ordered sets R = {r1, ..., rL} and C = {c1, ..., cM−L}
be a partitioning of the modes {1,2,...,M}, the matricization
of a tensor X ∈ RN1×...×NM can be specified by

X(R×C:N1×...×NM) ∈ RJ×K with J =
∏
n∈R

Nn and K =
∏
n∈C

Nn.

The indices in R and C are mapped to the rows and the
columns, respectively. Specifically,

(
X(R×C:N1×...×NM)

)
jk

=

xn1n2...nM , where j = 1 +
∑L
l=1(nrl − 1)

∏l−1
i=1Nri , and k =

1 +
∑M−L
m=1 (ncm − 1)

∏m−1
i=1 Nci

Given a tensor X ∈ RN1×...×NM×L1×...×LM , we partition
the first half of modes {N1, ..., NM} as rows and the second
half {L1, ..., LM} as columns. The element of the matri-
cization mat(X) is given by mat(X)ij = Xn1,...,nM ,l1,...,lM ,

where i = 1+
∑M
k=1(nk−1)

∏k−1
m=1Nm, and j = 1+

∑M
k=1(lk−

1)
∏k−1
m=1 Lm.

A special case is mode-n matricizing, which happens when
R is a singleton. For example, given an M -order tensor X ∈
RN1×...×NM , the mode-n matricizing X(n) ∈ RNn×

∏
i6=n Ni ,

i.e., R = {n}, C = {1, 2..., n− 1, n+ 1, ...,M}.

Definition 3.3. Product or Contracted Product.
Given two tensors U ∈ RN1×...×NM×L1×...×LM and Z ∈
RL1×...×LM , the product or the contracted product X = U~Z
is given by Xn1,...,nM =

∑
l1,...,lM

Un1,...,nM ,l1,...,lMZl1,...,lM ,

X ∈ RN1×...×NM .

Definition 3.4. Tensor Factorization.
Given a tensor U ∈ RN1×...×NM×L1×...×LM , the factoriza-
tion of U is to decompose it into M factor matrices {U(m) ∈
RNm×Lm}Mm=1, so that Un1,...,nM ,l1,...,lM =

∏M
m=1 U

(m)
nmlm

.

It can also be written as mat(U) = U(M) ⊗U(M−1) ⊗ ... ⊗
U(1), where ⊗ denotes the Kronecker product.

With the above definitions, we can easily prove the fol-
lowing two lemmas.

Lemma 3.1. Given two tensors U ∈ RN1×...×NM×L1×...×LM

and Z ∈ RL1×...×LM , let X = U ~ Z, then vec(X) =

mat(U) vec(Z). If U is factorizable with matrices {U(m)}Mm=1,

then vec(X) = [U(M) ⊗U(M−1) ⊗ ...⊗U(1)] vec(Z).

Lemma 3.2. Given two tensors U ∈ RN1×...×NM×L1×...×LM ,
Z ∈ RL1×...×LM , and mat(U) = U(M)⊗U(M−1)⊗ ...⊗U(1)

X = U ~ Z ⇔

X(n) = U(n)Z(n)(U
(M) ⊗ ...⊗U(n+1) ⊗U(n−1) ⊗ ...⊗U(1))′

In addition, we introduce a lemma of matrix normal dis-
tribution [9] and the definition of tensor normal distribu-
tion [23]:

Lemma 3.3. Matrix Normal Distribution.
Given a matrix X ∈ RN×P , X follows the matrix nor-
mal distribution MN (M,U,V) if and only if vec(X) ∼
N (vec(M),V ⊗U), where M ∈ RN×P ,U ∈ RN×N ,V ∈
RP×P .

Definition 3.5. Tensor Normal Distribution.
Given a tensor X ∈ RN1×...×NM , X follows tensor nor-
mal distribution N (U ,D) if vec(X) ∼ N (vec(U),mat(D)),
where U ∈ RN1×...×NM and D ∈ RN1×...×NM×N1×...×NM .

4. PROPOSED APPROACH: FACETS
In this section, we present our proposed Facets for fast

comprehensive mining of coevolving high-order time series.
We give the formal formulation of the model and then pro-
vide the detailed algorithm to learn the model.

4.1 Our Optimization Formulation
In order to collectively address all the three challenges

outlined in the introduction, we present a regularization op-
timization formulation from a dynamic graphical model per-
spective.
Step 1 - Addressing both C1 and C2. Facets adopts the
tensor decomposition model to find the latent factors for the
input high-order (C1) time series data. It further encodes
the contextual information (C2) to encourage the similar
time series to share similar latent factors.

ZtXt

U(1)
U(3)

U(2)

N1

N2

N3

N1

L1

N2

L2

N3

L3

L1

L2

L3

S(1) S(3) S(2)
N1 N3 N2

N1 N3 N2

Figure 2: Step 1 - Addressing both C1 and C2

Formally, let X1, X2 ..., XT be an M -order time series,
and S = {S(1),S(2), ...,S(M)} be a set of contextual matri-

ces, where each S(m) represents the contextual network of
X ’smth mode, we define the conditional distribution of Xt to
be a multilinear Gaussian distribution with the covariance D
and the mean as the product of two latent factors U and Zt,
shown in Eq. (1). U is further factorized into M factor ma-

trices U(1), ...,U(M−1),U(M), shown in Eq. (2). Each U(m)

indicates the time series similarity among the dimensions in
the mth mode. Then, we define the conditional distribution

of the jth column in the mth contextual matrix S
(m)
j as a lin-

ear Gaussian distribution with the covariance Ξ(m) and the
mean as the product of the latent factors U(m) and V

(m)
j ,

presented in Eq. (3). In Eq. (4), we define zero-mean spher-

ical Gaussian priors on V(m), with entries in S(m) scaled to
[−1, 1].

Xt|Zt,U ∼ N (U ~ Zt,D) , (1)

mat(U) = U(M) ⊗U(M−1) ⊗ ...⊗U(1), (2)

S
(m)
j |V(m)

j ,U(m) ∼ N
(
U(m)V

(m)
j ,Ξ(m)

)
, (3)

V
(m)
j ∼ N (0,Γ(m)), (4)

j = 1, ..., Nm;m = 1, ...,M.

Fig. 2 illustrates this step in the case of M = 3, where we
omit V(m) for clarity.
Step 2 - Addressing C3. Facets encodes temporal smooth-
ness (C3) with multilinear dynamical systems [23]. Specif-
ically, we define the conditional distribution of the latent
factor Zt as a multilinear Gaussian distribution with a mul-
tilinear transition tensor B and the covariance O, shown
in Eq. (6). B is also defined as factorizable, formulated in
Eq. (7). As defined in Eq. (5), the initial state of Z1 is
generated based on the tensor normal distribution with the
mean Z0 and the covariance O0.

Z1 ∼ N (Z0,O0) , (5)

Zt|Zt−1 ∼ N (B ~ Zt−1,O) , (6)

mat(B) = B(M) ⊗B(M−1) ⊗ ...⊗B(1). (7)

In addition, since missing values in time series exist in
many applications, we modify Eq. (1) as follows:

X ∗t |Zt,U ∼ N (U∗ ~ Zt,D∗) , (8)

where X ∗t represents observed entries of Xt (i.e., the corre-
sponding entries in Wt equal 1.), which is a subset of Xt.
U∗,D∗ are the subsets of U and D, corresponding to the
entries of X ∗t .

Z1 Z2 Zt�1 Zt Zt+1

X1 X2 Xt�1 Xt Xt+1

M

U(m)

S(m)V(m)

Figure 3: Graphical Model of Facets. The blue solid box is
a plate representation of M instances, of which only a single
instance is shown explicitly. The dashed rectangle indicates
that V(m) and S(m) can be ignored in the model.

Our goal is to estimate the model parameters θ = {B,Z0,

O0,O,D, {Ξ(m)}, {Γ(m)}} and find the latent factors U ,Z,
{V(m)}Mm=1 that maximize the following joint distribution:

argmax
U,Z,{V(m)},θ

p(X ,S,U ,Z, {V(m)}) = argmax
U,Z,{V(m)},θ

p(Z1)
T∏
t=2

p(Zt|Zt−1)︸ ︷︷ ︸
C3. temporal smoothness

T∏
t=1

p(Xt|Zt,U)︸ ︷︷ ︸
C1. tensor time series

×
M∏
m=1

Nm∏
j=1

p(V
(m)
j)

M∏
m=1

Nm∏
j=1

p(S
(m)
j |V(m)

j ,U(m))︸ ︷︷ ︸
C2. contextual information

, (9)

where we omit the model parameters in the equation.
The complete graphical model of Facets is shown in Fig. 3.

The dashed rectangle means that V(m) and S(m) can be ig-
nored if the contextual matrix S(m) is unavailable or inappli-
cable. In this model, we include a contextual weight vector
λ ∈ RM to control the contributions of contextual matrices.
The contextual matrix of the mth mode is ignored if λm is
set to zero.

In order to accommodate sparse time series datasets with
our model, we simplify the covariances by assuming that
the transition noise and the observation noise are indepen-
dent and identically distributed (i.i.d.), and the covariances

of latent variable {V(m)
j } are i.i.d. Thus, the covariances

Ξ(m),D,O,O0 and Γ(m) are reduced to (ξ(m))2, σ2
R, σ

2
O, σ

2
0

and σ2
Vm, respectively.

4.2 Proposed Optimization Algorithm
It is difficult to find the global optimal solution of Eq. (9)

due to three couplings in the model: a) the latent factors U
and Z jointly determine X , and U(m) and V(m) jointly de-
termine S(m); b) both the parameters and the latent factors

are unknown; c) U is determined by U(1), U(2),..., and U(M)

jointly, and so is B. Hence, we aim to find its local optimum
instead following the expectation-maximization (E-M) algo-
rithm. Specifically, Facets employs the following steps to
address the aforementioned difficulties: a) it regards U as
a model parameter; b) Facets searches a local optimal so-
lution by updating the parameters θ and the expectations
of Z and V(m) alternatively; c) Facets iteratively updates

U(m) and B(m) when keeping other factors of U and B fixed.

Inferring latent factors Z and {V(m)}. With the fixed
parameters, we first perform the vectorizations and matri-
cizations in Eq. (10). With Xt and Zt reshaped into vectors,
we apply the forward and backward algorithms to obtain
the expectations of the latent factors as in the DCMF algo-
rithm [5]. The details are presented in Appendix A.

vec(Z1) ∼ N (vec(Z0),mat(O0)) ,

vec(Zt)| vec(Zt−1) ∼ N (mat(B) vec(Zt−1),mat(O)) ,

vec(Xt)| vec(Zt) ∼ N (mat(U) vec(Zt),mat(D)) . (10)

Updating non-multilinear parameters. In this step,
we obtain new estimations of the non-multilinear parameters
to maximize the expectation of the log likelihood defined in
Eq. (11).

Q(θ, θold) = EZ,{V(m)}|θold

[
ln p(X ,S,Z, {V(m)}|θ)

]
,

θnew = argmax
θ

Q(θ, θold), (11)

where θ = {U ,B,Z0, σ
2
O, σ

2
0 , σ

2
R, {(ξ(m))2}, {σ2

Vm
}}, and p(X ,

S,Z, {V(m)}|θ) is defined in Eq. (9).
With the expectations obtained in the latent factor in-

ferring step, each non-multilinear model parameter can be
obtained by taking the derivative of Q(θ, θold) w.r.t. that pa-
rameter and setting the derivative to zero. The parameters
are updated as follows:

(σ2
Vm

)new =
1

NmLm

Nm∑
j=1

tr(E[V
(m)
j (V

(m)
j)′]),

vec(Znew0) = E[vec(Z1)],

(σ2
0)new =

1∏M
m=1 Lm

tr
[
E[vec(Z1) vec(Z1)′]− E[vec(Z1)]E[vec(Z1)′]

]
,

(σ2
O)new =

1

(T − 1)
∏M
m=1 Lm

tr

(
T∑
t=2

E[vec(Zt) vec(Zt)′]

−mat(B)

T∑
t=2

E[vec(Zt−1) vec(Zt)′]−
T∑
t=2

E[vec(Zt) vec(Zt−1)′] mat(B)′

+ mat(B)

T∑
t=2

E[vec(Zt−1) vec(Zt−1)′] mat(B)′
)
,

((ξ(m))2)new =
1

N2
m

Nm∑
j=1

[
(S

(m)
j)′S

(m)
j − 2(S(m))′jU

(m)E[V
(m)
j]

+ tr
(
U(m)E

[
V

(m)
j (V

(m)
j)′

]
(U(m))′

)]
,

(σ2
R)new =

1∑T
t=1

∑
i vec(Wt)i

T∑
t=1

[
vec(X ∗t)′ vec(X ∗t)

+ tr
(
mat(U)∗E

[
vec(Zt) vec(Zt)′

]
(mat(U)∗)′

)
−2 vec(X ∗t)′mat(U)∗E[vec(Zt)]

]
. (12)

Updating multilinear operators. Though the new es-
timations of mat(U) and mat(B) can be derived in the same
way with updating non-multilinear parameters, it cannot
determine the factors of U and B. We apply the following
steps to obtain a closed-form solution for B(m) and U(m),
by keeping other factors fixed.

Based on Lemma 3.1-3.3, we can get

Zt|Zt−1 ∼ N
(
B ~ Zt−1, σ

2
OI
)

(13)

⇔ vec(Zt)| vec(Zt−1) ∼ N
(
mat(B) vec(Zt−1), σ2

OI)
)
,

⇔ Zt,(m)|Zt−1,(m) ∼MN
(
B(m)Zt−1,(m))F, I, σ

2
OI)
)
,

where F = (B(M)⊗ ...⊗B(m+1)⊗B(m−1)...⊗B(1))′, Zt,(m)

denotes mode-m matricizing of Zt and I/I denotes the iden-
tity tensor/matrix. Then, we can replace p(Zt|Zt−1) with
p(Zt,(m)|Zt−1,(m)) in Eq. (11) and obtain the derivative w.r.t.

B(m). By setting the derivative to zero, we get a new esti-
mation of B(m):

(B(m))new = C2/C1,

C1 =

T∑
t=2

∏
n 6=m Ln∑
j=1

E[(Zt−1,(m)Fj)(Zt−1,(m)Fj)
′],

C2 =

T∑
t=2

∏
n 6=m Ln∑
j=1

E[(Zt,(m))j(Zt−1,(m)Fj)
′], (14)

where E[(Zt−1,(m)Fj)(Zt−1,(m)Fj)
′] and E[(Zt,(m))j(Zt−1,(m)Fj)

′]
are calculated from the expectations and the covariances of
the latent factors. Specifically,

E[(Zt,(m))j(Zt−1,(m)Fj)
′] = cov((Zt,(m))j , (Zt−1,(m)Fj)

′)

+E[(Zt,(m))j]F
′
jE[Zt−1,(m)]

′, (15)

E[(Zt−1,(m)Fj)(Zt−1,(m)Fj)
′] = cov(Zt−1,(m)Fj , (Zt−1,(m)Fj)

′)

+E[(Zt−1,(m))]FjF
′
jE[Zt−1,(m)]

′. (16)

Each entry apq of cov((Zt,(m))j , (Zt−1,(m)Fj)
′) and each en-

try bpq of cov(Zt−1,(m)Fj , (Zt−1,(m)Fj)
′) are obtained by:

apq =
∑
k

Fkj cov(Zt,(m),Zt−1,(m))pjqk, (17)

bpq =
∑
i

∑
k

FkjFij cov(Zt−1,(m),Zt−1,(m))piqk, (18)

where cov(Zt,(m),Zt−1,(m)) is calculated as follows: 1) revert
the inferred cov(vec(Zt), vec(Zt−1)) to the tensor form; 2)
permute the order of the mode from [1, 2, ..., 2M] to [m, 1, ...,
m − 1,m + 1, ...,M,m + M, 1 + M, ...,m − 1 + M,m + 1 +
M, ..., 2M]; 3) reshape the reordered covariance tensor by
keeping the first and (M+1)th mode fixed and concatenating
data from the 2nd mode to the M th mode into one mode,
and data from the (M +2)th mode to the (2M)th mode into
another mode, and get the four-order cov(Zt,(m)),Zt−1,(m)).
We perform similar operations to construct E[(Zt,(m))] from
E[vec(Zt)], cov(Zt,(m),Zt,(m)) from cov(vec(Zt), vec(Zt)).

We can also perform similar transformations for U(m)

shown in Eq. (19). We only include the observed data in
the learning process and ignore the missing entries of time
series data indicated by (Wt,(m)). Consequently, we update

each row U
(m)
i. with Eq. (20).

Xt|Zt,U ∼ N
(
U ~ Zt, σ2

RI
)

(19)

⇔ Xt,(m)|Zt,(m) ∼MN
(
U(m)Zt,(m))G, I, σ2

RI)
)
,

where G = (U(M) ⊗ ...⊗U(m+1) ⊗U(m−1)...⊗U(1))′, and
Xt,(m) denotes mode-m matricizing of Xt.

(U
(m)
i.)new =

λmA11/(ξ
(m))2 + (1− λm)A12/σ

2
R

λmA21/(ξ(m))2 + (1− λm)A22/σ2
R

, (20)

A11 =

Nm∑
j=1

S
(m)
ij E[V

(m)
j]′,

A21 =

Nm∑
j=1

E[V
(m)
j (V

(m)
j)′],

A12 =

T∑
t=1

∏
n6=m Nn∑
j=1

(Wt,(m))ij(Xt,(m))ijE[(Zt,(m)Gj)
′],

A22 =

T∑
t=1

∏
n6=m Ln∑
j=1

(Wt,(m))ijE[Zt,(m)Gj(Zt,(m)Gj)
′],

where λm represents the contextual weight of mode m and
E[Zt,(m)Gj(Zt,(m)Gj)

′] can be obtained similarly to E[(Zt−1,(m)

Fj)(Zt−1,(m)Fj)
′] .

The overall algorithm. Putting everything together,
we have the overall algorithm (Facets) summarized in Al-
gorithm 1 to get a local optimal solution of Eq. (9). Given a
network of high-order time series (NetHiTs) R, the dimen-
sions of latent factors L ∈ RM , and the contextual weight
vector λ ∈ RM , our algorithm aims to find the latent factors
U ,Z,V and other model parameters in θ.

The Facets algorithm first randomly initializes the model
parameters θ (step 1) and obtains the mode number and the
dimensionality of Xt’s each mode (step 2). Then it performs
matricizations of X ,W that are repeatedly used in the E-
M steps. It also calculates the expectations of V(m) before
the first iteration (step 3-10). Then the algorithm alterna-
tively updates the parameters and the latent factors until
the convergence. In each repetition, it conducts M itera-
tions to update each B(m) and U(m), while keeping other
B(n) and U(n)(n 6= m) fixed (step 13-21). Specifically,
it iteratively infers the expectations and the covariances
of vectorized Z, including E[vec(Zt)],E[(vec(Zt) vec(Zt)′],
E[(vec(Zt) vec(Zt−1)′], cov(vec(Zt), vec(Zt)), and cov(vec(Zt),
vec(Zt−1)) (step 14). Afterwards, it updates the model pa-
rameters (step 15-17). Before the next iteration, it updates

the expectations related to V(m) if λm > 0 (step 18-20).
Our Facets algorithm converges to a local optima of

Eq. (9), as it strictly follows the EM algorithm procedure.
Time complexity. The time complexity of our proposed

algorithm is summarized in Lemma 4.1.

Lemma 4.1. Given a network of high-order time series R
that consists of X ∈ RN1×,...,×NM×T ,W ∈ RN1×,...,×NM×T ,
and S = {S(1),S(2), ...,S(M)}, where each S(m) ∈ RNm×Nm

(1 ≤ m ≤ M), the contextual weight λ ∈ RM and the hid-
den latent dimensions L ∈ RM , the time complexity of the
Facets algorithm is upper bounded by

O(#iterations · (l2nT +
∑
m

L2
mN

2
m))

where l =
∏M
m=1 Lm, n =

∏M
m=1Nm.

Proof. Omitted for Brevity.

In practice, the length (T) of the time series is often orders
of magnitude larger than the number of the time series (n).
Hence, the actual running time of Facets is dominated by
the term related to the length of the time series T , which is
linear in T .

Algorithm 1: Facets

Input : Net-HiTs R = 〈X ,W,S, ζ〉,
dimension of latent factors L
weight of contextual information λ

Output: θ = {U ,B,Z0, σ
2
O, σ

2
0 , σ

2
R, {(ξ(m))2}, {σ2

Vm
}},

E[Z],E[V]
1 Initialize θ;
2 M ← Xt’s mode; N1, N2, ..., NM ← dimensions of Xt;
3 Matricize X ,W along time mode to obtain X,W;
4 for m =1:M do
5 Matricize each Xt,Wt to obtain Xt,(m),Wt,(m);
6 if λm > 0 then
7 for j=1:Nm do

8 Infer E[v
(m)
j],E[v

(m)
j (v

(m)
j)′]

9 end

10 end

11 end
12 repeat
13 for m = 1:M do
14 Infer the expectations and covariances of

vectorized latent factors;
15 With Eq. (12), update Z0, σ

2
O, σ

2
0 , σ

2
R and if

λm > 0, update (ξ(m))2, σ2
Vm

;
16 Reshape cov(vec(Zt), vec(Zt−1)),

cov(vec(Zt), vec(Zt)) and E[vec(Zt)] to
cov(Zt,(m),Z

′
t−1,(m)), cov(Zt,(m),Z

′
t,(m)) and

E[Zt,(m)], respectively;

17 Update B(m) and U(m) by Eq. (14) - (20);
18 if λm > 0 then

19 update the expectations related to V(m);
20 end

21 end

22 until convergence;

4.3 Data Mining Applications
Our proposed Facets algorithm captures temporal smooth-

ness and contextual correlations with observed time series
data and input contextual constraints. It naturally fits in
the tasks of imputation and forecasting. Other data mining
applications where our algorithm can be conveniently ap-
plied include denoising, anomaly detection and time series
clustering. We omit the details for the limited space.
A1 - Imputation. With the output of the Facets algorithm,
the vectorized version of the reconstructed time series X̂ can
be obtained by vec(X̂t) = mat(U)E[vec(Zt)]. The missing
values of Xt can be inferred from the corresponding entries
of vec(X̂t).
A2 - Prediction. Given the output parameter θ and the
inferred Ẑt, we can predict Ẑt+1 as B ~ Ẑt, and X̂t+1 as
U ~ Ẑt+1. In addition, once the real data Xt+1 is arrived at
(t + 1)th time step, Facets will update Ẑt+1 according to
the observed Xt+1 to improve the accuracy of predicting the
latter time series. Note that Facets can naturally deal with
the missing values in the newly arriving time series data.

5. EXPERIMENTAL RESULTS
In this section, we present the empirical evaluations on

three real datasets, which are designed to answer the follow-
ing two questions:

• Effectiveness: how accurate is the proposed Facets al-
gorithm in terms of imputation and prediction of time
series?

• Efficiency: how does the proposed Facets algorithm
scale w.r.t. the size of the input time series?

5.1 Experimental Setup
A. Baseline Methods. We compare our method with the
following state-of-the-art algorithms: Probabilistic Matrix
Factorization (PMF) [21], Social Recommendation (SoRec) [19],
SmoothPMF and SmoothSoRec. SmoothPMF and Smooth-
SoRec are improved algorithms of PMF and SoRec, which
encode temporal smoothness by adding regularizations on
consecutive time series latent factors [5]. We also compare
with DCMF, which is a special case of our Facets algorithm
where M = 1.
B. Datasets. We use the following three real datasets in
our experiments.

SST Dataset The Sea-Surface Temperature (SST) dataset
consists of hourly temperature measurements from a 5-by-6
grid of sea-surface located from 5◦N , 180◦W to 5◦S, 110◦W [3].
The measurement started from April 26, 1994 at 7:00 p.m.
to July 19, 1994 at 3:00 a.m., a total of 2000 time steps.
Since no contextual network data is available in this dataset,
we perform matriciztions along each mode and construct a
contextual matrix based on the cosine similarity of each pair
of time series in that mode. In the experimental evaluations,
we set the dimensions of latent factors as L = [3, 3] for this
dataset.

Motes Dataset The Motes dataset consists of 4 data types
collected from 54 sensors deployed at the Intel Berkeley Re-
search Lab over a month [1]. The data types include three
room conditions (i.e., temperature, humidity, light) and the
sensor voltage level. Considering that the running time of
some baselines is quite slow, we evaluate all the algorithms
only on the first-day measurement data with a total of 2880
time steps. We construct the contextual sensor network in
the same way as in [5] and ignore the contextual informa-
tion in the type mode for simplicity. By default, we set the
dimensions of latent factors as L = [15, 3] in the evaluations.

SPMD Dataset The Safety Pilot Model Deployment (SPMD)
dataset was collected to understand the potential safety ben-
efits of connected vehicle safety technologies [2]. It con-
sists of multimodal and multidimensional traffic data mostly
within the test site of Ann Arbor, Michigan. The available
one-day sample dataset contains trajectory traces of moni-
tored vehicles collected on April 11, 2013, including a total
of 369 trips and 124 vehicles ranging from passenger cars,
trucks to buses. The trip duration ranges from seconds to
hours with an average around 20 mins. We select the trips
lasting over 20 mins, which result in a total of 52 trips. Then,
we set the departure time of each trip as the first time step
and sample two-dimensional location coordinates every one
second with a duration of 20 minutes, resulting in a total of
1200 time steps. Theoretically, if we have sufficient trips, we
can learn the contextual matrix for trips based on drivers’
behaviors. With only one-day data available in our evalu-
ations, we define the trip contextual matrix based on the
cosine similarities among trip trajectories. Since the longi-
tude and the latitude are not strongly correlated practically,
we ignore the contextual constraint in the location mode. In
the evaluations, we set the dimensions of latent factors as
L = [30, 2] by default.

C. Evaluation Metrics. To evaluate the effectiveness, we
perform the vectorization of the observed time series tensors
and the estimated time series tensors. Then, we calculate
the root mean squared error (RMSE) [5] between them.

5.2 Sensitivity Results
We perform the parametric studies w.r.t. the two hyper-

parameters in our algorithm - the dimensions of latent fac-
tors L and the contextual weight λ. Our results shown in
Fig. 4 indicate that the performance of our algorithm is ro-
bust in a large range of both parameters.

[3,3] [5,3] [10,3] [15,3] [20,3] [30,3] [50,3]
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

L

R
M

S
E

test RMSE
training RMSE

(a) Impact of L.

 0 0.1 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

λ

R
M

S
E

10% missing

50% missing

90% missing

99% missing

99.9% missing

99.95% missing

(b) Impact of λ.

Figure 4: Parameter sensitivity results.

Fig. 4(a) shows the impact of L on the training parts and
the test parts of the Motes dataset. We keep the latent di-
mension of the second mode fixed in 3. As we can see, the
RMSEs of our method fluctuate within a range of less than
0.01 between [15, 3] and [50, 3]. Fig. 4(b) shows the im-
pact of λ on the Motes dataset. We vary the the contextual
weight from zero to one. If λ equals zero, the contextual
information is ignored. If λ equals one, only the contex-
tual information is included to learn U . As we can see, the
RMSEs of our method fluctuate within a range of less than
0.05 in general cases (i.e., λ > 0); and in the meanwhile,
the RMSEs significantly increase if we ignore the contextual
information (i.e., λ = 0), especially when time series data is
very sparse, which indicates the importance of modeling the
contextual network information.

5.3 Effectiveness Results
To evaluate the effectiveness of the algorithms in the task

of missing value recovery, we incrementally generate train-
ing sets and test sets with an increasing amount of test data
(10%, 50%, ...) within time series. As a result, the subse-
quent test set always contains the previous test data.

Fig. 5 shows the imputation results on the three datasets.
We can clearly see that our Facets significantly outperforms
the others, especially when the percentage of the missing
values is large. Fig. 6 presents our Facets’s imputation
results of a trip instance in the SPMD dataset. The x-axis
and the y-axis denote the normalized latitude and longitude,
respectively. In each subfigure, the blue curve with crosses
represents the training data with missing values and the red
curve denotes the recovered trace by the Facets algorithm.
As we can see, Facets achieves good approximations with a
few training data (90% - 10%). Even with only 1% training
data (i.e., 6 pairs of x-y coordinates), our algorithm also
achieves good performance shown in Fig. 6(d).

Fig. 7 shows the prediction results. In the evaluations of
the SST dataset and the Motes dataset, we use the first
k time steps of time series as training data, where k =
bT ∗ (1 − prediction%)c. For the SPMD dataset, the most
common scenario is to predict the trace of a target trip based

 10 50 90 99 99.9 99.95
0

0.5

1

1.5

2

2.5

3

3.5

4

missing value%

R
M

S
E

PMF
SoRec
SmoothPMF
SmoothSoRec
DCMF
Facets

(a) SST

 10 50 90 99 99.9 99.95
0

0.5

1

1.5

2

2.5

3

missing value%

R
M

S
E

PMF
SoRec
SmoothPMF
SmoothSoRec
DCMF
Facets

(b) Motes

 10 50 90 99 99.9 99.95
0

0.2

0.4

0.6

0.8

1

missing value%

R
M

S
E

PMF
SoRec
SmoothPMF
SmoothSoRec
DCMF
Facets

(c) SPMD

Figure 5: Effectiveness of imputation. The lower the better.

−1.2 −1 −0.8 −0.6 −0.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized Latitude

N
o

rm
a

liz
e

d
 L

o
n

g
it
u

d
e

90% Measured

Recovered

(a) 90% training data

−1.2 −1 −0.8 −0.6 −0.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized Latitude

N
o

rm
a

liz
e

d
 L

o
n

g
it
u

d
e

50% Measured

Recovered

(b) 50% training data

−1.2 −1 −0.8 −0.6 −0.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized Latitude
N

o
rm

a
liz

e
d

 L
o

n
g

it
u

d
e

10% Measured

Recovered

(c) 10% training data

−1.2 −1 −0.8 −0.6 −0.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized Latitude

N
o

rm
a

liz
e

d
 L

o
n

g
it
u

d
e

1% Measured

Recovered

(d) 1% training data

Figure 6: Facets’s imputation results of one trip instance in SPMD Dataset.

on some completed trips in history. Therefore, we randomly
select prediction% of the trips and hide their last predic-
tion% of time steps as test data. As we can see from Fig. 7,
our Facets algorithm is quite robust for different prediction
ratios, ranging from 10% to 40%. Our Facets algorithm and
its special case, DCMF, achieve much higher accuracy than
others. Fig. 8 demonstrates Facets’s prediction results on
two sensor instances from the Motes dataset.

5.4 Efficiency Results
We test the scalability of the Facets algorithm on a num-

ber of subsets of the Motes dataset and the SPMD dataset.
As Fig. 9(a) shows, our proposed Facets algorithm scales
linearly w.r.t. the sequence length T , which is consistent
with our complexity analysis in section 4. Fig. 9(b) demon-
strates that the running time of Facets is close to linear
w.r.t. the aggregated dimensions of time series n.

 0 2160 4320 6480 8640 10800
0

10

20

30

40

50

T

ru
n

n
in

g
 t

im
e

(m
in

)

L=[1,3]
L=[5,3]
L=[10,3]
L=[15,3]

(a) Motes Dataset

 40 48 56 64 72 80 88 96 104
20

40

60

80

100

120

140

160

n

ru
n
n
in

g
 t
im

e
(s

)

L=[5,2]

L=[10,2]

L=[15,2]

L=[20,2]

(b) SPMD Dataset

Figure 9: Scalability.

We also compare the running time of our Facets algo-
rithm with other baselines. Fig. 10(a) presents the running
time of the imputation experiments on the SST dataset.
Combining with the results of Fig. 5(a), we can see that
Facets and DCMF yield superior effectiveness while spend

much less time in comparison with PMF, SoRec, Smooth-
PMF and SmoothSoRec. We can get similar observations
from Fig. 10(b), which presents the running time of the pre-
diction experiments on the SPMD dataset.

 10 50 90 99 99.9 99.95
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

missing value%

R
u

n
n

in
g

 T
im

e
 (

h
)

PMF
SoRec
SmoothPMF
SmoothSoRec
DCMF
Facets

(a) Imputation on SST

10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

prediction%

R
u

n
n

in
g

 T
im

e
 (

h
)

PMF

SoRec

SmoothPMF

SmoothSoRec

DCMF

Facets

(b) Prediction on SPMD

Figure 10: Efficiency

6. RELATED WORK
There are plenty of work in mining time series data [12],

including representation [24, 22], classification [30, 8, 11],
outlier detection [16], etc. Li et al. proposed DynaMMo for
mining coevolving time series with missing values based on
linear dynamic systems [17]. Matsubara et al. developed
AutoPlait, which combined a multi-level chain model and
a cost model to find typical patterns and meaningful seg-
ments in multiple time series [20]. Shieh et al. proposed a
multi-resolution symbolic representation to index time series
datasets for fast exact search and approximate search [24].

Tensor decompositions have been successfully applied in
many domains including signal processing, computer vision,
neuroscience and data mining [14]. Most of tensor composi-
tions are based on tucker decomposition [27], canonical/parrallel-
factors (CP) decomposition [10, 6], and multilinear PCA [18].

10 20 30 40
0

0.5

1

1.5

2

2.5

3

prediction%

R
M

S
E

PMF

SoRec

SmoothPMF

SmoothSoRec

DCMF

Facets

(a) SST

10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

prediction%

R
M

S
E

PMF

SoRec

SmoothPMF

SmoothSoRec

DCMF

Facets

(b) Motes

10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

prediction%

R
M

S
E

PMF
SoRec
SmoothPMF
SmoothSoRec
DCMF
Facets

(c) SPMD

Figure 7: Effectiveness of prediction. The lower the better.

50 100 150 200 250 300 350
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Predicted Time Step

N
o
rm

a
liz

e
d
 T

e
m

p
e
ra

tu
re

Measured

Predicted

Sensor 54

Sensor 30

(a) Temperature

50 100 150 200 250 300 350
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Predicted Time Step

N
o
rm

a
liz

e
d
 H

u
m

id
it
y

Measured

Predicted

Sensor 30

Sensor 54

(b) Humidity

50 100 150 200 250 300 350
−1

0

1

2

3

4

Predicted Time Step

N
o

rm
a

liz
e

d
 L

ig
h

t

Measured

Predicted

Sensor 54

Sensor 30

(c) Light

50 100 150 200 250 300 350
−1.5

−1

−0.5

0

0.5

1

1.5

2

Predicted Time Step

N
o
rm

a
liz

e
d
 V

o
lt
a
g
e

Measured

Predicted

Sensor 30

Sensor 54

(d) Voltage

Figure 8: Facets’s prediction for Sensor 30 and Sensor 54 in Motes Dataset.

Sun et al. formally introduced tensors in time-evolving set-
tings and proposed dynamic and streaming tensor analy-
sis, which learned a latent, low-dimensional core tensor and
a set of projection matrices to summarize large tensor se-
quences and detect patterns [25]. Xiong et al. extended two-
dimensional collaborative filter problems into three-order
tensor space after introducing the time factor [28]. They pro-
posed a bayesian probabilistic tensor factorization method
to compute CP decompositions to get the latent factors in
each mode. Rogers et al. presented multilinear dynami-
cal systems to model tensor time series based on linear dy-
namic systems [23]. All of these models ignore contextual
information embedded in time series data. Bahadori et al.
proposed a neat and flexible framework, under which either
spatial or temporal information can be realized/modeled,
respectively [4]. Yet, how to simultaneously model these
two aspects was not answered - which is exactly one major
advantage of our work.

If time series tensor is degraded to time series matrix,
our work is also related to matrix factorization, which is
widely applied in the recommendation systems. In the rec-
ommendation problems, the matrix factorization methods
find low-rank latent factors to represent users and items,
which can be fit into the user-item rating matrix and make
rating prediction [21, 19, 15, 26, 29]. To improve the pre-
diction accuracy, some side information, such as the user
social network and/or the item-item similarity are included
in the probabilistic factor analysis [19, 29]. Recently, dy-
namic matrix factorization methods have been proposed to
capture the evolving user preferences [7, 26]. For example,
Sun et al. applied a dynamic state space model on proba-
bilistic matrix factorization to track the temporal dynamics

of the user latent factor[26] or model the changes of user
preferences on the user-item adoption problem [7].

7. CONCLUSION
In this paper, we have proposed a comprehensive method,

Facets, to address three prominent challenges in mining a
network of high-order time series data: (a) high-order; (b)
contextual constraints; and (c) temporal smoothness. Based
on tensor factorization and multilinear dynamic systems, for
the first time, our algorithm effectively and efficiently solve
all of the three challenges at the same time. The experi-
mental evaluations on three real datasets demonstrated the
effectiveness and the scalability of our algorithm. For future
work, we are interested in applying our Facets method to
other time series mining tasks, such as anomaly detection;
and finding alternative to the EM algorithm, such as ap-
proximate inference and sampling.

8. ACKNOWLEDGMENT
This material is supported by the National Science Foun-

dation under the grant number IIS1017415 and CNS-0904901,
by the Army Research Laboratory under Cooperative Agree-
ment Number W911NF-09-2-0053, by National Institutes of
Health under the grant number R01LM011986, Region II
University Transportation Center under the project number
49997-32-25 and 49997-33-25.

The content of the information in this document does not
necessarily reflect the position or the policy of the Gov-
ernment, and no official endorsement should be inferred.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding
any copyright notation here on.

9. REFERENCES

[1] Motes dataset.
http://db.csail.mit.edu/labdata/labdata.html.

[2] Safty pilot model deployment. https://www.its-rde.
net/showds?dataEnvironmentNumber=10014.

[3] Tropical atmosphere ocean project. http:
//www.pmel.noaa.gov/tao/data_deliv/deliv.html.

[4] M. T. Bahadori, Q. R. Yu, and Y. Liu. Fast
multivariate spatio-temporal analysis via low rank
tensor learning. In NIPS, 2014.

[5] Y. Cai, H. Tong, W. Fan, and P. Ji. Fast mining of a
network of coevolving time series. In SDM, 2015.

[6] J. Carroll and J.-J. Chang. Analysis of individual
differences in multidimensional scaling via an n-way
generalization of ‘eckart-young’ decomposition.
Psychometrika, 35(3):283–319, 1970.

[7] F. C. T. Chua, R. J. Oentaryo, and E.-P. Lim.
Modeling temporal adoptions using dynamic matrix
factorization. In ICDM, 2013.

[8] J. Gao, B. Ding, W. Fan, J. Han, and P. S. Yu.
Classifying data streams with skewed class
distributions and concept drifts. IEEE Internet
Computing, 12(6):37–49, 2008.

[9] A. K. Gupta and D. K. Nagar. Matrix Variate
Distributions. CRC Press, 1999.

[10] R. A. Harshman. Foundations of the PARAFAC
procedure: Models and conditions for an ‘explanatory’
multi-modal factor analysis. UCLA Working Papers in
Phonetics, 16(1):84, 1970.

[11] B. Hu, Y. Chen, J. Zakaria, L. Ulanova, and
E. Keogh. Classification of multi-dimensional
streaming time series by weighting each classifier’s
track record. In ICDM, 2013.

[12] E. Keogh. Tutorial: Machine learning in time series
databases (and everything is a time series!). In AAAI,
2011.

[13] T. G. Kolda. Multilinear operators for higher-order
decompositions. 2006.

[14] T. G. Kolda and B. W. Bader. Tensor decompositions
and applications. SIAM review, 51(3):455–500, 2009.

[15] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[16] J.-G. Lee, J. Han, and X. Li. Trajectory outlier
detection: A partition-and-detect framework. In
ICDE, 2008.

[17] L. Li, J. McCann, N. S. Pollard, and C. Faloutsos.
Dynammo: Mining and summarization of coevolving
sequences with missing values. In KDD, 2009.

[18] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos.
Multilinear principal component analysis of tensor
objects for recognition. In ICPR, 2006.

[19] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social
recommendation using probabilistic matrix
factorization. In CIKM, 2008.

[20] Y. Matsubara, Y. Sakurai, and C. Faloutsos.
Autoplait: Automatic mining of co-evolving time
sequences. In SIGMOD, 2014.

[21] A. Mnih and R. Salakhutdinov. Probabilistic matrix
factorization. In NIPS, 2007.

[22] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming
pattern discovery in multiple time-series. In VLDB,
2005.

[23] M. Rogers, L. Li, and S. J. Russell. Multilinear
dynamical systems for tensor time series. In NIPS,
2013.

[24] J. Shieh and E. Keogh. isax: indexing and mining
terabyte sized time series. In KDD, 2008.

[25] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and
graphs: Dynamic tensor analysis. In KDD, 2006.

[26] J. Z. Sun, K. R. Varshney, and K. Subbian. Dynamic
matrix factorization: A state space approach. In
ICASSP, 2012.

[27] L. Tucker. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3):279–311, 1966.

[28] L. Xiong, X. Chen, T.-K. Huang, J. G. Schneider, and
J. G. Carbonell. Temporal collaborative filtering with
bayesian probabilistic tensor factorization. In SDM,
2010.

[29] Y. Yao, H. Tong, G. Yan, F. Xu, X. Zhang,
B. Szymanski, and J. Lu. Dual-regularized one-class
collaborative filtering. In CIKM, 2014.

[30] L. Ye and E. Keogh. Time series shapelets: a new
primitive for data mining. In KDD, 2009.

APPENDIX
A. Details of inferring latent factors

In Step 6-9 and Step 18-20 of Algorithm 1, the expecta-

tions of V
(m)
j are calculated with the follows equations:

ν
(m)
j = Υ(U(m))′S

(m)
j , Υ =

[
(U(m))′U(m) + (ξ(m))2σ−2

Vm

]−1

,

E[V
(m)
j] = ν

(m)
j , E[V

(m)
j (V(m))′j] = Υ + ν

(m)
j (ν

(m)
j)′. (21)

In Step 14, Algorithm 1 infers the expectations and the
covariances of latent factors Zt, which is difficult in the ten-
sor spaces. Instead, Facets performs the vectorizations and
matricizations with Eq. (10), which reduces to find the ex-
pectations and covariances of vec(Zt). For clarity, in the
following equations, we write vec(Xt) as xt, vec(Zt) as zt
and formulate vec(Wt) as Wt, (t = 1, .., T). We use U, B
to denote matricization results of mat(U), mat(B), respec-
tively.

First we only count on the observed time series data. We
use ot to denote the indices of the observed entries of xt and
x∗t and Ht are defined as follows:

ot = {i|Wit > 0, i = 1, ..., n}, x∗t = xt(ot, :), Ht = U(ot, :). (22)

Let p(zt|x1, ...,xt) = N (zt|µt,Ψt) and p(zt|x1, ...,xT) =

N (zt|µ̂t, Ψ̂t), Step 14 of Algorithm 1 is calculated with the
following equations:

K1 = σ2
0H′1(σ2

0H1H
′
1 + σ2

RI)−1,

µ1 = z0 + K1(x∗1 −H1z0), Ψ1 = σ2
0I−K1H1,

Pt−1 = BΨt−1B
′ + σ2

OI, Kt = Pt−1H
′
t(HtPt−1H

′
t + σ2

RI)−1,

µt = Bµt−1 + Kt(x
∗
t −HtBµt−1), Ψt = (I−KtHt)Pt−1,

µ̂t = µt + Jt(µ̂t+1 −Bµt),

Ψ̂t = Ψt + Jt(Ψ̂t+1 −Pt)J
′
t, Jt = ΨtB

′(Pt)
−1,

E[zt] = µ̂t, cov(zt, zt−1) = Ψ̂tJ
′
t−1, cov(zt, zt) = Ψ̂t,

E[ztz
′
t−1] = Ψ̂tJ

′
t−1 + µ̂tµ̂

′
t−1, E[ztz

′
t] = Ψ̂t + µ̂tµ̂

′
t. (23)

