
GBASE: A Scalable and General
Graph Management System

U Kang
Carnegie Mellon University

ukang@cs.cmu.edu

Hanghang Tong
IBM T.J. Watson

htong@us.ibm.com

Jimeng Sun
IBM T.J. Watson

jimeng@us.ibm.com

Ching-Yung Lin
IBM T.J. Watson

chingyung@us.ibm.com

Christos Faloutsos
Carnegie Mellon University
christos@cs.cmu.edu

ABSTRACT
Graphs appear in numerous applications including cyber-security,
the Internet, social networks, protein networks, recommendation
systems, and many more. Graphs with millions or even billions of
nodes and edges are common-place. How to store such large graphs
efficiently? What are the core operations/queries on those graph?
How to answer the graph queries quickly? We propose GBASE, a
scalable and general graph management and mining system. The
key novelties lie in 1) our storage and compression scheme for a
parallel setting and 2) the carefully chosen graph operations and
their efficient implementation. We designed and implemented an
instance of GBASE using MAPREDUCE/HADOOP. GBASE pro-
vides a parallel indexing mechanism for graph mining operations
that both saves storage space, as well as accelerates queries. We ran
numerous experiments on real graphs, spanning billions of nodes
and edges, and we show that our proposed GBASE is indeed fast,
scalable and nimble, with significant savings in space and time.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data
Mining

General Terms
Design, Experimentation, Algorithms

Keywords
Graph, Indexing, Compression, Distributed Computing

1. INTRODUCTION
Graphs have been receiving increasing research attention, being

applicable in a wide variety of high impact applications, like social
networks, cyber-security, recommendation systems, fraud/anomaly
detection, protein-protein interaction networks, to name a few. In
fact, any many-to-many database relationship can be easily treated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

as a graph, with myriads of additional applications (patients and
symptoms; customers and locations they have been to; documents
and terms in IR, etc). To add to the challenge of graph mining, even
the volume of such graphs is unprecedented, reaching and exceed-
ing billions of nodes and edges.

Problem Definitions.
Our goal is to build a general graph management system in par-

allel, distributed settings to support billion-scale graphs for various
applications. For the goal, we address the following problems:

1. Storage. How can we efficiently store and manage such
huge graphs in parallel, distributed settings to answer graph
queries efficiently? How should we split the edges into
smaller units? How should we group the units into files?

2. Algorithms. How can we define common, core algorithms to
satisfy various graph applications?

3. Query Optimization. How can we exploit the efficient stor-
age and general algorithms to execute queries efficiently?

For all the problems, scalability is a major challenge. The size of
graphs has been experiencing an unprecedented growth. For exam-
ple, one of the graphs we use here, the Yahoo Web graph from 2002,
has more than 1 billion nodes and almost 7 billion edges. Similar
size, or even larger graphs, exist: the Twitter graph spans several
Terabytes; click-streams are reported to reach Petabyte scale [25].
Such large graphs violate the assumption that the graph can be fit in
main memory or at least the disk of a single workstation, on which
most of existing graph algorithms have been built. Thus, we need
to re-think those algorithms, and to develop scalable, parallel ones,
to manage graphs that span Tera-bytes and beyond.

Our Contributions.
We propose GBASE, a scalable and general graph management

system, to address the above challenges. The main contributions
are the following:

1. Storage. We propose a novel graph storage method called
‘block compression’ to efficiently store homogeneous re-
gions of graphs. We also propose a grid based method to
efficiently place blocks into files. We run our algorithm on
billion-scale graphs and show that the block compression
method leads up to 50× less storage and faster running time.
Our block compression method is agnostic to the underlying
storage mechanism, which can be applied to distributed file
systems as well as relational databases.

2. Algorithms. We identify a core graph operation, and use
it to formulate seven different types of graph queries in-

Figure 1: Overall framework of GBASE. 1. Indexing Stage:
raw graph is clustered and divided into compressed blocks. 2.
Query Stage: global and targeted queries from various graph
applications are handled by a unified query execution engine.

cluding neighborhood, induced subgraph, egonet, K-core,
and cross-edges. The novelty is in formulating edge-
based queries(induced subgraph) as well as node-based
queries(neighborhoods) using a unified framework.

3. Query Optimization. We propose a grid selection strategy to
minimize disk accesses and answer queries quickly. We also
propose a MAPREDUCE algorithm to support incidence ma-
trix based queries using the original adjacency matrix, with-
out explicitly building the incidence matrix.

The rest of this paper is organized as follows. We first present
the overall framework in Section 2. We describe the storage and
indexing method in Section 3, and then the query execution in Sec-
tion 4. We provide experimental evaluations and comparisons in
Section 5. After reviewing the related work in Section 6, we con-
clude in Section 7.

2. OVERALL FRAMEWORK
The overall framework of our GBASE is summarized in Figure 1.

The design objective is to balance storage efficiency and query per-
formance on large graphs. It comprises of two components: the
indexing stage and the query stage. In this Section, we give a high
level overview of each stage; and we will give more details in Sec-
tion 3 and 4, respectively.

In the indexing stage, given the original raw graph which is
stored as a big edge file, GBASE first partitions it into several ho-
mogeneous blocks. Second, according to the partition results, we
reshuffle the nodes so that the nodes belonging to the same par-
tition are put nearby. Third, we compress all non-empty block
through standard compression such as GZip. Finally, we store the
compressed blocks, together with some meta information (e.g., the
block row id and column id, and all the encoded node ids), into the
graph databases. For many real graphs, such homogeneous blocks,
community-like structure, do exist. Therefore, after partition and
reshuffling, the resulting blocks are either relatively dense (e.g., the
diagonal blocks in Figure 1) or very sparse (e.g., the off-diagonal
blocks in Figure 1). Both cases are space efficient for compression
(i.e., the compression ratio is high). In the extreme case that a given
block is empty, we do not store it at all. Our experiments (See Sec-
tion 5) show that in some cases, we only need less than 2% storage
space of the original after the indexing stage.

In the query stage, our goal is to provide a set of core opera-

Query A
pp

lic
at

io
ns

B
ro

w
si

ng

R
an

ki
ng

Fi
nd

in
g

C
om

m
un

ity

A
no

m
al

y
D

et
ec

tio
n

V
is

ua
liz

at
io

n

Connected Comp. X X
Radius X X
PageRank, RWR X X X

Induced Subgraph X X X
(K)-Neighborhood X X X
(K)-Egonet X X X X
K-core X X
Cross-edges X X

Table 1: Applications of GBASE. Notice that GBASE an-
swers wide range of both global(top 3 rows) and targeted
queries(bottom 5 rows with bold fonts) with applications in
browsing[29, 35, 24], ranking[29, 35], finding communities[20,
24], anomaly detection[34, 20, 19, 6], and visualization[24, 7].

Symbol Definition
G Graph.
A Adjacency matrix of the graph G.
B Incidence matrix of the graph G.
n Number of nodes.
m Number of edges.
k Number of partitions.
p, q Partition indices, 1 ≤ p, q ≤ k.
I(p) Set of nodes belonging to the p-th partition.
l(p) Partition size, l(p) ≡ |I(p)|, 1 ≤ p ≤ k.
G(p,q) Subgraphs induced by p-th and q-th partitions.
m(p,q) Number of edges in G(p,q).
H(.) Shannon entropy function.

Table 2: Definitions of symbols

tions that will be sufficient to support a diverse set of graph ap-
plications, e.g., ranking, community detection, anomaly detection,
and etc. The key of the on-line query stage is the query execution
engine, which unifies the different types of inputs as query vec-
tors. It also unifies the (seemingly) different types of operations
on the graph by a unified matrix-vector multiplication which we
will introduce in Section 4. By doing so, GBASE is able to support
multiple different types of queries simultaneously. Table 1 summa-
rizes the queries (the first column) that are supported by GBASE.
These queries construct the main building blocks for a variety of
important graph applications (Table 1). For example, the diversity
of RWR(Random Walk with Restart [35]) scores among the neigh-
borhood of a given edge/node is a strong indicator of abnormality
of that node/edge [34]. The ratio between the number of edges (or
the summation of edge weights) and number of nodes within the
egonet can help find abnormal nodes on weighted graphs [6]. The
K-cores and cross-edges can be used for visualization and finding
communities in large graphs.

3. GRAPH STORAGE AND INDEXING
In this section, we describe in details the indexing and storage

stage of GBASE. We use the symbols in Table 2.

3.1 Baseline Storage Scheme
A typical way to store the raw graph is to use the adjacency list

format: for each node, it saves all the out-neighbors adjacent from

the node. The adjacency list format is simple and might be good
for answering out-neighbor queries. However, it is not efficient
format for answering general queries including in-neighbor queries
and ego-net queries as we will see in Section 4. For the reason, we
instead use the sparse adjacency matrix format, where we save each
edge by a (source,destination) pair. The advantage of the sparse
adjacency matrix format is its generality and flexibility to enable
efficient storage and indexing techniques as we will see later in this
and the next sections.

The storage system should be designed to be efficient in both
storage cost and on-line query response. To this end, we propose to
index and store the graph on the homogeneous block, community-
like structure, levels. Next, we will describe how to form, compress
and store/place such blocks.

3.2 Block Formulation
The first step is to partition the graph, i.e., re-order the rows and

columns, and make homogeneous regions into blocks. Partition-
ing algorithms form an active research area, and finding optimal
partitions is orthogonal to our work. Any partition algorithms, e.g.,
METIS [22], Disco [30], etc, can be naturally plugged into GBASE.

Graph partitioning can be formally defined as follows. The input
is the original raw graph denoted by G. Given a graph G, we parti-
tion the nodes into k groups. The set of nodes that are assigned into
the p-th partition for 1 ≤ p ≤ k is denoted by I(p). The subgraph
or block induced by p-th source partition and q-th destination par-
tition is denoted as G(p,q). The sets I(p) partition the nodes, in the
sense that I(p) ∩ I(p

′) = ∅ for p 6= p′, while
⋃

p I
(p) = {1, . . . , n}.

In terms of storage, the objective is to find the optimal k partitions
which lead to smallest total storage cost of all blocks/subgraphs
G(p,q) where 1 ≤ p, q ≤ k. Intuitively, we want the induced sub-
graphs to be homogeneous (meaning the subgraphs are either very
dense or very sparse), which captures not only community structure
but also leads to small storage cost.

For many real graphs, the community/clustering structure can be
naturally identified. For instance, in Web graphs, the lexicographic
ordering of the URL can be used as an indicator of community [10]
since there are usually more intra-domain links compared with the
inter-domain links. For authorship network, the research interest is
often a good indicator to find communities since authors with the
same or similar research interest tend to have more collaborations.
For patient-doctor graph, the patient information (e.g., geography,
disease type, etc) can be used to find the communities (patients with
similar disease and living in the same neighborhood have higher
chance to visit the same doctor).

3.3 Block Compression
The homogeneous block representation provides a more com-

pact representation of the original graph. It enables us to encode
the graph in a more efficient way. The encoding of a block G(p,q)
consists of the following information:

• source and destination partition ID p and q;
• the set of sources I(p)and the set of destinations I(q).
• the payload, the bit string of subgraph G(p,q).

A naive way of encoding a block is raw block encoding which
only stores the coordinates of the non-zero entries in the block.
Although this method saves the storage space since the nonzero
elements within the block can be encoded with a smaller number of
bits (log(max(l(p), l(q))) than the original, the savings are not great.

To achieve better compression, we propose zip block encoding
which converts the adjacency matrix of the subgraph into a binary
string and stores the compressed string as the payload. Compared

(a) Vertical (b) Horizontal (c) Grid
Placement Placement Placement

Figure 2: Adjacency matrices showing possible placement of
blocks into files in HADOOP. The smallest rectangle represents
a block in the adjacency matrix. The placement strategy deter-
mines which of the blocks are grouped into files G1 to G6 or G9.
Vertical placement in (a) is good for in-neighbor queries, but in-
efficient for out-neighbor or egonet queries. Horizontal place-
ment in (b) is good for out-neighbor queries, but inefficient for
in-neighbor or egonet queries. GBASE uses the grid placement,
shown in (c), which is efficient for all types of queries.

to the raw block encoding, the zip block encoding requires more
cpu time to zip and unzip blocks. However, the storage savings
and the reduced data transfer size help to improve performance of
GBASE as we will see in Section 5.

For example, we have the following adjacency matrix of a graph:

G =

 1 0 0
1 0 0
0 1 1

 (1)

raw block encoding will just store the non-zero coordinates (0, 0),
(1, 0), (2, 1), and (2, 2) as the payload. Zip block encoding will
converts the matrix into a binary string 110, 001, 001 (in the col-
umn major order) and then use the compression of this string as the
payload.
Storage Estimation. The storage needed for raw block encod-
ing is 2 ∗ m(p,q) ∗ log(max(l(p), l(q))). The storage needed for
zip block encoding is l(p)l(q)H(d), where d = m(p,q)

l(p)l(q)
is the den-

sity of G(p,q). H(·) is the Shannon entropy function: H(X) =
−
∑

x p(x) log p(x) where p(x) is the probability that X = x.
Note that the number of bits to encode an edge in zip block en-
coding decreases as d increases, while it is constant in raw block
encoding.

3.4 Block Placement
After we compress the blocks, we need to store/place them in

the file system (e.g., HDFS of HADOOP, relational DB). Here, the
main idea is to place several blocks together into a file, and select
only relevant files as inputs in the query stage. The question is,
how do we place blocks into files? A typical approach is to use
vertical placement to place the vertical blocks in a file as shown in
Figure 2(a). The other alternative is to use horizontal placement
to place the horizontal blocks in a file as shown in Figure 2(b).
However, both of the placement techniques are good only for one
type of query: for example, horizontal and vertical placement is
good for out-neighbor and in-neighbor queries, respectively.

To solve the problem, GBASE uses the grid placement as shown
in Figure 2(c). The advantage of the grid placement is that it can an-
swer various types of queries efficiently as we will see in Section 4.
Suppose we store all the compressed blocks in K files. With ver-
tical/horizontal placement, we need O(K) file accesses to find the
in- and out-neighbors of a given query node. In contrast, we only
need O(

√
K) files accesses with grid placement.

4. HANDLING GRAPH QUERIES
In this section, we describe query execution in GBASE. GBASE

supports both “global” queries, as well as “targeted” queries for
one or a few specific nodes. The answer to global queries requires
traversal of the whole graph, like, e.g., diameter estimation. In
contrast, “targeted” queries need to access only parts of the graph.
GBASE supports seven different queries including neighborhoods,
induced subgraphs, egonets, K-core, and cross-edges.

4.1 Global Queries
Global queries are performed by repeated joins of edge

blocks and vector blocks. GBASE supports the following graph
queries: degree distribution, PageRank, RWR(“Random Walk with
Restart”), radius estimations, and discovery of connected compo-
nents. Our contribution here is that our proposed storage and com-
pression scheme reduce the graph storage significantly, and enable
faster running time as shown in Figure 5. The global queries also
serve as primitives for targeted queries(see ‘T6: K-core’ in Section
4.2), enabling a variety of applications as shown in Table 1.

4.2 Targeted Queries
Many graph mining operations can be unified as matrix-vector

multiplication. Here that matrix is either the adjacency matrix A of
size n× n or the incidence matrix B of size m× n where n and m
are the number of nodes and edges in the graph, respectively. Each
row of the incidence matrix corresponds to an edge, and it has two
non-zeros whose column ids are the node ids of the edge.

The matrix-vector multiplication observation has the extra bene-
fit that it corresponds to an SQL join. Thus, graph mining could use
all the highly optimized join algorithms in the literature (hash join,
indexed join etc), while still leverages the proposed block compres-
sion storage scheme.

In fact, for each of the upcoming primitives, we shall first give
the matrix-vector details, and then the SQL code.

T1: 1-step neighbors.
The first query is to find 1-step in-neighbors and out-neighbors

of a query node v.
Matrix-Vector version
Given a query node v, its 1-step in-neighbors can be found by

the following matrix-vector multiplication:

in1(v) = A× ev, (2)

where the matrix is the adjacency matrix of the graph A and the
vector is the ‘indicator vector’ ev which is the n-vector whose v-th
element is 1, and all other elements are 0s. The 1-step in-neighbors
of the query node v are those nodes whose corresponding values in
in1(v) are 1s.

The 1-step out-neighbors can be obtained in the similar way by
replacing A with its transpose AT .

SQL version
We can also find 1-step in-neighbors and out-neighbors by the

standard SQL. Assume we have a table E(src, dst) storing
the edges, with attributes ‘source’ (src) and ‘destination’ (dst).
The 1-step out-neighbors of a query node ‘q’ are given by

SELECT dst
FROM E
WHERE src=‘q’

without even requiring a join. 1-step in-neighbor can be answered
in a similar way.

T2: K-step neighbors.

The next query is to find ‘within k-step’ neighbors. Let us
only consider the k-step in-neighbors. k-step out-neighbors can
be found in similar way - we only need to replace the matrix A by
its transpose AT in the matrix-vector multiplication version; and
switch src and dst in the SQL version.

Matrix-Vector version
The k-step in-neighbors nhk(v) of the query node v is defined

recursively by (k−1)-step neighbors nhk−1(v) in terms of matrix-
vector multiplication as follows:

nhk(v) = A×nhk−1(v), (3)

where the 0-step in-neighbors nh0(v) is just the indicator vector
ev . After the k multiplications, the k-step in-neighbors are those
nodes whose corresponding values in nhk(v) or nhk−1(v) are 1s.

SQL version
As before, assume we have a table E with attributes src and

dst. The k-step in-neighbors can also be found by SQL join. In
general, the k-step in-neighbors is a (k−1)-way join. For example,
the 2-step in-neighbors of a query node ‘q’ is given by the following
SQL join:

SELECT E2.src
FROM E as E1, E as E2
WHERE E1.dst=‘q’

AND E1.src = E2.dst

T3: Induced subgraph.
Given a set of nodes Vq in a graph G, the induced subgraph is

defined to be a graph whose nodes are Vq and an edge between two
nodes v1 and v2 exist if they are adjacent in G.

Matrix-Vector version
Let B be the m× n incidence matrix where m and n are the

number of edges and nodes of the graph, respectively. Let evq be
the n-vector, whose corresponding elements for Vq are 1s, and 0s
otherwise.

Then, the induced subgraph S(Vq) from Vq is expressed by the
following matrix-vector multiplication:

S(Vq) = B× evq, (4)

where the resulting vector S(Vq) is m-vector and the elements in
S(Vq) have values of 0, 1, or 2. The induced subgraph is given
by those edges whose corresponding values in S(Vq) are 2s since
it means that the incident nodes (both the source and the target) of
the edges are in Vq .

SQL version
Assume we have an incidence matrix as table B, with attributes

eid, srcid, and dstid, representing the edge id, the source node
id, and the destination id of a row in the incident matrix, respec-
tively. Also assume we have a query vector table Q with an attribute
nodeid. Then the induced subgraph is given by the following join:

SELECT B.eid, B.srcid, B.dstid
FROM B, Q as Q1, Q as Q2
WHERE B.srcid=Q1.nodeid

AND B2.dstid=Q2.nodeid

T4: 1-step egonet.
Informally, the 1-step-away egonet (or just ‘egonet’) of a node

v is its 1-step-away vicinity. Formally, it is defined as the induced
subgraph that includes v and its 1-step neighbors. Extracting the
egonet of a query node v is a special case of extracting induced
subgraph. That is, the set of nodes Vq is defined to be the v and its
1-step in-neighbors and out-neighbors.

The details are omitted, since we can combine earlier expres-
sions (for both the matrix-vector case, as well as for the SQL case).

T5: K-step egonet.
K-step egonet of a node v is defined to be the induced sub-

graph from v and its within-k step neighbors. Extracting the k-step
egonet of a query node v is also a special case of extracting induced
subgraph. That is, the set of nodes Vq is defined to be the v and its
within-k step neighbors. Thus, the same expression for the k-step
neighbors and the induced subgraph can be used for extracting k-
step egonet.

T6: K-core.
K-core of a graph is a maximal connected subgraph in which all

vertices have degree at least K [7]. K-core is useful for finding
communities and visualizing graphs. Although it seems compli-
cated at first, all K-cores of a large graph can be enumerated by
GBASE using primitives defined before:

1. Compute degrees of all nodes. Let C be the set of nodes with
degree >= K.

2. Compute induced subgraph G′ using C.
3. Find connected components of G′. The resulting compo-

nents are the K-core.

T7: Cross-edges.
Given two disjoint sets V1 and V2 of nodes, how can we find

the cross edges connecting the two sets? Cross-edges are useful
for visualizing the interaction of two distinct sets of nodes, as well
as anomaly detection (e.g., a set of nodes having few edges to the
rest of the world are suspicious). Cross-edges can be computed by
GBASE using induced subgraph queries:

1. Computed induced subgraphs S(V1), S(V2), S(V1 ∪ V2) us-
ing nodes in V1, V2, and (V1 ∪ V2), respectively.

2. Let E1, E2, and E12 be the set of edges in S(V1), S(V2),
and S(V1 ∪ V2), respectively. The cross edges are exactly
the edges in E12 − E1 − E2.

4.3 Query Execution Engine
We describe the query execution engine of GBASE built on the

top of HADOOP, an open source implementation of MAPREDUCE
which is a distributed large scale data processing platform.

Overview.
As described in previous sections, the main operation of GBASE

is the matrix-vector multiplication. GBASE handles queries by
executing appropriate block matrix-vector multiplication modules.
The global queries are typically handled by multiple matrix-vector
multiplications since the answer to the queries is often a fixed point
of the multiplication(e.g., the first eigenvector in case of PageR-
ank). The local queries require one or few multiplications.

Most of the operations require the adjacency matrix of the graph.
Thus, GBASE uses the adjacency matrix directly as its input. How-
ever, some operations including the induced subgraph require the
incidence matrix which is different from the adjacency matrix. We
will see how to handle the queries requiring incidence matrix effi-
ciently at the end of this subsection.

Grid Selection.
Before running the matrix-vector multiplication, GBASE selects

the grids containing the blocks relevant to the queries. Only the files
corresponding to the grids are fed into HADOOP jobs that GBASE
executes. For global queries, we need to select all the grids since all
the blocks are relevant. For targeted queries, however, we can select
only relevant grids. For in-neighbor queries, we select grids whose
column range contains the query node as shown in Figure 3(a). For

(a) 1-step (b) 1-step (c) 1-step in- and
in-neighbors out-neighbors out-neighbors

Figure 3: Grid selection in 6 by 6 blocks where the query
node belongs to the second block. The smallest rectangle corre-
sponds to a block, and a bigger rectangle containing 4 blocks is
a grid which is saved in a file. Notice that GBASE selects differ-
ent grids based on the type of the query and the query node id.
For example, GBASE selects G1, G4, and G7, instead of all the
grids for in-neighbors query. This reduced input size results in
the decreased running time.

out-neighbor queries, we select grids whose row range contains the
query node as shown in Figure 3(b). For egonet queries, we select
grids whose row or column range contains the query. As we will
see in Section 5, this grid selection has advantages of decreasing
the running time.

Handling Incidence Matrix Queries.
While the majority of operations use the adjacency matrix, the

induced subgraph queries use the incidence matrix. Thus, GBASE
need to access the incidence matrix to support the queries. A naive
approach is to build the incidence matrix Bm×n by numbering
edges sequentially. However, it requires the storage to save B
which is twice the size of the original adjacency matrix. The ques-
tion is, can we answer incidence matrix queries efficiently without
the additional storage?

Our proposed main idea is to derive the incidence matrix from
the original adjacency matrix as required. That is, an adjacency
matrix element (src, dst) can be interpreted as ([src, dst], src)
and ([src, dst], dst) of the incidence matrix where [src, dst] is the
edge id. Thus, the query execution algorithm for handling inci-
dence matrix can work on the original adjacency matrix by treating
each adjacency matrix element as two incidence matrix elements.

The HADOOP algorithm for the induced subgraph, which reflect
the main idea, is shown in Algorithm 1. The algorithm is composed
of two stages. In the first stage, the elements in the incidence ma-
trix and the query vector are grouped together to generate partial
results. Notice that two incidence matrix elements are generated
(line 6,7 of Algorithm 1) for an adjacency matrix element. In the
second stage, the partial results are summed to get the final result.
Note that only edges having the sum 2 are included in the egonet
since it means that the two incidence nodes of the edges are con-
tained in the query node set.

5. EXPERIMENTS
To evaluate our GBASE system, we perform experiments to an-

swer the following questions:

Q1 How much does our zip block encoding reduce the data size?
Q2 How do our algorithms scale up with the graph sizes and the

number of machines?
Q3 How do our indexing and query execution methods save query

response time?

Datasets. We use large graph datasets summarized in Table 3 . The
YahooWeb dataset is a web graph from Yahoo! with 1.4 billion

Algorithm 1: HADOOP algorithm for Induced Subgraph
Input : Edge E = {(src, dst)} of a graph G = (V,E),

Query Node Set Vq = {nodeid}
Output: Edges belonging to the subgraph induced from Vq

InducedSubgraph-Map1(Key k, Value v);1
begin2

if (k, v) is of type E then3
(src, dst)← (k, v);4
// Emit incidence matrix elements5
Output(src, [src, dst]);6
Output(dst, [src, dst]);7

else if (k, v) is of type Vq then8
(nodeid)← (k, v);9
Output(nodeid,’1’);10

end11

end12

InducedSubgraph-Reduce1(Key k, Value13
v[1..r]);
begin14

if v[] contains ’1’ then15
Remove ’1’ from v[];16
foreach p ∈ v[1..r − 1] do17

[src, dst]← p;18
// Emit partial multiplication result19
Output([src, dst], 1);20

end21

end22

end23

InducedSubgraph-Map2(Key k, Value v);24
begin25

Output(k, v); // Identity Mapper26

end27

InducedSubgraph-Reduce2(Key k, Value28
v[1..r]);
begin29

sum← 0;30
foreach num ∈ v[1..r] do31

sum = sum+ num;32

end33
// Select edges whose incident nodes belong to the query34
node set
if sum=2 then35

[src, dst]← k;36
Output(src, dst);37

end38

end39

nodes, 6.6 billion edges, and 120GB in space. YahooWeb is one
of the largest real graph which helps us test the scalability of our
GBASE system on real workload. In order to show the performance
across different data scales, we use two synthetic data generators:
Kronecker [23] and Erdős-Rényi [14] to generate multiple realistic
graphs with different sizes.
Storage Schemes. We use the following notations to distinguish
different storage and indexing methods:

• GBASE RAW(original RAW encoding): raw encoding which
is the original adjacency matrix format.
• GBASE NNB(No clustering, No compression, Blocking):

raw block encoding without compression and clustering.

Graph Nodes Edges File Size
YahooWeb 1,413 M 6,636 M 0.12 TB
Kronecker 177 K 1,977 M 25 GB

120 K 1,145M 13.9 GB
59 K 282 M 3.3 GB
20 K 6 M 439 MB

Erdős-Rényi 177 K 1,977 M 25 GB
120 K 1,145M 13.9 GB

59 K 282 M 3.3 GB
20 K 6 M 439 MB

Table 3: Order and size of networks. M: millon.
YahooWeb: http://webscope.sandbox.yahoo.com
Kronecker, Erdős-Rényi: http://www.cs.cmu.edu/∼ukang/dataset

Figure 4: Effect of different encoding methods for GBASE.
KR-2B: Kronecker graph with 2 billion edges. ER-2B: Erdős-
Rényi random graph with 2 billion edges. Notice our proposed
zip block encoding(NZB) decreases the input sizes significantly,
reducing to 50× smaller than the original(RAW). The Kro-
necker and the Erdős-Rényi graphs have better performance
gain than the YahooWeb graph since the first two are denser
than the last and thus take advantage of the compression. The
Kronecker graph has better compression than the Erdős-Rényi
graph since it has a block-like structure from the construction.

• GBASE NZB(No clustering, Zip compression, Blocking):
zip block encoding without clustering.
• GBASE CZB(Clustering, Zip compression, Blocking): zip

block encoding with clustering.
• GBASE CZB+GS(CZB with Grid Selection): grid selection

as described in Section 4.3.

We deploy our GBASE HADOOP implementation onto the M45
HADOOP cluster by Yahoo!. The cluster has total 480 machines
with 1.5 Petabyte total storage and 3.5 Terabyte memory.

5.1 Space Efficiency Comparison
We show the data size over three different graphs across different

storage schemes in Figure 4: 1) KR-2B is a graph of 177K nodes
and about 2 billion edges generated using Kronecker generator; 2)
ER-2B is of the same size as KR-2B but generated by Erdős-Rényi
generator; 3) YahooWeb is the real Yahoo web graph of 1.4 billion
nodes and 6.6 billion edges. We have the following observations:

Size Reduction. The zip block encoding(NZB) reduces the raw
data size significantly (50×, 9×, and 3.6× smaller than the origi-
nal(RAW) size for Kronecker, Erdős-Rényi, and YahooWeb graphs,
respectively). In contrast, the raw block encoding(NNB) decrease
the size at most 2.3× smaller than the original(RAW).

Density and Compression. The zip block encoding compres-
sion ratio is better for the dense graphs(Kronecker and Erdős-
Rényi) than the sparse YahooWeb graph. The reason is that the

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

40M 282M 1146M 1977M

R
un

 ti
m

e
in

 s
ec

on
ds

Number of edges

KR-NNB
ER-NNB
ER-NZB
KR-NZB

Figure 5: Scalability of indexing in GBASE. KR-NNB: Kro-
necker graph with raw block encoding. ER-NNB: Erdős-Rényi
graph with raw block encoding. ER-NZB: Erdős-Rényi graph
with zip block encoding. KR-NZB: Kronecker graph with zip
block encoding. Notice that the indexing time is linear on the
number of edges. Also notice that the zip block encoding(NZB)
takes 50× smaller time than the raw block encoding(NNB),
since the output size is smaller.

number of nonzero blocks is much smaller in the dense graphs and
thus it results in more storage savings by compression.

Block Structure and Compression. The Kronecker graph has
more than 5× better compression ratio than the Erdős-Rényi graph.
The reason is that the Kronecker graph is block structured from the
construction, and thus it benefits the compression algorithm better
than its random counterpart.

To summarize, zip block encoding has shown great space savings
across all datasets, which confirms the design objective of GBASE.

5.2 Indexing Time Comparison
So far, we have compared the resulting space efficiency of dif-

ferent methods. Next, we evaluate the indexing time required by
each methods. In Figure 5, we show the running time of GBASE
indexing process vs. the number of edges for graphs generated by
both Kronecker(KR) and Erdős-Rényi(ER) generators.

Running Time. Seemingly to our surprise, zip block encod-
ing(NZB) requires much less time compared to raw block encod-
ing(NNB), despite the additional compression step: NZB performs
50× faster than NNB for 1977M edges. The reason is because the
resulting compressed block is much smaller than straightforward
block encoding without compression. Thus, the running time for
writing the compressed blocks to disks is much smaller than the
uncompressed block.

Linear Scalability. The indexing times for both zip (NZB) and
raw block encoding (NNB) increase linearly as the number of edges
for both Kronecker and Erdős-Rényi graphs. This confirms the
scalability of our encoding schemes.

Thanks to the great storage benefit, additional compression step
of zip block encoding(NZB) is worthwhile. In YahooWeb graph,
we observe a similar trend as Kronecker and Erdős-Rényi graphs.

5.3 Global Query Time
So far, we confirmed the scalability and efficiency of the index-

ing phase. Next we evaluate the performance of different schemes
on the query phase. Here, we show the scalability of GBASE global
queries in Figure 6(a,b). We run the PageRank queries on Kro-
necker and Erdős-Rényi graphs. All the experiments except NZB
are performed on Kronecker graphs. We use the zip blocked Kro-
necker graphs for the CZB experiment since the Kronecker graphs
are block structured from its construction. For NZB experiment,
we use the zip blocked Erdős-Rényi graph with the same number

of nodes and edges since the Erdős-Rényi graph has nonzeros ran-
domly distributed in the adjacency matrix.

Running Time. We see that CZB, which combines the cluster-
ing and the zip block encoding, performs the best. It outperforms
RAW, NNB, NZB by 14×, 4.6×, and 2.6×, respectively, for 10
machines. The main reason of the better performance is the de-
creased I/O time due to reduced storage.

Machine Scalability. All the methods scale up near-linearly
with the number of machines as we see in Figure 6(a).

Edge Scalability. The methods also scale up near-linearly with
the number of edges as we see in Figure 6(b).

5.4 Targeted Query Time
We show the performance on targeted queries in Figure 6(c).

Since the targeted queries are often against a small subset of the
data, increasing the number of machines does not matter here for
improving an individual query. Therefore, we only demonstrate
the result with fixing the number of machines to 100. All the ex-
periments report the average running time of 5 randomly selected
query nodes. The node ids in the YahooWeb graph is encoded in
a clustered manner since all the pages in a domain are numbered
sequentially. Thus, we use the zip blocked YahooWeb graph for
the CZB experiment.

Grid Selection. We see that GBASE CZB+GS, which combined
the clustering, the zip block encoding, and the grid selection, works
the best for all the targeted queries. Especially, it works the best
for 1-neighborhood query outperforming all other competitors from
1.6× to 4×. The reason is that the grid selection method works bet-
ter if the portion of the relevant grids is small. For 1-neighborhood
query, the portion is the smallest(

√
K for total K grids), while

other queries can have many relevant grids depending on the num-
ber of neighbors of the query node.

Effect of Zip Block Encoding. The clustered zip block en-
coding(CZB) performs slightly better than the raw block encod-
ing(NNB) for 1-neighborhood and egonet queries, while it worked
slightly worse than NNB for the 2-neighborhood query. The rea-
son is that the size gain of the zip block encoding in CZB is not
big enough to overshadow the increased running time for the zip
compression. However, the performance of zip block encoding
will continuously increase as better clustering algorithm is devel-
oped, as shown in the well clustered graph results of Figure 6(a,b).
Moreover, the zip block encoding enjoys additional benefits of less
storage and indexing time.

6. RELATED WORK
In this section, we review the related work, which can be cate-

gorized into four parts: (1) graph indexing techniques, (2) graph
queries, (3) column store and (4) parallel data management.

Graph Indexing. Graph indexing is very active in both
databases community as well as data mining community in the re-
cent years. To name a few, Trißl et al [36] proposed to index the
graph using pre- and postorder number to answer the reachability
queries. Chierichetti et al [12] explored link reciprocity for adja-
cency queries. Aggarwal et al [5] proposed using edge sampling to
handle graph connectivity queries. Sarkar et al [32] explored the
clustering properties to proximity queries on graphs. Maserra et
al [27] proposed a Eulerian data structure for neighborhood queries.

Despite of their success, there are two major limitations of these
work. First, all the indexing techniques are designed for one par-
ticular type of queries. Therefore, their performance might be
highly optimized for that particular type of query, but they are
far sub-optimal for the remaining, vast majority types of queries.
Second, they are implicitly designed for the centralized computa-

(a) Global query: machine scalability (b) Global query: edge scalability (c) Targeted query: running time

Figure 6: (a,b): Running time and scalability in one iteration of global queries in GBASE on Kronecker and Erdős-Rényi graphs. The
CZB method which combines the clustering and the zip block encoding outperforms the RAW method by 14×. Notice also that all the
methods scale up near-linearly on the number of machines and edges. (c): Running time of targeted queries over different storage
and indexing methods, on YahooWeb graph. K-Nh denotes K step neighborhood query. Note that the CZB+GS(grid selection
method combined with the clustered zip block encoding) outperforms the others by 4× at maximum.

tional mode, which limits the size of the graph such indexing tech-
niques can support. These limitations are carefully addressed in the
GBASE, which supports multiple different types of queries simul-
taneously and is naturally applicable to the distributed computing
environment.

Finally, there are works on indexing many small graphs using
frequent subgraph [37, 39] or significant graph patterns [38], which
is quite different from our setting where we have one large graph.

Graph Queries. There are numerous different queries on
graphs. To name a few, graph-level queries answer some global
statistics of the whole graph, e.g., estimating diameters [19], count-
ing connected components [20], etc. Node-level queries, on the
other hand, focus on the relationship among individual nodes.
Representative queries include neighborhood [27], proximity [35],
PageRank [29], centrality [9], etc. Between the graph-level and in-
dividual node-level, there are also queries on the sub-graph level,
e.g., community detection [21, 8], finding induced subgraph [4],
etc. GBASE covers a wide range of queries, including the global
and the node-level ones, by a unified matrix-vector multiplication
framework.

Column Store. Column-oriented DBMS has gained its popu-
larity in the recent years, due to (among other merits) its excellent
I/O efficiency for read-extensive analytical workloads. From re-
search community, some representative works include [33, 3, 2,
18, 16]. A notable work of column store database from indus-
trial side is HBase(http://hbase.apache.org/). HBase is designed
for large sparse data, built on the top of HADOOP core. Differ-
ent from HBase, our GBASE partitions the data in two dimensions
(both columns and rows) and it is tailored for large real graphs.
By leveraging the block and community-like property which exists
in many real graphs, GBASE enjoys the advantages of both row-
oriented and column-oriented storages.

Parallel Data Management. Parallel data processing has at-
tracted a lot of industrial attention recently due to the success of
MAPREDUCE, a parallel programming framework [13], and its
open source version HADOOP [1]. Due to its excellent scalability,
ease of use, and cost advantage, MAPREDUCE and MAPREDUCE-
like systems have been extensively explored for various data pro-
cessing. Representative work include Pregel [26], PEGASUS [20],
SCOPE [11], Dryad [17], PIG Latin [28], Sphere [15], and Sawzall
[31], etc. Among them, both PEGASUS and Pregel focus on large
graph querying/mining and are most related to our work. The pro-
posed GBASE provides an even lower-level support in terms of stor-

age cost by indexing the graph on the homogeneous block levels,
which are ignored in either PEGASUS or Pregel. In addition, both
PEGASUS and Pregel essentially perform node/vertex-centralized
computation. Our GBASE is more flexible in the sense that it
also supports edge-centralized processing (e.g., induced subgraphs,
ego-net, etc) in addition to node-centralized processing.

7. CONCLUSION
In this paper, we propose GBASE, a scalable and general graph

management system. The main contributions are the followings.

1. Storage. We carefully design GBASE to efficiently store ho-
mogeneous regions of graphs in distributed settings using
a novel ‘block compression’. Experiments on billion-scale
graphs show that the storage and running time reduced up to
50× of the original.

2. Algorithms. We unify node-based and edge-based queries
using matrix-vector multiplications on the adjacency and the
incidence matrices. As a result, we get seven different types
of versatile graph queries supporting various applications.

3. Query Optimization. We propose a fast graph query execu-
tion algorithm using a grid selection. Also, we provide a ef-
ficient MAPREDUCE algorithm to support incidence matrix
based queries using the original adjacency matrix, without
explicitly building the incidence matrix.

Researches on large graph mining can benefit significantly from
GBASE’s efficient storage, widely applicable primitive operations,
and fast query execution engine. Future research directions include
query optimization for multiple, heterogeneous queries, and better
support for time evolving graphs.

Acknowledgement
This material is based upon work supported by the National Science
Foundation under Grants No. IIS-0705359 and IIS0808661, by the
Defense Threat Reduction Agency under contract No. HDTRA1-
10-1-0120, and by the Army Research Laboratory and was ac-
complished under Cooperative Agreement Number W911NF-09-
2-0053. This work is also partially supported by an IBM Fac-
ulty Award, and the Gordon and Betty Moore Foundation, in the
eScience project. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of
the Army Research Laboratory, the U.S. Government, or the Na-
tional Science Foundation. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwith-
standing any copyright notation here on.

8. REFERENCES
[1] Hadoop information. http://hadoop.apache.org/.
[2] Daniel J. Abadi, Peter A. Boncz, and Stavros Harizopoulos.

Column oriented database systems. PVLDB, 2009.
[3] Daniel J. Abadi, Samuel Madden, and Nabil Hachem.

Column-stores vs. row-stores: how different are they really?
In SIGMOD Conference, pages 967–980, 2008.

[4] Louigi Addario-Berry, W. Sean Kennedy, Andrew D. King,
Zhentao Li, and Bruce A. Reed. Finding a maximum-weight
induced k-partite subgraph of an i-triangulated graph.
Discrete Applied Mathematics, 158(7):765–770, 2010.

[5] Charu C. Aggarwal, Yan Xie, and Philip S. Yu. Gconnect: A
connectivity index for massive disk-resident graphs. PVLDB,
2(1):862–873, 2009.

[6] Leman Akoglu, Mary McGlohon, and Christos Faloutsos.
oddball: Spotting anomalies in weighted graphs. In PAKDD
(2), pages 410–421, 2010.

[7] I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and
A. Vespignani. k-core decompositions: A tool for the
visualization of large scale networks.
http://arxiv.org/abs/cs.NI/0504107.

[8] Periklis Andritsos, Renée J. Miller, and Panayiotis Tsaparas.
Information-theoretic tools for mining database structure
from large data sets. In SIGMOD, 2004.

[9] David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena
Mihail. Approximating betweenness centrality. WAW, 2007.

[10] Paolo Boldi and Sebastiano Vigna. The webgraph framework
i: compression techniques. In WWW, 2004.

[11] Ronnie Chaiken, Bob Jenkins, Per-Ake Larson, Bill Ramsey,
Darren Shakib, Simon Weaver, and Jingren Zhou. Scope:
easy and efficient parallel processing of massive data sets.
VLDB, 2008.

[12] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael
Mitzenmacher, Alessandro Panconesi, and Prabhakar
Raghavan. On compressing social networks. In KDD, 2009.

[13] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified
data processing on large clusters. OSDI’04, December 2004.

[14] P. Erdős and A. Rényi. On random graphs. Publicationes
Mathematicae, 6:290–297, 1959.

[15] Robert L. Grossman and Yunhong Gu. Data mining using
high performance data clouds: experimental studies using
sector and sphere. KDD, 2008.

[16] Sándor Héman, Marcin Zukowski, Niels J. Nes, Lefteris
Sidirourgos, and Peter A. Boncz. Positional update handling
in column stores. In SIGMOD, 2010.

[17] Michael Isard and Yuan Yu. Distributed data-parallel
computing using a high-level programming language. In
SIGMOD Conference, pages 987–994, 2009.

[18] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and
Romulo Goncalves. An architecture for recycling
intermediates in a column-store. In SIGMOD, 2009.

[19] U Kang, C.E Tsourakakis, Ana Paula Appel, C Faloutsos,
and Jure Leskovec. Radius plots for mining tera-byte scale
graphs: Algorithms, patterns, and observations. SIAM
International Conference on Data Mining, 2010.

[20] U Kang, C.E Tsourakakis, and C. Faloutsos. Pegasus: A
peta-scale graph mining system - implementation and
observations. ICDM, 2009.

[21] G. Karypis and V. Kumar. Parallel multilevel k-way
partitioning for irregular graphs. SIAM Review,
41(2):278–300, 1999.

[22] George Karypis and Vipin Kumar. Multilevel -way
hypergraph partitioning. In DAC, pages 343–348, 1999.

[23] Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg,
and Christos Faloutsos. Realistic, mathematically tractable
graph generation and evolution, using kronecker
multiplication. PKDD, pages 133–145, 2005.

[24] Ching-Yung Lin, Nan Cao, Shixia Liu, Spiros Papadimitriou,
Jimeng Sun, and Xifeng Yan. Smallblue: Social network
analysis for expertise search and collective intelligence. In
ICDE, pages 1483–1486, 2009.

[25] Chao Liu, Fan Guo, and Christos Faloutsos. Bbm: bayesian
browsing model from petabyte-scale data. In KDD, 2009.

[26] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD Conference, pages 135–146, 2010.

[27] Hossein Maserrat and Jian Pei. Neighbor query friendly
compression of social networks. In KDD, 2010.

[28] Christopher Olston, Benjamin Reed, Utkarsh Srivastava,
Ravi Kumar, and Andrew Tomkins. Pig latin: a
not-so-foreign language for data processing. In SIGMOD
’08, pages 1099–1110, 2008.

[29] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The PageRank citation ranking: Bringing order to
the web. Technical report, Stanford Digital Library
Technologies Project, 1998.

[30] Spiros Papadimitriou and Jimeng Sun. Disco: Distributed
co-clustering with map-reduce. ICDM, 2008.

[31] Rob Pike, Sean Dorward, Robert Griesemer, and Sean
Quinlan. Interpreting the data: Parallel analysis with sawzall.
Scientific Programming Journal, 2005.

[32] Purnamrita Sarkar and Andrew W. Moore. Fast
nearest-neighbor search in disk-resident graphs. In KDD,
pages 513–522, 2010.

[33] Michael Stonebraker, Daniel J. Abadi, Adam Batkin,
Xuedong Chen, Mitch Cherniack, Miguel Ferreira, Edmond
Lau, Amerson Lin, Samuel Madden, Elizabeth J. O’Neil,
Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stanley B.
Zdonik. C-store: A column-oriented dbms. In VLDB, 2005.

[34] Jimeng Sun, Huiming Qu, Deepayan Chakrabarti, and
Christos Faloutsos. Neighborhood formation and anomaly
detection in bipartite graphs. In ICDM, pages 418–425, 2005.

[35] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast
random walk with restart and its applications. In ICDM,
pages 613–622, 2006.

[36] Silke Trißl and Ulf Leser. Fast and practical indexing and
querying of very large graphs. In SIGMOD, 2007.

[37] D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed
frequent-pattern sets. In VLDB, pages 709–720, 2005.

[38] Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S. Yu.
Mining significant graph patterns by leap search. In
SIGMOD Conference, pages 433–444, 2008.

[39] Peixiang Zhao, Jeffrey Xu Yu, and Philip S. Yu. Graph
indexing: Tree + delta >= graph. In VLDB, 2007.

