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ABSTRACT
Low-rank approximations of the adjacency matrix of a graph are
essential in finding patterns (such as communities) and detecting
anomalies. Additionally, it is desirable to track the low-rank struc-
ture as the graph evolves over time, efficiently and within limited
storage. Real graphs typically have thousands or millions of nodes,
but are usually very sparse. However, standard decompositions
such as SVD do not preserve sparsity. This has led to the devel-
opment of methods such as CUR and CMD, which seek a non-
orthogonal basis by sampling the columns and/or rows of the sparse
matrix.

However, these approaches will typically produce overcomplete
bases, which wastes both space and time. In this paper we pro-
pose the family ofColibri methods to deal with these challenges.
Our version for static graphs,Colibri-S, iteratively finds a non-
redundant basis and we prove that it hasno loss of accuracy com-
pared to the best competitors (CUR and CMD), while achieving
significant savings in space and time: on real data,Colibri-S re-
quires much less space and isorders of magnitudefaster (in propor-
tion to the square of the number of non-redundant columns). Ad-
ditionally, we propose an efficient update algorithm for dynamic,
time-evolving graphs,Colibri-D. Our evaluation on a large, real
network traffic dataset shows thatColibri-D is over100 timesfaster
than the best published competitor (CMD).

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
Mining

General Terms
Algorithm, experimentation
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1. INTRODUCTION
Graphs appear in a wide range of settings, like computer net-

works, the world wide web, biological networks, social networks
and many more. How can we find patterns, e.g. communities and
anomalies, in a large sparse graph? How can we track such patterns
of interest if the graph is evolving over time?

A common representation of a graph is a matrix, such as an ad-
jacency matrix for a unipartite graph where every row/column cor-
responds to a node in the graph, and every non-zero entry is an
edge; an interaction matrix for a bipartite graph where rowsand
columns correspond to two different types of nodes and non-zero
entries denote edges between them.

Naturally, low-rank approximations on matrices provide power-
ful tools to answer the above questions. Formally, a rank-c ap-
proximation of matrixA is a matrixÃ whereÃ is of rankc and
‖Ã − A‖ is small. The low-rank approximation is usually pre-
sented in a factorized form e.g.,̃A = LMR whereL, M, andR

are of rank-c.
Depending on the properties of those matrices, many different

approximations have been proposed in the literature. For example,
in SVD [14],L andR are orthogonal matrices whose columns/rows
are singular vectors andM is a diagonal matrix whose diagonal
entries are singular values. Among all the possible rank-c approx-
imations, SVD gives the best approximation in terms of squared
error. However, the SVD is usually dense (i.e., most of the entries
are non-zero), even if the original matrix is sparse. Furthermore,
the singular vectors are abstract notions of best orthonormal basis,
which is not intuitive for the interpretation of data analysis results.

Recently, alternatives have started to appear, such as CUR [8]
and CMD [28], which use the actual columns and rows of the ma-
trix to form L andR. We call theseexample-based low-rank ap-
proximations. The benefit is that they provide an intuitive as well as
sparse representation, sinceL andR are directly sampled from the
original matrix. However, the approximation is often sub-optimal
compared to SVD and the matrixM is no longer diagonal, which
means a more complicated interaction.

Despite of the vast amount of literature on these topics, one
of the major research challenges lies in the efficiency: (1) for a
static graph, given the desired approximation accuracy, wewant to
compute the example-based low-rank approximation with theleast
computational and space cost; and (2) for a dynamic graph1, we

1In this paper, we use ‘dynamic graphs’ and ‘time-evolving graphs’
interchangeably.



want to monitor/track this approximation efficiently over time.
To deal with the above challenges, we propose the family of

Colibri methods. Adjacency matrices for large graphs may con-
tain near-duplicate columns. For example, all nodes that belong
to the same closed and tightly-connected community would have
the same sets of neighbors (namely, the community’s members).
CMD addresses the problem of duplicate elimination. However,
even without duplicates, it is still possible that the columns of L
are linearly dependent, leading to a redundant representation of the
approximating subspace, which wastes both time and space. The
main idea of our method for static graphs (Colibri-S) is to eliminate
linearly dependent columns while iterating over sampled columns
to construct the subspace used for low rank approximation. For-
mally, the approximatioñA = LMR whereL consists of judi-
ciously selected columns,M is an incrementally maintained core
matrix, andR is another small matrix.Colibri-S is provably better
or equal compared to the best competitors in the literature,in terms
of both speed and space cost, while it achieves the same approxi-
mation accuracy. In addition, we provide an analysis of the gains in
terms of the redundancy present in the data. Furthermore, our ex-
periments on real data show significant gains in practice. With the
same approximation accuracy,Colibri-S is up to 52× faster than
the best known competitor, while it only requires about 1/3 of the
space.

For dynamic graphs, we proposeColibri-D. Again, for the same
accuracy,Colibri-D is provably better or equal compared to the best
known methods (including our ownColibri-S) in terms of speed.
The main idea ofColibri-D is to leverage the “smoothness”, or
similarity between two consecutive time steps, to quickly update
the approximating subspace. Our experiments show that, with the
same accuracy,Colibri-D achieves up to 112× speedup over the
best published competitor, and is 5 times faster thanColibri-S ap-
plied from scratch for each time step.

The main contributions of the paper are summarized as follows:

• A family of novel, low rank approximation methods (Colibri-
S, Colibri-D) for static and dynamic graphs, respectively;

• Proofs, and complexity analysis, showing our methods are
provably equal or better compared to the best known methods
in the literature, for the same accuracy;

• Extensive experimental evaluation, showing that our meth-
ods are significantly faster, and nimbler than the top com-
petitors. See Figure 1 for an example of the time and space
savings of ourColibri-Sover CUR and CMD [28].

The rest of the paper is organized as follows: after reviewing
the related work in Section 2, we introduce notation and formally
define the problems in Section 3. We present and analyze the pro-
posedColibri-S andColibri-D in Section 4 and Section 5, respec-
tively. We provide experimental evaluation in Section 6. Finally,
we conclude in Section 7.

2. RELATED WORK
In this section, we briefly review the related work, which can

be categorized into two parts: graph mining and matrix low rank
approximation.

Graph Mining. There is a lot of research work on static graph
mining, including pattern and law mining [2, 6, 10, 4, 20], fre-
quent substructure discovery [30], influence propagation [18], com-
munity mining [11, 12, 13], detect anomaly nodes and edges[26],
proximity[22, 29] and so on.
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Figure 1: Colibri-S is significantly more efficient than both
CUR and CMD in terms of both speed and space. Note that all
these methods lead to the same approximation accuracy. Both
speed and space cost are normalized by the most expensive one
(i.e., CUR in both cases).

More recently, there is an increasing interest in mining time-
evolving graphs, such as densification laws and shrinking diame-
ters [19], community evolution [3], dynamic tensor analysis [27],
and dynamic communities [5, 25], etc.

Low Rank Approximation. Low rank approximation [14, 8,
1] plays a very important role in graph mining. For example, the
low rank approximation structure is often a good indicator to iden-
tify the community in the graph. A significant deviation fromsuch
structure often implies anomalies in the graph.

For static graphs, the most popular choices include SVD/PCA[14,
17] and random projection [16]. However, these methods often ig-
nore the sparseness of many real graphs and therefore often need
huge amount of space and processing time (See [28] for a detailed
evaluation). More recently, Drineas et al [8] proposed the CUR de-
composition, which partially deals with the sparsity of thegraphs.
CUR is proved to achieve an optimal approximation while maintain
the sparsity of the matrix. Sun et al [28] further improve CURby
removing the duplicate columns/row in the sampling stage. Their
method, named as CMD, is shown to produce the same approxi-
mation accuracy, but it often requires much less time and space.
Our method (Colibri-S) further improves the efficiency in speed
and space by leveraging the linear correlation among different sam-
pled columns. As a result, our method saves the computational time
and space cost, while it outputs exactly the same low rank approx-
imation as CUR/CMD.

The worst-case computational complexity of CUR, CMD and
Colibri is linear to the size of the matrix. A more accurate CUR
approximation has been proposed in [9], but it requires SVD op-
eration on the whole matrix as a preprocessing step which is often
too expensive for many large scale applications.

For dynamic graphs, a lot of SVD based techniques have been
proposed, such as multiple time series mining [15, 23], dynamic
tensor analysis [27], incremental spectral clustering [21] etc. As
for the static graphs, these methods might suffer from the loss-of-
sparsity issue for large sparse graphs despite their success in the
general cases. Sun et al [28] deal with this issue by applyingtheir
CMD method independently for each time step. However, how to
make use of the smoothness between two consecutive time steps to
do even more efficient computation is not exploited in [28]. This
is exactly the unique feature of ourColibri-D, - it leverages such
smoothness to do fast update while maintaining the sparseness of
the resulting low rank approximation.



Table 1: Symbols
Symbol Definition and Description

A,B, . . . matrices (bold upper case)
A(i, j) the element at theith row andjth column of matrixA
A(i, :) theith row of matrixA

A(:, j) thejth column of matrixA
A′ transpose of matrixA
~a,~b, . . . column vectors
I,J , . . . sets (calligraphic)
A(t) n× l time-aggregate interaction matrix at timet

~a
(t)
j thejth column ofA(t), i.e.,~a(t)

j = A(t)(:, j)
I indices for columns sampled:I = {i1, ..., ic}
n, l number of for type 1 and type 2 objects, respectively
c sample size. i.e. the number of columns sampled
C

(t)
0 n× c initial sampling matrix, consisting ofc columns

from A(t). i.e.,C(t)
0 = A(t)(:, I)

m
(t)
0 number of edges inC(t)

0 at timet

3. PROBLEM DEFINITIONS
Table 3 lists the main symbols we use throughout the paper. In

this paper, we consider the most general case of bipartite graphs.
Uni-partite graph can be viewed as a special case. We represent
a general bipartite graph by its adjacency matrix2. Following the
standard notation, we use capital letters for matrices (e.g. A),
arrows for vectors (e.g.~aj), and calligraphic fonts for sets (e.g.
I). We denote the transpose with a prime (i.e.,A′ is the trans-
pose ofA), and we use parenthesized superscripts to denote time
(e.g.,A(t) is the time-aggregate adjacency matrix at timet). When
we refer to a static graph or, when time is clear from the con-
text, we omit the superscript(t). We use subscripts to denote
the size of matrices/vectors (e.g.An×l means a matrix of size
n × l). Also, we represent the elements in a matrix using a con-
vention similar to Matlab, e.g.,A(i, j) is the element at theith

row andjth column of the matrixA, andA(:, j) is the jth col-
umn of A, etc. With this notation, we can define matrixC0 as
C0 = A(:, I) = [A(:, i1), ..., A(:, ic)]. In other words,C0 is
the sub-matrix ofA by stacking all its columns indexed by the set
I.Without loss of generality, we assume that the numbers of type
1 and type 2 objects (corresponding to rows and columns in the
adjacency matrix) are fixed, i.e.,n and l are constant for all time
steps; if not, we can reserve rows/columns with zero elements as
necessary.

At each time step, we observe a set of new edges, with associ-
ated edge weights. While there are multiple choices to update the
adjacency matrix (e.g. sliding window, exponential forgetting etc),
we use global aggregation for simplicity: once an edge appears at
some time stept, the corresponding entry of the adjacency matrix
is updated and the edge is never deleted or modified. This assump-
tion facilitates presentation, but our methods can naturally apply to
other update schemes.

With the above notations and assumptions, our problems can be
formally defined as follows:

PROBLEM 1. (Static Case.)Low rank approximation for static
sparse graphs

Given: A large, static sparse graphAn×l, and sample sizec;
Find: Its low-rank approximation structure efficiently. That is,find

three matricesLn×c̃, Mc̃×c̃, and Rc̃×l such thatAn×l ≈
Ln×c̃Mc̃×c̃Rc̃×l, wherec̃ ≤ c.

2In practice, we store these matrices using an adjacency listrepre-
sentation, since real graphs are often very sparse.

PROBLEM 2. (Dynamic Case.) Low rank approximation for
dynamic sparse graphs

Given: A large, dynamic sparse graphA(t)
n×l, for t = 1, 2, . . .,

and the sample sizec;

Track: Its low-rank approximation structure over time efficiently.
That is, to find three matricesL(t),M(t), andR(t) for each
time stept such thatA(t)

n×l ≈ L
(t)

n×c̃(t)
M

(t)

c̃(t)×c̃(t)
R

(t)

c̃(t)×l
,

wherec̃(t) ≤ c.

4. Colibri-S FOR STATIC GRAPHS
In this section, we address problem 1 and introduce ourColibri-

S for static graphs. After some necessary background in subsec-
tion 4.1, we present the algorithm in subsection 4.2, followed by
the proofs and complexity analysis in subsection 4.3.

4.1 Preliminaries
Here, we want to decompose the adjacency matrixAn×l of a

static graph into three matrices:Ln×c̃, Mc̃×c̃, andRc̃×l. The goal
is to achieve a good balance between efficiency and approxima-
tion quality. For the quality, we want̃A = LMR to approximate
the original adjacency matrixA as well as possible. Throughout
the paper, we use the Frobenius norm ofÃ − A to measure the
approximation error. As for efficiency, we want to (1) keep the ma-
tricesL andR small (̃c ≪ l) and sparse, to save space; and (2)
compute the decomposition using minimal running time.

The best known methods to achieve such balance are CUR [8]
and its improved version, CMD [28]. The key idea behind CUR
and CMD is to sample some columns ofA with replacement, bi-
ased towards those with larger norms3; and then to use the projec-
tion of the original adjacency matrixA into the subspace spanned
by these sampled columns as the low rank approximation of the
matrix A. As shown in [8], such procedures provably achieve an
optimal approximation. Additionally, the matricesL and R by
CUR/CMD are usually very sparse, thus the CUR/CMD decom-
position is shown to be much faster than standard SVD.

4.2 Algorithm
Our algorithm shares the same high-level principle as CUR and

CMD. That is, we want to sample some columns of the matrixA

and then projectA into the subspace spanned by these columns.
As we show later, our method achieves exactly the same approxi-
mation accuracy as CUR/CMD, but it is equal or better compared
to CUR/CMD in terms of both space and time.

If we concatenate all the sampled columns into a matrixC0, we
can useC0(C

′
0C0)

†C′
0A as the approximation of the original ad-

jacency matrixA, where(C′
0C0)

† is the Moore-Penrose pseudo-
inverse of the square matrixC′

0C0.
However, the sampled columns inC0 may contain duplicates (or

near duplicates)—for example, all nodes that belong to the same
closed and tightly-connected community would have the samesets
of neighbors (namely, the community’s members). CMD essen-
tially performs duplicate elimination. However, more generally,
the columns ofC0 may be unequal but linear dependences may
still be present. In other words, the columns ofC0 form a redun-
dant or overcompletebasis. This is clearly not efficient in terms
of space. Moreover, if we keep these redundant columns, we have

3In [8, 28], the authors also suggest simultaneously sampling
columns and rows. Our method can be naturally generalized to
handle this case. For simplicity, we focus on sampling columns
only.



(a) SVD (b) CUR (c) CMD (d)Colibri-S

Figure 2: A pictorial comparison for different methods. To construct the same subspace, SVD will use all the data points (dark ones);
CUR will use a subset of data point with possibly a lot duplications (the number besides the arrow is the number of duplicate copies);
CMD will remove the duplicate the columns in CUR; and our Colibri-S will further remove all linearly dependent columns which
is most efficient in both speed and space. For illustrative purpose, we set the approximation accuracy of each method to bealways
100% in this example.

to estimate the pseudo-inverse of a larger matrix, which adversely
affects running time as well.

The heart ofColibri-S is to iteratively construct the desired sub-
space, eliminate these redundant columns in the process. Algo-
rithm 1 shows the full pseudocode.

Algorithm 1 Colibri-S for Static Graphs
Input: The adjacency matrixAn×l, toleranceǫ, and the sample

sizec
Output: Three matricesLn×c̃, Mc̃×c̃, andRc̃×l, wherec̃ ≤ c.
1: Compute column distribution forx = 1, ..., l: P (x) =

P

i
A(i, x)2/

P

i,j
A(i, j)2;

2: Samplec columns fromA based onP (x). LetI = {i1, ..., ic}
be the indices of these columns.

3: InitializeL = [A(:, i1)]; M = 1/(A(:, i1)
′ ·A(:, i1))

4: for k = 2 : c do
5: Compute the residual:~res = A(:, ik)− LML′A(:, ik)
6: if ‖ ~res‖ ≤ ε‖A(:, ik)‖ then
7: Continue;
8: else
9: Compute:δ = ‖ ~res‖2; and~y = ML′A(:, ik)

10: Update the core matrix M: M ←
„

M + ~y′~y/δ −~y/δ
−~y′/δ 1/δ

«

11: ExpandL: L← [L, A(:, ik)]
12: end if
13: end for
14: ComputeR = L′A.

There are three stages in algorithm 1. First (steps 1-2), we sam-
ple c columns of matrixA with replacement, biased towards those
with higher norms, exactly as CUR does (first step in Figure. 3).
Then, we try to select linearly independent columns from theini-
tially sampled columns and build theM matrix (referred to as the
“core matrix”): after an initialization step (step 3), we iteratively
test if a new columnA(:, ik) is linearly dependent on the current
columns ofL (steps 5-7). If so, we skip the columnA(:, ik). Oth-
erwise, we appendA(:, ik) into L and update the core matrixM
(steps 9-11). Note that if the new columnA(:, ik) is linearly in-
dependent wrt the current columns inL (i.e., if ‖ ~res‖ > ε‖A(:
, ik)‖), we can use the residual~res computed in step 5 to update
the core matrixM in step 9. Conversely, we use the core matrix
M to estimate the residual and test linear dependence of the new

column (step 5). In this way, we simultaneously prune the redun-
dant columns and update the core matrix. The last step in Figure. 3
shows the finalL obtained after eliminating the redundant columns
from C0. Finally, we define theR matrix to beL′A.4

4.3 Proofs and Analysis
Here we provide the proofs and the performance analysis ofColibri-

S. We also make a brief comparison with the state-of-art techniques,
such as CUR/CMD.

4.3.1 Proof of Correctness forColibri-S

We have the following theorem for the correctness of Alg. 1:

THEOREM 1. Correctness ofColibri-S. Let the matrixC0 con-
tain the initial sampled columns fromA(i.e. C0 = A(:, I)). With
toleranceǫ = 0, the following facts hold for the matricesL andM

in Alg. 1:

P1: the columns ofL are linearly independent;
P2: L shares the same column space asC0;
P3: the core matrixM satisfiesM = (L′L)−1.

PROOF. First, we will prove ‘P3’ in Theorem 1 by induction.
The base case (step 3 of Alg. 1) is obviously true.

For the induction step of ‘P3’, let us suppose that (1)M =
(L′L)−1 holds up to thekth

1 (2 ≤ k1 ≤ c) iteration; and (2)L
will be expanded next in thekth

2 iteration (k1 < k2 ≤ c).
Let L̃ = (L A(:, ik2)). We have

L̃
′
L̃ =

„

L′

A(:, ik2)
′

«

×
`

L A(:, ik2)
´

=

„

L′L L′A(:, ik2)
A(:, ik2)

′L A(:, ik2)′A(:, ik2)

«

(1)

DefineM̃ =

„

M + ~y′~y/δ −~y/δ
−~y′/δ 1/δ

«

, where~y andδ are defined

in Alg. 1.
4Note that whileL is sparse since it consists of a subset of the
original columns fromA, the matrixR is the multiplication of two
sparse matrices and is not necessarily sparse. In order to further
save space, we can use a randomized algorithm [7] to approximate
R. This can be naturally incorporated into Alg. 1. However, itis an
orthogonal to what we are proposing in this paper. For simplicity,
we will useR = L′A throughout this paper.



SinceM = (L′L)−1 by inductive hypothesis, it can be verified
that ~res is the residual if we project the columnA(:, ik2) into the
column space ofL. Based on the orthogonality property of the
projection, we have

δ = ‖ ~res‖2

= ~res′( ~res + LML
′
A(:, ik2))

= ~res′A(:, ik) (2)

Now, applying the Sherman-Morrison lemma [24] to the matrix
L̃′L̃ in the form of eq. 1, based on eq. 2, we can verify thatM̃ =
(L̃′L̃)−1 holds, which completes the proof of ‘P3’.

Next, let us prove ‘P1’ in Theorem 1 by induction. Again, the
base case for ‘P1’ is obviously true (step 3 of Alg. 1).

For the induction step for ‘P1’, let us suppose that (1) all the
columns inLn×ĉ are linearly independent up to thekth

1 iteration
(2 ≤ ĉ ≤ k1 ≤ c); and (2)L will be expanded next in thekth

2

iteration (k1 < k2 ≤ c). We only need to prove thatA(:, ik2)) is
linear independent wrt the columns in the currentL matrix.

By ‘P3’, the ~res computed in step 5 is the exactly the residual if
we project the columnA(:, ik2)) into the column space spanned by
the currentL matrix. Since we decide to expandL by A(:, ik2)),
with toleranceǫ = 0, it must be true that the residual satisfies
res > 0 (step 8). In other words, the columnA(:, ik2)) is not
in the column space ofL.

Now, suppose thatA(:, ik2)) is linearly dependent to the columns
in the currentL matrix. The columnA(:, ik2)) must lie in the col-
umn space ofL. This is contra-positive, which completes the proof
of ‘P1’.

Finally, from ‘P1’, for each column~u ∈ {C0−L} (steps 5-7 of
Alg. 1), there must exist a vector~β = (β1, ..., βc̃)

′ = ML′~u, such
that~u = L~β holds. In other words,~u must be in the column space
of L. Therefore, removing the column~u from L will not change
the column space ofL. This completes the proof of ‘P2’. 2

Notice thatColibri-S iteratively finds the linearly independent
set of columns (i.e., the matrixL). For the same initially sampled
columns (C0), it might lead to a differentL matrix if we use a
different order in the index setI. However, based on Theorem 1,
this operation will not affect the subspace spanned by the columns
of the matrixL since it is always the same as the subspace spanned
by the columns of the matrixC0. Therefore, it will not affect the
approximation accuracy for the original matrixA.

4.3.2 Efficiency ofColibri-S

We have the following lemma for the speed of Alg. 1.

LEMMA 1. Efficiency of Colibri-S. The computational com-
plexity to outputM andL in Alg. 1 is bounded byO(cc̃2 + cm̃),
wherec̃, m̃ are the number of columns and edges in the matrixL,
respectively; andc is the number of columns inC0.

PROOF. Omitted for brevity. 2

4.3.3 Comparison with CUR/CMD
Next we compareColibri-S against the state-of-art techniques,

i.e. CUR [8] and CMD [28]. We compare with respect to accuracy,
time and space cost.

LEMMA 2 (ACCURACY). Using the same initial sampled
columnsC0, Alg. 1 has exactly the same approximation accuracy
as CUR [8] and CMD [28].

1
i3 ic i1i2 i3 i4 i5 ici4

             {4, 9, ... }K    =            (t)
(t)             {3, 7, 10, ...,   −2}I     =                         l

A(t) C(t) L (t)
0

109743l7654321 l−29 3 710 l−2

i

8
2i

Figure 3: Illustration of notation and process for Colibri-
S. Shaded columns are part of initial sample, dark shaded
columns are linearly independent among those.

PROOF. DefineÃ asÃ = LMR. By Theorem 1, the matrix̃A
satisfiesÃ = L(L′L)−1L′A. In other words,̃A is the projection
of the matrixA into the column space ofL. On the other hand, by
Theorem 1, the matrixL has the same column space asC0, i.e.,
Ã = C0(C

′
0C0)

†C′
0A, which is exactly how CUR/CMD [8, 28]

tries to approximate the original matrixA. 2

LEMMA 3 (SPACE). Using the same initial sampled columns
C0, Alg. 1 is better than or equal to CUR in [8] and CMD in [28]
in terms of space.

PROOF. Notice thatL is always a subset ofC0. On the other
hand, if there exist duplicate columns inC0, they will appear only
once inL. 2

LEMMA 4 (TIME). Using the same initial sampled columns
C0, Alg. 1 is faster than, or equal to CUR ([8]) and CMD ([28]).

PROOF. By Lemma 1, the computational complexity of Alg. 1
at the worst case is the same as the original CUR method in [8]
(O(cm) for multiplying C′

0 andC0 together; andO(c3) for the
Moore-Penrose pseudo-inverse ofC′

0C0. Also notice that̃c ≤ c
andm̃ ≤ m). On the other hand, if there exist duplicate columns
in C0, we can always remove them before step 3 in Alg.1 and then
CMD in [28] will degenerate to CUR [8]. 2

In particular, the complexity is proportional to the squareof the
“true” dimensionalityc̃ of the approximating subspace. Since, as
we shall see in the experimental evaluation, in real datasets c̃ is
significantly smaller thanc, this translates to substantial savings in
computation time as well as space.

INTUITION. The intuition behind the above proofs and sav-
ings is shown in Figure 2, which gives a pictorial comparisonof
ourColibri-Swith SVD/CUR/CMD. Figure 2 shows that: (1) SVD
(Figure 2(a)) uses all data points (dark ones) and the resulting L

matrix is dense. (2) CUR (Figure 2(b)) uses sampled columns (dark
ones) but there may be many duplicate columns (the number next
to each arrow stands for the multiplicity) The resultingL matrix of
CUR is sparse but it has totally 16 columns. (3) CMD (Figure 2(c))
removes the duplicate columns in CUR and the resultingL (with
6 columns) is more compact. (4) OurColibri-S (Figure 2(d)) fur-
ther removes all the linearly dependent columns and the resulting
L only contains 2 sparse columns. Therefore, while all these four
methods leads to the same subspace,Colibri-S is most efficient in
both time and space.



5. Colibri-D FOR DYNAMIC GRAPHS
In this section, we deal with problem 2 and proposeColibri-D

for dynamic, time-evolving graphs. Our goal is to find the lowrank
approximation structure of the adjacency matrix at each time stept
efficiently. As for static graphs, we first give the algorithmin sub-
section 5.1 and then provide theoretical justification and analysis in
subsection 5.2.

5.1 Algorithm
Conceptually, we could call Alg. 1 to output the low rank ap-

proximation for each time stept. In this way, we will have to
compute the core matrixM, which is the most expensive part in
Alg. 1, for each time step from the scratch. On the other hand,if
the graph changes “smoothly” between two consecutive time steps
(i.e., the number of affected edges is reasonably small) then, intu-
itively, we do not expect its low rank approximation structure to
change dramatically. This is exactly the heart of ourColibri-D.
We want to leverage the core matrixM(t) to quickly get the core
matrix M(t+1) in the next time step, given that the graph changes
“smoothly” from time stept to (t + 1).

For simplicity, we assume that the indices of the initial sampled
columnsC

(t)
0 are fixed. That is, we will fix the index setI =

{i1, ..., ic} over time, and we will always use the projection of the
adjacency matrixA(t) in the columns space ofC(t)

0 = A(t)(:, I)

as the low rank approximation ofA(t) for each time step5. Note
that even if we use the same initial column indices, the content of
matrix C

(t)
0 keeps changing over time and so does the subspace it

spans. Our goal is to efficiently update the non-redundant basis for
the subspace spanned by the columns ofC

(t)
0 over time. Note that

in Figure. 4, the column indices ofC(t+1)
0 are exactly the same as

those forC(t)
0 in Figure. 3. However, in this example, the contents

of columns 3 andl − 2 have changed.
The basic idea of our algorithm for dynamic graphs is as follows:

once the adjacency matrixA(t+1) at time step(t + 1) is updated,
we will update the matrixC(t+1)

0 . Then, we will try to identify
those linearly independent columnsL(t+1) within C

(t+1)
0 as well

as the core matrixM(t+1). To reduce the computational cost, we
will leverage the core matrix from the current time stepM(t) to
updateL(t+1) as well asM(t+1), instead of computing them from
the scratch. Finally, we will update theR matrix asR(t+1) =

L(t+1)′A(t+1).
Next, we will describe how to updateL(t+1) andM(t+1) at time

stept + 1. At time stept, we might find some redundant columns
in C

(t)
0 which are linearly dependent wrt the remaining columns in

C
(t)
0 . In Figure. 3, these were columns 4 and 9. We split the indices

setI into two disjoint subsets:J (t) andK(t), as shown in Fig-
ure. 3. We require thatI = J (t)∪K(t), andL(t) = A(t)(:,J (t)).
In other words,J (t) corresponds to those columns inC

(t)
0 that are

actually used to construct the subspace; andK(t) corresponds to
those redundant columns inC(t)

0 . Notice that even though we fix
the index setI over time, the subsetsJ (t) andK(t) change over
time. Updating the matrixL(t) is equivalent to updating the subset
J (t). To simplify the description of the algorithm, we further parti-
tionJ (t) into two disjoint subsetsJ (t)

a andJ (t)
b , such thatJ (t) =

J
(t)
a ∪ J

(t)
b . We require thatA(t)(:,J

(t)
a ) = A(t+1)(:,J

(t)
a );

andA(t)(:,J
(t)
b ) 6= A(t+1)(:,J

(t)
b ). In other words,J (t)

a corre-
sponds to those unchanged columns inL from t to (t + 1), while

5How to update the indices setI over time is beyond the scope of
this paper.

J
(t)
b corresponds to those changed columns fromt to (t+1). These

sets are shown in Figure. 4 on the left: notice that their union isI(t)

from Figure. 3.
With the above notations, the complete pseudocode to update

the low rank approximation from time stept to (t + 1) is given in
Alg. 2.

Algorithm 2 Colibri-D for Dynamic Graphs

Input: The adjacency matricesA(t) andA(t+1), the indices set
I = J (t)∪K(t), toleranceǫ, and the core matrixM(t) at time
stept

Output: Three matricesL(t+1), M(t+1), and R(t+1); and up-
dated indices partitionI = J (t+1) ∪ K(t+1).

1: SetJ (t)
a andJ (t)

b based onA(t) andA(t+1);

2: InitializeL(t+1) = A(:,J
(t)
a ); K = J

(t)
b ∪ K(t)

3: if | J (t)
a |≤| J

(t)
b | then

4: Compute:M(t+1) = (L(t+1)′L(t+1))−1

5: else
6: Compute:Λ = M(t)(J

(t)
b ,J

(t)
b )−1

7: Compute:∆ = M(t)(J
(t)
a ,J

(t)
b )ΛM(t)(J

(t)
b ,J

(t)
a )

8: Compute:M(t+1) = M(t)(J
(t)
a ,J

(t)
a )−∆

9: end if
10: for each indexk in K do
11: Compute the residual: ~res = A(t+1)(:, k) −

L(t+1)M(t+1)L(t+1)′A(t+1)(:, k)

12: if ‖ ~res‖ ≤ ε‖A(t+1)(:, k)‖ then
13: Continue;
14: else
15: Compute: δ = ‖ ~res‖2; and ~y =

M(t+1)L(t+1)′A(t+1)(:, k)

16: Update the core matrix M(t+1): M(t+1)

←

„

M(t+1) + ~y′~y/δ −~y/δ
−~y′/δ 1/δ

«

17: ExpandL(t+1): L(t+1) ← [L(t+1), A(t+1)(:, k)]
18: end if
19: end for
20: ComputeR(t+1) = L(t+1)′A(t+1);
21: UpdateJ (t+1) andK(t+1).

Comparing Alg. 2 with its static version (Alg. 1), the main dif-
ferences are (1) we do not need to test the linear dependence and
build our core matrix from the scratch if the subsetJa is not empty
(steps 3–9), since the columns inJa are guaranteed to be linearly
independent; (2) furthermore, if the change inI is relatively small
(i.e. | J (t)

a |>| J
(t)
b |), we do not need to initialize our core matrix

M(t+1) from the scratch. Instead, we can leverage the information
in M(t) to do fast initialization (steps 6–8). These strategies, as
will be shown in the next subsection, will dramatically reduce the
computational time, while the whole algorithm will give exactly the
same low rank approximation as if we had called Alg. 1 for time
step(t + 1). After we initialize the core matrixM(t+1) (after step
9), we will recursively test the linear dependence for each column
in K(t) andJ (t)

b and possibly incorporate them to expand the core
matrix M(t+1), which is very similar to what we do for the static
graphs in Alg. 1.

In our running example of Figure. 3 and 4, since columns 7 and
10 were linearly independent at timet and they have remained un-
changed, we can safely initializeL(t+1) to include these. However,
since columns 3 andl− 2 have changed, we need to re-test for lin-
ear independence. In this example, it turns out that 3 is still linearly



independent, whereasl − 2 is not any more. Additionally, some
of the columns that were previously excluded as linearly dependent
(e.g., 4 and 9) may now have become linearly independent, so we
need to re-test those as well. In this example, it turns out that they
are still redundant.

5.2 Proofs and Analysis

5.2.1 Correctness ofColibri-D

We have the following lemma for the correctness of Alg. 2:

LEMMA 5. Correctness ofColibri-D. Let the matrixC0 con-
tain the initial sampled columns fromA(t+1) (i.e. C0 = A(t+1)(:
, I)). With toleranceǫ = 0, the following facts hold for the matri-
cesL(t+1) andM(t+1) in Alg. 2:

P1: the columns ofL(t+1) are linearly independent;
P2: L(t+1) shares the same column space asC0;
P3: the core matrixM(t+1) satisfiesM(t+1) = (L(t+1)′L(t+1))−1.

PROOF. : Similar as for Theorem 1. Omitted for brevity 2

By Lemma 5 and Theorem 1, the three matricesL(t+1), M(t+1),
andR(t+1) produced by Alg. 2 are exactly the same as if we had
called Alg. 1 for time step(t + 1) from the scratch. Therefore, we
have the following corollary:

COROLLARY 2. Using the same index setI of initial sampled
columns for all time steps, Alg. 2 has exactly the same approxima-
tion accuracy as Alg. 1, CUR [8] and CMD [28].

5.2.2 Efficiency ofColibri-D

Since the three matricesL(t+1), M(t+1), andR(t+1) by Alg. 2
are exactly the same as if we had called Alg. 1 for time step(t+1),
we have the following corollary for the space cost of Alg. 2:

COROLLARY 3. Using a fixed indices setI of initial sampled
columns, the space cost of Alg. 2 is the same as Alg. 1 and it is
equal or better compared to CUR [8] and CMD [28].

We have the following lemma about the speed of Alg. 2.

LEMMA 6. Efficiency of Colibri-D. Let r1 =| J
(t)
a |, r2 =|

J
(t)
b | andr3 =| K(t) |. The computational complexity of Alg. 2 is

bounded byO(max(r1, r2, r3)
3+(r2+r3)m̃

(t+1)), wherem̃(t+1)

is number of edges in the matrixL(t+1).

PROOF. : Omitted for brevity. 2

In terms of speed, the difference between Alg. 2 and Alg. 1 lies
in the different way of initializing the matrixM(t+1) (steps 3–
9 of Alg. 2). More specifically, ifr1 ≤ r2, the computational
cost for initializing M(t+1) is asymptotically the same for both
algorithms—both are O(r3

1). On the other hand, ifr1 > r2, we
only needO(r2

1r2) for Alg. 2 while Alg. 1 still requiresO(r3
1).

Based on this fact as well as Lemma 1, we have the following corol-
lary.

COROLLARY 4. Using a fixed setI of initial sampled columns,
the running time of Alg. 2 is equal or better compared to Alg. 1,
CUR [8] and CMD [28].

To summarize, if we fix the index setI of initial sampled columns
for all time steps, the proposed Alg. 2 will produce the low rank ap-
proximation at each time stept with the same accuracy as CUR/CMD
and our own Alg. 1 for static graphs. For both speed and space cost,
it is always equal or better than CUR/CMD as well as our Alg. 1.
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K       =                   l

(t+1)                 {3, 7, 10, ... }I         =            

I   =                     {7, 10, ... }a I  =             l         {3, ...,   −2}b

A(t+1)

l7654321

C(t+1)
0

8 9 3 4 7 9 10 l−2

L (t+1)

3 7 10

(t+1)                 {4, 9, ...,   −2}

Figure 4: Illustration of notation and process for Colibri-D—
compare with Figure. 3. Shaded and dark shaded columns as in
Figure. 3, shaded and filled columns are those from the previous
timestep that contain at least one new entry.

6. EXPERIMENTAL EVALUATIONS
Here we give experimental results for the proposedColibri. Our

evaluation mainly focuses on (1) the reconstruction accuracy, (2)
the running time and (3) the space cost. After a brief introduction
of the datasets and the evaluation criteria, we give the results for
Colibri-S in subsection 6.2, and forColibri-D in subsection 6.3.

6.1 Experimental Setup
We use a network traffic dataset from the backbone router of a

class-B university network. We create a traffic matrix for every
hour, with the rows and columns corresponding to the IP sources
and IP destinations. We turn the matrix into a binary matrix,that
is, a ’1’ entry means that there is some TCP flow from the corre-
sponding IP source to the destination within that hour. In short, we
ignore the volume of such traffic. Overall there are 21,837 different
source/destination pairs, 1,222 consecutive hours and 22.8K edges
per hour, on average.

Let Ã = LMR. We use the standard reconstruction accuracy to
measure the approximation quality (exactly as in [28]), to estimate
theSSE, the sum-squared-error, with sample sizec=1,000 for both
rows and columns:

Accu = 1− SSE

= 1−
X

i,j

(A(i, j)− Ã(i, j))2/(
X

i,j

A(i, j)2) (3)

For a given low rank approximation{Ln×c̃, Mc̃×c̃, Rc̃×l}, the
matricesL andR are usually sparse, and thus we store them as
adjacency lists. In contrast, the matrixM is usually dense, and we
store it as a full matrix. Thus, the space cost is:

SPCost = NNZ(L) + NNZ(R) + c̃2 (4)

whereNNZ(.) is the number of non-zero entries in the matrix.
For the computational cost, we report the wall-clock time. All

the experiments ran on the same machine with four 2.4GHz AMD
CPUs and 48GB memory, running Linux (2.6 kernel). For each
experiment, we run it 10 times and report the average.

Notice that for both Theorem 1 and Lemma 5, we require the
toleranceε = 0. In our experiments, we find by changingε to be
a small positive number (e.g.,ε = 10−6), it does not influence the
approximation accuracy (up to 4 digits precision), while itmakes
the proposed algorithms more numerically stable6. Therefore, for

6this is an implementation detail. We omit the detailed discussion
due to the space limit. How to choose an optimalε is out-of the
scope of this paper.



all the experiments we reported in this paper, we useε = 10−6 for
bothColibri-SandColibri-D.

6.2 Performance ofColibri-S

Here, we evaluate the performance of ourColibri-S for static
graphs, in terms of speed and space.

We compareColibri-Sagainst the best published techniques, and
specifically against CUR [8] and CMD [28]. For brevity and clar-
ity, we omit the comparison against SVD, because CMD [28] was
reported to be significantly faster and nimbler than SVD, with sav-
ings up to 100 times.

We aggregate the traffic matrices within the first 100 hours and
then ignore the edge weights as the target matrixA. Totally, there
are 158,805 edges in this graph. We vary the sample sizec from
1,000 to 8,000, and study how the accuracy changes with the run-
ning time and space cost for all three methods.

Figure 5 plots the mean running time vs. the approximation ac-
curacy. Notice that the y-axes is in the logarithm scale.Colibri-S
is significantly faster than both CUR and CMD, by 28x∼353x and
12x∼52x respectively.
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Figure 5: Running time vs. accuracy. OurColibri-S (in green
squares) is significantly faster than both CUR and CMD, for
the same approximation accuracy. Note that the y-axis is in
logarithmic scale.

With respect to space cost, CUR is always the most expensive
among the three methods and therefore we use it as the baseline.
Figure 6 plots the relative space cost of CMD andColibri-S, vs. the
approximation accuracy. Again,Colibri-S outperforms both CUR
and CMD. Overall,Colibri-S only requires 7.4%∼28.6% space
cost of CUR, and 28.6%∼59.1% space cost of CMD for the same
approximation accuracy.

The reader may be wondering what causes all these savings. The
answer is the reduction in columns kept: inColibri-Swe only keep
those linearly independent columns, and discard all the other of
thec columns that CUR chooses (and keeps). This idea eventually
leads to significant savings. For example, with a sample sizeof c =
8, 000 (the number of columns that CUR will keep), CMD discards
duplicates, keeping on the average only3, 220 unique columns, and
Colibri-S further discards the linearly dependent ones, eventually
keeping only1, 101. And, thanks to our Theorem 1, the columns
thatColibri-S discards have no effect on the desired subspace, and
neither on the approximation quality.

6.3 Performance ofColibri-D

We use the same aggregated traffic matrix as in subsection 6.2;
and initialize the algorithm by a sample sizec = 2, 000 (which
gives an average accuacy of 93.8%). Then, we randomly perturb
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Figure 6: Relative space cost ofColibri-S and CMD, ver-
sus accuracy. Space costs are normalized by the space of
CUR. Colibri-S consistently requires a fraction of the space by
CUR/CMD, for same accuracy.

r out of these 2,000 sampled columns and update the low rank ap-
proximation of the updated adjacency matrix. SinceColibri-D has
the same space cost asColibri-S, we only present the results on the
running time.

We compare ourColibri-D against both CMD and against our
own Colibri-S We apply CMD andColibri-S for each (static) in-
stance of the graph and report the wall-clock times. For visual clar-
ity, we omit the comparison against CUR, since it is consistently
slower than both CMD andColibri-S on static graphs, as shown in
subsection 6.2.

Figure 7 plots the wall-clock time of CMD,Colibri-SandColibri-
D, versusr (the number of updated columns).Colibri-D is 2.5x∼112x
faster than CMD. Even compared against our ownColibri-S Colibri-
D is still about 2x∼5x faster. The computational savings ofColibri-
D overColibri-Scome from the Sherman-Morrison Lemma: if the
graph evolves smoothly,Colibri-D leverages the low rank approxi-
mation of the previous time step, and does a fast (but exact) update.
We repeat that all three methods haveidenticalapproximation ac-
curacy, if they use the same initial sampled columns.
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Figure 7: Performance for dynamic graphs: Speed versus
number of updated columns. Colibri-D (in green squares) is
2.5x∼112x faster than the best published competitor (CMD);
and also faster than our ownColibri-S, applied on each individ-
ual graph instance.



7. CONCLUSION
In this paper, we propose the family ofColibri methods to do fast

mining on large static and dynamic graphs. The main contributions
of the paper are:

• A family of novel, low rank approximation methods (Colibri-
S, Colibri-D) for static and dynamic graphs, respectively:
Colibri-Ssaves space and time by eliminating linearly depen-
dent columns;Colibri-D builds onColibri-S, and performs
incremental updates efficiently, by exploiting the “smooth-
ness” between two consecutive time steps.
• Proofs and complexity analysis, showing our methods are

provably equal or better compared to the best known meth-
ods in the literature, while maintaining exactly the same ac-
curacy;
• Extensive experimental evaluation, showing that our meth-

ods are significantly faster and nimbler than the state of the
art (up to 112 times faster). See Figure 1 for comparisons
against CUR [8] and CMD [28].
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