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ABSTRACT
Most of recommender systems try to find items that are most rel-
evant to the older choices of a given user. Here we focus on the
“surprise me” query: A user may be bored with his/her usual genre
of items (e.g., books, movies, hobbies), and may want a recommen-
dation that is related, but off the beaten path, possibly leading to a
new genre of books/movies/hobbies.

How would we define, as well as automate, this seemingly self-
contradicting request? We introduce TANGENT, a novel recom-
mendation algorithm to solve this problem. The main idea behind
TANGENT is to envision the problem as node selection on a graph,
giving high scores to nodes that are well connected to the older
choices, and at the same time well connected to unrelated choices.
The method is carefully designed to be (a) parameter-free (b) ef-
fective and (c) fast. We illustrate the benefits of TANGENT with
experiments on both synthetic and real data sets. We show that
TANGENT makes reasonable, yet surprising, horizon-broadening
recommendations. Moreover, it is fast and scalable, since it can
easily use existing fast algorithms on graph node proximity.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—Data min-
ing; H.3.3 [Information Storage and Retrieval]: Information search
and retrieval—Clustering, search process

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Recommender systems are vital for e-commerce sites, with most

striking examples being Amazon, Netflix, Pandora, Strands, etc.
Recommender systems are doubly useful: On one hand, they help
users filter through enormous numbers of available items, and fo-
cus on the few ones that match their preferences; on the other
hand, recommender systems help enterprises increase their sales
(e.g. movies, books, songs), on the long tail. Numerous algo-
rithms for collaborative filtering [28] have been studied for recom-
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mender systems; whereas, graph-based algorithms have been at-
tracting great interest among researchers recently.

Most of the recommendation algorithms focus on the precision
in the proximity to user preferences. However, this strategy tends
to suggest items only on the center of user preferences and thus
narrows down the users’ horizons. According to the research about
the quality of recommender systems [20], broadening users’ hori-
zons is one of important qualities for recommender systems. Such
systems provide a win-win situation: users may find more interest-
ing items, and e-commerce enterprises increase their sales and their
user satisfaction.

Figure 1: The difference between conventional recommenda-
tion algorithms and TANGENT. Square nodes represent users
and circular nodes denote movies. Users are connected to
movies which they like. Black nodes are a target user and
his/her favorite movies.

In order to solve this seemingly self-contradicting problem, we
proposed TANGENT, a recommendation algorithm that takes into
account the connectivity to other groups in order to broaden users’
horizons. It is based on the graph mining technique of comput-
ing similarity between nodes and can be applied to any dataset that
can be represented as a graph. Figure 1 illustrates the difference
of results between conventional recommendation algorithms and
TANGENT. We assume that this synthetic bipartite graph records
rating information by users to movies. There are two groups in
this graph; fans for comedy movies and those for horror movies. If
“user A” rates two movies in the comedy group as favorite movies,
conventional recommendation algorithms would suggest movies in
the same group. In contrast, our proposed TANGENT method sug-
gests a movie between two groups, to “surprise” the user and to
gently broaden his/her horizons.

The rest of the paper is organized as follows: we first review the
related work in Section 2; the proposed algorithm is presented in



Section 3; the experimental results are presented in Section 4; and
we conclude the paper in Section 5.

2. RELATED WORK
In this section, we briefly review related work, which can be

categorized into three parts: graph mining, recommender system
and ranking and proximity on graphs.

Graph Mining. The main idea behind TANGENT is to envision
the problem as node selection on a graph. Graph mining itself is
a hot research topic in the recent years. For static graphs, repre-
sentative work includes pattern and law mining [1, 6, 22], frequent
substructure discovery [34, 14], collective classification [4], fraud
and anomaly detection [21, 24], community mining and graph par-
tition [11, 12, 16, 19], etc. More recently, there has been an increas-
ing interest in mining time-evolving graphs, such as densification
laws and shrinking diameters [18], community evolution and dy-
namic [2], etc.

Recommender System. To our knowledge, there is little work
in recommender systems which focuses on broadening users’ in-
terest. The work of Kamahara et al. [15], who explore methods for
locating unexpected items from similar clusters to user’s cluster, is
close to our problem. However, parameters such as the number of
clusters and thresholds, which are required in [15], are not easy
to be tuned. McNee et al. [20] raise a question about the current
accuracy metrics and propose some aspects which should give to
evaluation of recommender system.

Recommender systems have been attracting considerable research
interest, with recent emphasis on graph-based such systems. Fouss
et al. propose in [9] to apply Euclidean commute time distance,
which is one of random-walk-based methods of computing simi-
larities between nodes, to a collaborative recommendation. Wang
et al. [33] apply a node similarity algorithm to item-based recom-
mendation. Bell et al. [3] propose a low rank matrix approximation
method for collaborative filtering and successfully apply it to the
NetFlix competition. Although different in the specific methods,
the basic idea behind all these methods is to find items that are
most relevant to the older choices of the given user.

Ranking and Proximity on Graphs. In the literature, there
are several methods for calculating relevance (a.k.a similarity) be-
tween nodes on graphs. Because the shortest path, which is a con-
ventional property for representing relevance, fails to capture the
multiple faceted relationship between nodes on the graph, random
walk based techniques such as PageRank [25], personalized Pager-
Rank [13], Random walk with restart [30, 32], Euclidean commute
time distance [9], escape probability [8, 17] have been widely ap-
plied recently. In this paper, we use random walk with restart; how-
ever, the idea behind TANGENT can be naturally extended to other
proximity measurement.

The upcoming “bridging score” in our proposed TANGENT is
also related to the node betweenness: The betweenness of a node
is high if the node lies on the paths between many other pairs of
nodes. Intuitively, such a node is a good “bridge”, and deleting
such a node may often disconnect the graph. Freeman [10] pro-
poses a method for computing betweenness based on shortest paths,
and Brandes [5] studies a fast algorithm for computing centrality.
On the other hand, Newman [23] also proposes fast algorithms to
compute, by using a random walk on the graph.

The degree of connectivity in a graph (which is the core idea be-
hind the bridging score in the proposed TANGENT) is also related
to the degree of anomaly in a graph because the nodes with consid-
erable links to various groups are considered to be anomalies. Sun
et al. [30] introduce the normality score of a node as a measure of
how homogeneous (i.e., interconnected) its neighbors are.

Although potentially useful for TANGENT, none of these meth-
ods have been used in a recommender system.

3. THE TANGENT ALGORITHM
In this section, we describe details of the proposed TANGENT

algorithm.

3.1 Notations and Problem Definitions
Symbol Description

A = (aij) the weighted adjacency matrix
Ã the normalized matrix of A

�b = (bi) the vector of bridging score
D = (dij) dii =

P
j aij and dij = 0 for i �= j

E the set of edges in G
�ei n × 1 unit vector (all zero except one at row i)
G the weighted, undirected graph
k the number of query nodes
li the number of edges connected to node i
m the number of edges in G
n the number of nodes in G

r̂Si
the average of all non-diagonal elements in Ri

Q = (qi) the set of query nodes (1 ≤ i ≤ k)
R the matrix of relevance score
Ri the similarity matrix among nodes ∈ Si

�ri = (ri,j) the vector of relevance score to node i
�rQ = (rQ,j) the vector of relevance score to query nodes Q
Si = {si,j} the set of nodes which have links to node i
�tQ = (tQ,i) the vector of TANGENT score

V the set of nodes in G
wij weight on each in (i, j) ∈ E

Table 1: Symbols
Table 1 gives the main symbols used in this paper. We assume

that we are given a weighted, undirected graph G = (V, E), where
V denotes the set of nodes and E represents the set of edges. n is
the number of nodes and m is the number of edges. This graph has
weights wij > 0((i, j) ∈ E) on the edges. Since the graph is undi-
rected, the weights are symmetric (i.e. wij = wji). The weight wij

should indicate the strength of the relation between node i and node
j. Let A = (aij)i,j∈V be the adjacency matrix of the graph with
aij = wij if (i, j) ∈ E and aij = 0 otherwise. A set of query
nodes can be represented by Q = (qi)1≤i≤k.

Let us consider a movie-rating data set. Basically this database
consists of three kinds of information; demographic information
about the users, information about the movies, and information
about rating which users assigned to movies they have watched.
Each user and movie corresponds to a node, and each user is con-
nected to the corresponding movies by edges weighted according
to the degree of rating. This graph expresses the relation between
users and movies (a user-movie graph), and is constructed as a bi-
partite graph. In this graph, nodes can be divided into two disjoint
sets such as V = {V1, V2}. A query node corresponds to a user
to whom the recommender system want to give recommendations
(i.e. k = 1).

Now we define the TANGENT problem as follows:
PROBLEM 1 (TANGENT).

Given: an edge-weighted undirected graph G with adjacency ma-
trix A, the set of query nodes Q = (qi)1≤i≤k .

Find: a node that (1) is close enough to Q, and (2) has high poten-
tial to reach other nodes.

3.2 Alternatives and Subtle Problems
Here we quickly review algorithms for computing ranking and

proximity on graphs and introduce alternatives we have explored
to solve our problem but find to be inapplicable because of subtle
problems.

Relevance Score. As described in Section 2, there are numer-
ous methods to measure similarity ri,j between a pair of nodes (i,
j): escape probability, random walk with restarts, electricity-based



[26], maximum flow, to name a few. Although most of them give
reasonable scores, none of them takes into account the connectiv-
ity to other groups. Therefore, they can fulfill only the first of our
requirements.

It is an additional, subtle question on how to measure group prox-
imities, that is, how close is node i to the set of query nodes Q.
Averaging, or just adding the individual scores

P
q∈Q rq,i is a rea-

sonable, but not necessarily the best choice. Another choice would
be to take the maximum such score, roughly corresponding to an
‘OR’: a node gets high score if it is close to at least one of the query
nodes. The list continues: the product is also a reasonable choice
(corresponding to an ‘AND’), and the CePS algorithm [31] gives
additional, more sophisticated choices.

Negation of Relevance Score. One of our first approaches to
solve the “surprise me” query problem was to consider negation.
Specifically: “Find nodes close to one query node, but far away
from all other query nodes.” That is, we want a candidate node v
that has high proximity to only one of the query nodes, and as far
as possible from the rest. We assume that a relevance score corre-
sponds to probability, such as steady-state probability [32]. Since
multiplication of scores corresponds to conjunction, 1-complement
would correspond to negation, and thus the score of a node v should
be

negation(v , Q) = max
1≤j≤k

{rqj ,v ×
Y

i�=j

(1 − rqi,v)} (1)

However, although this equation has solid foundation in logic,
when used on large, real graphs, it gives almost the same arith-
metic scores as max1≤j≤k(rqj ,v). This is because most proxim-
ity/relevance scores are extremely low (� 10−2) and thus the prod-
uct of the (1 − rqi,v) terms is practically equal to 1.

Entropy. Among the methods we tried but eventually did not
work, is an entropy-based idea, inspired by maximum marginal
gains: a candidate node v would be good, if it would make max-
imum difference in the existing distribution of proximities. This
would mean that it opens horizons. That is, let rQ,i be the score of
node i wrt Q; let r̀Q,i be the score if we add node v to the query
set Q. We want the node v that maximize the difference of the en-
tropy (i.e., H(r̀Q,i) − H(rQ,i) = −P

i∈V {r̀Q,i × log(r̀Q,i)} +P
i∈V {rQ,i × log(rQ,i)}.
However, despite the fact that maximum marginal gain should

lead to “surprising” choices, they are too far away from query nodes
because they are the best choices to make uniform distribution of
proximities, which maximize the entropy.

Our main point of this detour is that, despite the wealth of ideas
on node proximity, there are subtle issues that need to be carefully
thought out.

3.3 Framework of TANGENT Algorithm
In this subsection, we illustrate the framework of our proposed

algorithm.
The function of TANGENT can be described as�tQ = tangent(A, Q)

where �tQ = (tQ,i)i∈V is a vector of degree of recommendation, to
which we refer as TANGENT score in this paper. We would like
to have a recommendation algorithm for suggesting items which
are not only relevant to user preferences but also have large con-
nectivity to other groups. In order to fulfill these requirements,
TANGENT algorithm consists of three parts as follows.

1. Calculate relevance score (RS) of each node : �rQ.

2. Calculate bridging score (BRS) of each node : �b.
3. Compute the TANGENT score (�tQ) by somehow merging

two criteria above.

Moreover, the algorithm for computing bridging score is de-
signed to use relevance score, which re-uses the result of relevance

scores calculated at the first part and also prevents the last merging
part from being complicated.

The rest of this section describes details of each part.

3.4 Relevance Score (RS)
First we would like to compute the relevance score of a single

node j, for a single query node qi. There are several methods for
computing the relevance score between nodes, as described in Sec-
tion 2. Although we can use any algorithm to compute relevance
score, we propose to use random walk with restart [30, 32] in this
paper.

According to [30, 32], the relevance score �rqi is computed by
the following formula:

�rqi = cÃT�rqi + (1 − c)�eqi

= cÃ�rqi + (1 − c)�eqi (2)

where Ã is the normalized adjacency matrix of A by normalized
graph Laplacian (Ã = D−1/2AD−1/2, where D is the degree
matrix of A.) and (1 − c) denotes the fly-out probability.1 Note
that A is symmetric because aij = wij = wji = aji. �rqi is
determined by

�rqi = (1 − c)(I − cÃ)−1�eqi

= R · �eqi (3)

from the derivation of equation (2).
One of solutions to obtain �rqi from equation (2) is the iterative

method, iterating equation (2) until it convergences; however, we
propose to pre-compute R because we can obtain the solution of
�rqi for all nodes from equation (3) with less online computation
costs. Details are described in subsection 3.7. Note that it can be
proved by equation (3) that

R = [�r1�r2...�rn] (4)

If there are multiple query nodes, we compute a relevance score
from all query nodes by taking Boolean ’OR’ of relevance scores
to query nodes by

rQ,j = 1 −
kY

i=1

(1 − rqi,j) (5)

3.5 Bridging Score (BRS)
Bridging score means the degree of connectivity to other groups

on a graph. Although betweenness [5, 10, 23] might be one of
the criteria for it, their algorithms are completely different and also
require a considerable computation costs. Or, we might use the
sum of weight of links connected to the corresponding node as an
index considering that the popular items might have potential to
bridge groups. However, popularity does not always correspond to
the connectivity to other groups.

We proposed to apply an anomaly detection algorithm on a bi-
partite graph [30], which is based on the relevance scores described
above, to any kinds of graph. The level of connectivity of a node
on a graph is related to the level of anomaly on a graph because the
nodes with considerable links to various, otherwise disjoint groups
are considered to be anomalies. Moreover, the merit of using the
same algorithm is that we can share the result of computing rele-
vance scores. From equation (4), R expresses the relevance scores
from each node to each node and we can re-use R for computing the
bridging score. This is important, because TANGENT only needs a

1c is the only parameter in the proposed TANGENT. However, we
find that the recommendation result of TANGENT is insensitive to
c. Therefore, we fix c to be 0.5 throughout this paper.



few relevance scores, and thus it can exploit any of the fast, known
algorithms, to compute such scores, like B LIN/BB LIN [32] and
variants.

Figure 2: Illustration of the procedure of computing bridging
score.

Figure 2 presents the procedure of computing bridging score. Let
li be the number of edges connected to node i. Given a node i, we
first find the set of nodes to which i links: Si = {si,j |0 ≤ j ≤
li}. Then we compute the relevance scores between any pair of
elements in Si and construct a li × li similarity matrix Ri. After
that, we take the mean of all non-diagonal elements in Ri and get
bi by inverting it. If node i is connected by only one edge or it has
no connection, we define its bridging score as bi = 0, which means
that it is not taken into account as a candidate of recommendation.

Figure 3 shows the intuition of computing bridging score. If i
is connected to one group, then the relevance scores between any
pair of elements in Si should be high and as a consequence, bi

become small. On the other hand, if i has links to several groups,
the relevance scores between different groups have small numbers
and we get large bi.

Figure 3: The intuition of computing bridging score.
Algorithm 1 summarizes the algorithm of computing bridging

score. Note that �b is independent from query nodes Q. Therefore,
it can be pre-computed.

3.6 TANGENT Score
There are several ways to combine the above two criteria. How-

ever, again, reasonable-looking choices may suffer from subtle is-
sues. We discuss them first, and then give our proposed combina-
tion method.

Reasonable-Looking, but Unsuccessful Choices. One natural method
to try is linear combination: i.e. tQ,j = rQ,j + α × bj (let α be
the coefficient). However, (a) the two values typically differ by or-
ders of magnitude, and the larger, bj , typically overshadows rQ,j ,
(b) the method is not parameter-free anymore: somebody, some-
how, needs to determine a good value of α, which may need to be
changed as the graph grows.

Our second approach, also reasonable-looking, but also unsuc-
cessful, is to use skyline queries. Since we do not know how much

Algorithm 1 Bridging Score (BRS) Computation Algorithm
1: Given: Adjacency matrix A
2: for i = 1 to n do
3: Pick up node i and let Si = {si,j |0 ≤ j ≤ li} be a set of nodes

which have links to i;
4: if (li = 0) OR (li = 1) then
5: bi = 0;
6: else
7: Compute the relevance score vector �rsi,1�rsi,2 , ..., �rsi,li

from
each Si = s1, ..., sli ;

8: Construct li × li matrix Ri = [�rsi,1�rsi,2 ...�rsi,li
];

9: Take the average of all non-diagonal elements in Ri and obtain
r̂Si

;
10: Divide one by r̂Si

, and obtain bi = 1/r̂Si
;

11: end if
12: end for
13: return a vector of bridging scores�b.

weight to give to each of the two criteria (relevance vs. bridge-
ness), we could try multi-objective optimization, which leads to
skyline queries [27]: Given a set of multidimensional points D, a
skyline query finds the skyline points from D, that is, those points
that are not totally dominated by any other point in D. For exam-
ple, if a point p is on the skyline, there is no data point p′ in D
such that p′ is larger than p for the values in all dimensions. The
example of a skyline query is shown in Figure 4. Movie A, B and
C are on the skyline and there are no other nodes which have larger
relevance score as well as larger bridging score than points on the
skyline.

However, using skyline queries for our setting suffers from the
following subtle drawbacks: (1) it cannot keep the balance between
the two criteria; for instance, a skyline query extracts a node which
has the highest relevance score even if it has zero bridging score
(see Movie C in Figure 4) and vice versa, (2) the skyline also ne-
glects second-best candidates. (In Figure 4, movie Z dominates
everything else, and thus we would only return that movie, even if
Movie Y is also a good candidate.)

Figure 4: The examples of a skyline query.
Proposed Combination Method. A reasonable and well perform-

ing method is multiplication: i.e. tQ,j = rQ,j × bj = rQ,j/r̂Si . It
can be seen from the equation above that tQ,j represents the ratio
between relevance score to query nodes and relevance score among
neighbors. Notice that all our proposed choices are parameter-free,
making TANGENT parameter-free, as we required.

3.7 Scalability
We want TANGENT to be parameter-free2, effective and fast.

The first goal is achieved as we showed. The second goal is dis-
cussed in details later. Here we illustrate the achievement speed.
Specifically, we discuss the scalability of the TANGENT algorithm
by discussing each of the first two parts. The third part, merg-
ing, is O(n) since it needs just a multiplication for each of the
n − q = O(n) candidate nodes.

Computing Relevance Score. Although computing R in a straight-
forward way requires cubic computation cost to the number of node,
2As mentioned before, the only parameter c in TANGENT has little
influence on the result and is fixed to be 0.5 throughout this paper.



there is a fast algorithm to get good approximate solution of ran-
dom walk with restart proposed by [32]. Once we pre-compute
R, online computation cost for computing relevance score for each
node is only matrix-vector multiplication shown in equation (3).

Computing Bridging Score. It can be seen in Algorithm 1 that,
R, which is pre-computed for computing relevance score, can be
re-used in computing bridging score. Therefore, the online com-
putation of this algorithm takes time O(n). Moreover, in case of
a user-movie bipartite graph, we do not need to compute bridging
scores of user nodes for recommendation; therefore, the computa-
tion cost can be reduced to the number of movies. If faster online
computation is required, we can pre-compute it since the bridging
score is independent of the query.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the effectiveness of TANGENT. Since

the objective of TANGENT is to find the neighbors of user pref-
erence with large connectivity to other groups, not to improve the
accuracy of recommendation, conventional evaluation metrics such
as degree of agreement[9], a percentile score[9], a recall score[9],
mean absolute error[29], MSE[33], and NMSE[33] do not work on
the evaluation of effectiveness for TANGENT algorithm, neither
does questionnaires asking whether the recommendation made by
the algorithm is satisfactory or not. Therefore, we evaluate its po-
tential on a number of synthetic graphs as well as on real data sets.
For both synthetic and real data set, we present (1) the case stud-
ies which show that TANGENT gives reasonable results; and (2)
systematic comparisons with conventional recommendation algo-
rithms (i.e., by relevance score) which show that TANGENT tends
to return more surprising results. Let ntan and nrel be the surpris-
ing nodes in the returned recommendation list by TANGENT and
by conventional recommendation algorithms, respectively. We de-
fine the “Surprising Gain” as ntan−nrel

nrel
. A big “Surprising Gain”

means that TANGENT returns more surprising results compared
with conventional recommendation algorithms.

4.1 Evaluations on Synthetic Data Sets
Case Studies on Unipartite Graphs. We start off by presenting

unipartite graphs, which have several groups in them and are con-
nected by nodes. In the experiment, we compare the ranked lists
based on relevance score, bridging score, and TANGENT score.

The graph on the left side of Figure 5 has two groups; nodes 1 - 4
in Group 1 and nodes 6 - 9 in Group 2, which are connected through
node 5, and we run a query for node 1. Node 2 gets the highest rele-
vance score among nodes except the query node, followed by nodes
3 and 4. This result would be same as what conventional recom-
mendation algorithm would give. On the other hand, comparing
bridging scores, we find that node 5 gets the highest score, because
the neighbors of node 5 (nodes 3, 4, 6 and 7) are separated in half
into two groups and, as a consequence, the average of relevance
scores among them becomes small. Notice that nodes 7, 3 and 4
also get relatively high bridging scores. As a result, nodes 3 and 4
are ranked as No. 1 in terms of TANGENT score, as reflects our in-
tuition that these nodes are close enough to the query node as well
as getting close to Group 2.

The graph on the right side of Figure 5 has four groups and two
query nodes in different groups. In this case, both node 3 and node
12 are considered as bridging nodes; however node 3 should be
considered as a better bridging node than node 12 because node 3
leads to Group 2, which is larger than Group 3. As we can see,
TANGENT algorithm gives a result which follows our intuition.

Case Studies on Bipartite Graphs. We next evaluate the ef-
fectiveness of TANGENT algorithm on synthetic bipartite graphs.
Figure 6 illustrates the structure of graphs and the results. As we

Figure 5: Relevance score, bridging score, and TANGENT
score of each node on synthetic unipartite graphs. A query
node is represented by a black node.

described in Figure 1, square nodes represent users, circular nodes
denote movies, and edges correspond to ratings by users. Graph
1 and Graph 2 in Figure 6 have almost same structure, except that
user 1 and movie 24 are linked with each other in Graph 2.

Figure 6: No.1-ranked movie for several query nodes on syn-
thetic bipartite graph. Dark nodes are query nodes.

We can derive some fascinating observations from this figure as
follows: (1) In Graph 1, movie 16 gets the highest TANGENT
score for user 1. This result completely agrees with our motiva-
tion described in Figure 1. (2) In Graph 1, TANGENT algorithm
concludes movie 20 to be the best recommendation for user 5, not
movie 16. It is a reasonable result because movie 20 is watched
by three groups; while movie 16 is watched by two groups. (3)
In Graph 2, TANGENT algorithm still suggest movie 16 for user
1, not movie 20. Recommender system does not have to be sen-
sitive to outliers. In this case, user 1’s preference still lies on the
group where s/he involves and TANGENT takes it into account.
This result indicates that TANGENT is robust to exceptionally fa-
vorite movie. (4) In Graph 2, movie 24 gets the highest TANGENT
score for user 12, despite the fact that movie 20 is recommended in
Graph 1. Comparing movie 20 and movie 24, we find that movie 24
has higher relevance score than movie 20, and also movie 24 has
connectivity to another group in Graph 2. This structural change
causes the difference of the recommendation results.

Comparison with Relevance Score. Finally, we systematically
compare the proposed TANGENT with conventional recommen-
dation algorithms. The goal of TANGENT is to provide some
“surprising” recommendations, i.e., to find the neighbors of user
preference with large connectivity to other groups. Formally, for a
given query node q, we say the recommended node i is “surpris-
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Figure 7: Comparison of TANGENT and conventional recom-
mendation algorithms on synthetic graphs. Higher is better.

ing” if (1) nodes i and q belong to the same group, but the node i
has some links to other groups; or (2) nodes i and q belong to the
different groups, but the node i has some links to the same group
as the query node q. For example, in the left graph of Figure 5,
nodes 3-5 are “surprising” wrt the query node 1; while the nodes
2, 6-9 are not “surprising” results. Figure 7 present the comparison
between TANGENT and conventional recommendation algorithms
(Rel), where x-axis is the length of the recommendation list and
y-axis is the average surprising nodes in the returned recommenda-
tion list. It can be seen that TANGENT consistently gives more sur-
prising results. On average, the “Surprising Gain” of TANGENT
on synthetic data sets is 1.95.

4.2 Evaluations on MovieLens Data Set
Here, we present the experimental result on a real movie-rating

data set MovieLens (http://www.movielens.org/). Movie-
Lens data set was collected by GroupLens Research Project at the
University of Minnesota and contains 100,000 rating information
from 943 users on 1682 movies. Each user has rated at least 20
movies from 1 (strongly unsatisfactory) to 5 (strongly satisfactory).

Using this data set, we construct a user-movie bipartite graph.
We choose positive ratings (4 and 5) and connect users and movies
by edges weighted by 4rating−4 in order to emphasize strongly sat-
isfactory ratings. The reason why we do not take into account neg-
ative ratings (1 - 3) is that treating negative ratings requires another
mechanism and we would like to focus on the evaluation of effec-
tiveness of TANGENT algorithm. As a result, a user who gives
only negative ratings and movies which receive only negative rat-
ings are neglected; and 942 users, 1447 movies and 55375 ratings
remain. We apply BB Lin [32] to our system for fast computation
of relevance scores and pre-compute only R.

Case Studies. Figure 8 illustrates the transition of rankings be-
tween the relevance score and our TANGENT score. For each
movie, we mention its genre(s) - the abbreviations are in the up-
per right of the figure. The top of Figure 8 are for users who prefer
to slapstick movies. Notice that the top 10 movies by relevance
score consist mainly of comedy movies. On the other hand, niche
comedy movies such as “Ace Ventura: When Nature Calls” and
“Renaissance Man” are out of top 10 ranking by TANGENT score
and popular comedy movies such as “The Princess Bride”, “Toy
Story”, “Monty Python and the Holy Grail” and “Men in Black”
emerge instead. That is, the TANGENT algorithm recommends a
wider variety of genres and gives No.1 rank to “Star Wars”, which
scores high with both user preference as well as with the connec-
tivity to other groups. Note that, especially “The Flintstones” de-
creases its ranking dramatically, because it has only one positive
rating.

The lists on the bottom of Figure 8 are for users whose prefer-
ence is horror movies. Although the transition between two lists is
more moderate than that in case of slapstick movies, TANGENT al-

gorithm still recommends diverse genres of movies; not only horror
but also thriller, crime, and drama.
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Figure 9: Comparison of TANGENT and conventional recom-
mendation algorithms on MovieLens data set. Higher is better.

Comparison with Relevance Score. Here, for a query movie q (or
the query user who likes movie q). We say a recommended movie
i is a “surprising movie” if (1) movies i and q share some com-
mon genres; and (2) movie i has some new genres that the query
movie q does not have. For example, for the query movie “Robin
Hood: Men in Tights (Comedy)”, “Jack (Comedy and Drama)” is
treated as a surprising recommendation; while neither “Spy Hard
(Comedy)” or “Raiders of the Lost Ark (Action and Adventure)” is
treated as surprising recommendations. Figure 9 presents the com-
parison between TANGENT and conventional recommendation al-
gorithms (Rel), where x-axis is the length of the recommendation
list and y-axis is the average surprising nodes in the returned rec-
ommendation list. Again, TANGENT consistently gives more sur-
prising results and the “Surprising Gain” of TANGENT on this data
set is 0.08.

4.3 Evaluations on CIKM Data Set
This data set is from CIKM proceedings (http://www.informatik.

uni-trier.de/ ley/db /conf/cikm/). We construct an author-paper bi-
partite graph. The authors are annotated with one or more key-
words as his/her attribute based on the session names where the
corresponding paper was presented. For instance, “Tali Brodian-
skiy” has published a paper (titled with “Self-Correcting Queries
for XML”) in CIKM 2007 and the paper was presented in “XML
Query Processing” session. Therefore, he is associated with “XML”
and “Query” as his attribute. Totally, we have 952 paper nodes,
1,895 author nodes, and 158 keywords.

Case Studies. Table 2 lists the top-5 recommended authors for
“Frank Hing-Wah Luk” by TANGENT score and by relevance score,
respectively. “Frank Hing-Wah Luk” has published one paper (ti-
tled with “Triple-Node Hierarchies for Object-Oriented Dababases
Indexing”) and he is associated with “Index” as his attribute. So,
clearly, he is a databases person in CIKM community. From Ta-
ble 2, it can be seen that while the two methods agree on the first
two recommended authors (“Ada Wai-Chee Fu” and “Ke Wang”),
TANGENT provides more diverse recommendations compared with
relevance score, - the recommended authors by TANGENT (“Yabo
Xu”, “Jiawei Han”, and “Jian Pei”) are cross-disciplinarity in both
dababases and data mining. On the other hand, relevance score will
recommend pure databases persons (“Weixiong Rao”, “Lei Chen”,
and “Yingyi Bu”) instead.

Comparison with Relevance Score. For a given query author q,
we say the recommended author i is “surprising” if (1) authors q
and i share some common keywords, and (2) the author i has some
new keywords that the query author q does not have. Figure 10
presents the comparison between TANGENT and conventional rec-



Figure 8: Ranked lists by relevance score and one by TANGENT score for user who likes slapstick movies (top) and those who
likes horror movies (bottom). Arrows highlight the transition of ranking. Nomenclature for genre is shown in the upper right
(“Com”:Comedy, and “Hor”:Horror are in bold) TANGENT gives much higher diversity of genres, as desired.



Rank by TANGENT Attribute of Authors by Relevance Attribute of Authors
1 Ada Wai-Chee Fu Index, Performance, Stream Ada Wai-Chee Fu Index, Performance Stream
2 Ke Wang DB, Mine, Cluster, Pattern, Stream Ke Wang DB, Mine, Cluster, Pattern, Stream
3 Yabo Xu DB, Mine, Stream Weixiong Rao Performance
4 Jiawei Han DB, Mine Lei Chen Performance
5 Jian Pei Mine, Pattern, Forecast, Stream Yingyi Bu Performance

Table 2: Ranked lists by relevance score and by TANGENT score for query author “Frank Hing-Wah Luk” on CIKM data set.
“Frank Hing-Wah Luk” has published 1 paper in CIKM titled with “Triple-Node Hierarchies for Object-Oriented Dababases In-
dexing” and he is associated with “Index” as his attribute.

ommendation algorithms (Rel), where x-axis is the length of the
recommendation list and y-axis is the average surprising nodes in
the returned recommendation list. Again, TANGENT consistently
gives more surprising results and the “Surprising Gain” of TAN-
GENT on this data set is 0.22.
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Figure 10: Comparison of TANGENT and conventional recom-
mendation algorithms on CIKM data set. Higher is better.
4.4 Evaluations on DBLP Data Set

Case Studies. We also test the proposed TANGENT on DBLP
data set (http://www.informatik.uni-trier.de/ ley/db/). Here, we con-
struct a series of different author-paper bipartite graphs from two
conferences. One conference is always “KDD”, and the other con-
ference is either “SIGMOD”, “ICML”, “WWW”, “SIGIR”, “CIKM”,
“SIGCOMM”, “SIGGRAPH” or “ISMB”. Table 3 gives the 1st rec-
ommended authors on such bipartite graphs by TANGENT score
and by relevance score, respectively. We can see that TANGENT
provides more surprising recommendations compared with rele-
vance score. For example, on the bipartite graph from “KDD”
and “ICML”, conventional recommendation algorithms will recom-
mend “Moiss Goldszmidt” for “Lise Getoor”, which makes sense
since both of them are interested in probabilistic reasoning and
graphical models. On the other hand, TANGENT will recommend
“Charu C. Aggarwal” instead. “Charu C. Aggarwal” is mainly in-
terested in performance, data mining and databases. So, compared
with “Moiss Goldszmidt”, “Charu C. Aggarwal” is a more surpris-
ing recommendation for “Lise Getoor”. Yet, the recommendation
by TANGENT is still close enough to the query author. For in-
stance, “Charu C. Aggarwal” is also interested in uncertainty in
databases which is closely related to probabilistic reasoning, - one
of the research interest of “Lise Getoor”.

Comparison with Relevance Score. Here, we use the authors who
publish in only one of the two conferences as the query authors.
And if the recommended author publishes in both conferences, we
say that it is a surprising recommendation. Figure 11 presents the
comparison between TANGENT and traditional recommendation
algorithms (Rel), where we always fix the length of the ranked list
to be 5 and the number below the corresponding bars is the “Sur-
prising Gain”. Again, TANGENT consistently gives more surpris-
ing results. For example, on the bipartite graph constructed from
“KDD” and “SIGMOD”, the “Surprising Gain” of TANGENT is

0.78; while on the bipartite graph constructed from “KDD” and
“SIGGRAPH”, TANGENT achieves 0.70 “Surprising Gain” etc.
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Figure 11: Comparison of TANGENT and conventional recom-
mendation algorithms on DBLP data set. Author-Paper bipar-
tite graph is constructed from “KDD” plus one more confer-
ence. The number below the corresponding bars is the “Sur-
prising Gain”. Higher is better.

5. CONCLUSIONS
We define a novel recommendation problem, namely, how to

make a recommendation that broadens the horizons of the user,
in the sense that it is close enough to his/her current interests to
be pleasant, but also towards a new area that the user has not dis-
covered yet. The motivation is how to respond to a user that says
“surprise me”: suppose that a user that consistently chooses, say,
slapstick “comedy” movies, may occasionally get bored with that
genre, and s/he would like to try something slightly different - what
should we recommend? As humans, we would probably recom-
mend, say, “horror comedy”, “cartoons”, or a “comedy-musical”.
Our goal is to automate the response to such “surprise me” query.
Our approach is to find items that are close to the user preferences,
while they also have high connectivity to other groups.

One major contribution of this work is exactly the problem defi-
nition. Additional contributions are the following:

1. Careful design decisions, so that the resulting method is (a)
parameter-free, (b) effective and (c) fast.

2. Extensive comparison of the numerous alternatives; while all
seem reasonable on paper, several of them suffer from subtle
issues.

3. Experiments on synthetic and real data sets, illustrating the
effectiveness of the proposed method. On the synthetic data
set, our proposed method indeed spots “bridge” nodes. On
the real data set, our method does not follow blindly the user
preferences (as conventional algorithms do), but instead it
makes recommendations that are reasonable and yet off the
beaten path.

Future work could focus on the implementation of TANGENT
on the emerging Hadoop/MapReduce architecture [7], for Tera- and
Peta-byte scale recommender systems.



Querying Author By TANGENT By Relevance Conferences
Soumen Chakrabarti Divesh Srivastava William W. Cohen KDD, SIGMOD

Andrew Y. Ng Chengxiang Zhai David M. Blei KDD, SIGIR
Jiawei Han Wei-Yin Ma Mohammed J. Zaki KDD, SIGIR
Xiaojin Zhu Naoki Abe Guy Lebanon KDD, ICML

Pedro Domingos Eamonn J. Keogh Christopher Meek KDD, ICML
Lise Getoor Charu C. Aggarwal Moiss Goldszmidt KDD, ICML
Flip Korn Philip S. Yu Michail Vlachos KDD, ICML

Christos Faloutsos Michael I. Jordan Ravi Kumar KDD, ICML
Michael I. Jordan Christos Faloutsos John D. Lafferty KDD, ICML

Robert E. Schapire Philip S. Yu Leslie P. Kaelbling KDD, ICML

Table 3: 1st recommended author by relevance score and by TANGENT score on DBLP data set. The co-authors of the query author
are blanked out. The last column shows the conferences that we use to construct the bipartite graphs.
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