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ABSTRACT

Low-rank approximations of the adjacency matrix of a graph a
essential in finding patterns (such as communities) ancttilege
anomalies. Additionally, it is desirable to track the loank struc-
ture as the graph evolves over time, efficiently and withinited
storage. Real graphs typically have thousands or milliém®des,

but are usually very sparse. However, standard decompositi
such as SVD do not preserve sparsity. This has led to the-devel
opment of methods such as CUR and CMD, which seek a non-
orthogonal basis by sampling the columns and/or rows offihese
matrix.

However, these approaches will typically produce overdetep
bases, which wastes both space and time. In this paper we pro
pose the family ofColibri methods to deal with these challenges.
Our version for static graphsColibri-S, iteratively finds a non-
redundant basis and we prove that it Inadoss of accuracy com-
pared to the best competitors (CUR and CMD), while achieving
significant savings in space and time: on real d&aljbri-S re-
quires much less space anaigers of magnitudéaster (in propor-
tion to the square of the number of non-redundant columnsly. A
ditionally, we propose an efficient update algorithm for alynic,
time-evolving graphsColibri-D. Our evaluation on a large, real
network traffic dataset shows thaolibri-D is over100 timedaster
than the best published competitor (CMD).

Categories and Subject Descriptors

H.2.8 [Database Managemerjt Database Applications — Data
Mining
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1. INTRODUCTION

Graphs appear in a wide range of settings, like computer net-
works, the world wide web, biological networks, social netks

and many more. How can we find patterns, e.g. communities and
anomalies, in a large sparse graph? How can we track suammsatt

of interest if the graph is evolving over time?

A common representation of a graph is a matrix, such as an ad-
jacency matrix for a unipartite graph where every row/catuor-
responds to a node in the graph, and every non-zero entry is an
edge; an interaction matrix for a bipartite graph where rand
columns correspond to two different types of nodes and mwo-z
entries denote edges between them.

Naturally, low-rank approximations on matrices providevpo
ful tools to answer the above questions. Formally, a rarip-
proximation of matrixA is a matrixA where A is of rankc and
|[A — A| is small. The low-rank approximation is usually pre-
sented in a factorized form e.g&, = LMR whereL, M, andR
are of ranke.

Depending on the properties of those matrices, many diftere
approximations have been proposed in the literature. Fampie,
in SVD [14], L andR are orthogonal matrices whose columns/rows
are singular vectors aniI is a diagonal matrix whose diagonal
entries are singular values. Among all the possible raagprox-
imations, SVD gives the best approximation in terms of sedar
error. However, the SVD is usually dense (i.e., most of theen
are non-zero), even if the original matrix is sparse. Furtioee,
the singular vectors are abstract notions of best orthoalobasis,
which is not intuitive for the interpretation of data anasyesults.

Recently, alternatives have started to appear, such as GUR [
and CMD [28], which use the actual columns and rows of the ma-
trix to form L andR. We call theseexample-based low-rank ap-
proximations The benefit is that they provide an intuitive as well as
sparse representation, sifkc@andR are directly sampled from the
original matrix. However, the approximation is often syitimal
compared to SVD and the matrh is no longer diagonal, which
means a more complicated interaction.

Despite of the vast amount of literature on these topics, one
of the major research challenges lies in the efficiency: ¢t)af
static graph, given the desired approximation accuracyyam to
compute the example-based low-rank approximation witHehst
computational and space cost; and (2) for a dynamic draph

1In this paper, we use ‘dynamic graphs’ and ‘time-evolvingpirs’
interchangeably.



want to monitor/track this approximation efficiently ovane.

To deal with the above challenges, we propose the family of
Colibri methods. Adjacency matrices for large graphs may con-
tain near-duplicate columns. For example, all nodes thianige
to the same closed and tightly-connected community woule ha
the same sets of neighbors (namely, the community’s members
CMD addresses the problem of duplicate elimination. Howeve
even without duplicates, it is still possible that the cohsmof L
are linearly dependent, leading to a redundant represamiitthe
approximating subspace, which wastes both time and spaee. T
main idea of our method for static grapl@o{ibri-S) is to eliminate
linearly dependent columns while iterating over sampledroos
to construct the subspace used for low rank approximatian- F
mally, the approximatiol’d = LMR whereL consists of judi-
ciously selected columndyI is an incrementally maintained core
matrix, andR is another small matrixColibri-Sis provably better
or equal compared to the best competitors in the literatateyms
of both speed and space cost, while it achieves the samexappro
mation accuracy. In addition, we provide an analysis of tiagin
terms of the redundancy present in the data. Furthermoresxeu
periments on real data show significant gains in practiceh e
same approximation accurad@plibri-S is up to 52« faster than
the best known competitor, while it only requires about 1f/#he
space.

For dynamic graphs, we propo€elibri-D. Again, for the same
accuracyColibri-D is provably better or equal compared to the best
known methods (including our ow@olibri-S) in terms of speed.
The main idea ofColibri-D is to leverage the “smoothness”, or
similarity between two consecutive time steps, to quickbdate
the approximating subspace. Our experiments show thdt, it
same accuracyColibri-D achieves up to 112 speedup over the
best published competitor, and is 5 times faster tBatibri-S ap-
plied from scratch for each time step.

The main contributions of the paper are summarized as fetlow

o Afamily of novel, low rank approximation methodSdglibri-
S Colibri-D) for static and dynamic graphs, respectively;

e Proofs, and complexity analysis, showing our methods are
provably equal or better compared to the best known methods

in the literature, for the same accuracy;

e Extensive experimental evaluation, showing that our meth-
ods are significantly faster, and nimbler than the top com-
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Figure 1: Colibri-S is significantly more efficient than both
CUR and CMD in terms of both speed and space. Note that all
these methods lead to the same approximation accuracy. Both
speed and space cost are hormalized by the most expensive one
(i.e., CUR in both cases).

More recently, there is an increasing interest in miningetim
evolving graphs, such as densification laws and shrinkiagndi
ters [19], community evolution [3], dynamic tensor anadyi7],
and dynamic communities [5, 25], etc.

Low Rank Approximation. Low rank approximation [14, 8,
1] plays a very important role in graph mining. For examples t
low rank approximation structure is often a good indicatoiden-
tify the community in the graph. A significant deviation fraach
structure often implies anomalies in the graph.

For static graphs, the most popular choices include SVD/BGA
17] and random projection [16]. However, these methodsatie
nore the sparseness of many real graphs and therefore @éeh n
huge amount of space and processing time (See [28] for detbtai
evaluation). More recently, Drineas et al [8] proposed thHRGle-
composition, which partially deals with the sparsity of tiraphs.
CURis proved to achieve an optimal approximation while riem
the sparsity of the matrix. Sun et al [28] further improve Cb\R
removing the duplicate columns/row in the sampling stageeif™
method, named as CMD, is shown to produce the same approxi-
mation accuracy, but it often requires much less time andespa
Our method Colibri-S) further improves the efficiency in speed
and space by leveraging the linear correlation among diffesam-

petitors. See Figure 1 for an example of the time and space pled columns. As aresult, our method saves the computatioma

savings of ourColibri-S over CUR and CMD [28].

The rest of the paper is organized as follows: after revigwin
the related work in Section 2, we introduce notation and &diyn
define the problems in Section 3. We present and analyze the pr
posedColibri-S and Colibri-D in Section 4 and Section 5, respec-
tively. We provide experimental evaluation in Section 6ndfly,
we conclude in Section 7.

2. RELATED WORK

In this section, we briefly review the related work, which can
be categorized into two parts: graph mining and matrix lomkra
approximation.

Graph Mining. There is a lot of research work on static graph
mining, including pattern and law mining [2, 6, 10, 4, 20]e-r
quent substructure discovery [30], influence propagati@h com-
munity mining [11, 12, 13], detect anomaly nodes and ed@#s[2
proximity[22, 29] and so on.

and space cost, while it outputs exactly the same low rankoapp
imation as CUR/CMD.

The worst-case computational complexity of CUR, CMD and
Colibri is linear to the size of the matrix. A more accurate CUR
approximation has been proposed in [9], but it requires S¥b o
eration on the whole matrix as a preprocessing step whicfiés o
too expensive for many large scale applications.

For dynamic graphs, a lot of SVD based techniques have been
proposed, such as multiple time series mining [15, 23], dyna
tensor analysis [27], incremental spectral clusterind gt. As
for the static graphs, these methods might suffer from the-af-
sparsity issue for large sparse graphs despite their suacdhe
general cases. Sun et al [28] deal with this issue by applyiag
CMD method independently for each time step. However, how to
make use of the smoothness between two consecutive tingetstep
do even more efficient computation is not exploited in [28hisT
is exactly the unique feature of o@olibri-D, - it leverages such
smoothness to do fast update while maintaining the spassenfe
the resulting low rank approximation.



Table 1. Symbols

| Symbol [ Definition and Description
A, B, ... | matrices (bold upper case)
A(i,j) | the element at th&#" row and;*" column of matrixA
A(i,:) the:*" row of matrix A
A(: %) the j*" column of matrixA
A’ transpose of matriA
@b,... | column vectors
Z,J,... | sets (calligraphic)
A® n x [ time-aggregate interaction matrix at tihe
65.” the j** column of A®, i.e.,ag.t) =A0O 5
7z indices for columns sampled: = {i1, ..., i. }
n,l number of for type 1 and type 2 objects, respectivel
c sample size. i.e. the number of columns sampled
Cff) n X c initial sampling matrix, consisting af columns
fromA®. ie.,C = AV (: T)
mff) number of edges iﬁJEf) at timet

3. PROBLEM DEFINITIONS

Table 3 lists the main symbols we use throughout the paper. In
this paper, we consider the most general case of bipartitghgr
Uni-partite graph can be viewed as a special case. We rejirese
a general bipartite graph by its adjacency matrikollowing the
standard notation, we use capital letters for matrices (€\9,
arrows for vectors (e.g4;), and calligraphic fonts for sets (e.g.
7). We denote the transpose with a prime (i4&/, is the trans-
pose ofA), and we use parenthesized superscripts to denote time
(e.g.,A" is the time-aggregate adjacency matrix at tiheNVhen
we refer to a static graph or, when time is clear from the con-
text, we omit the superscrigt). We use subscripts to denote
the size of matrices/vectors (e.gA,x; means a matrix of size
n x 1). Also, we represent the elements in a matrix using a con-
vention similar to Matlab, e.g.A (i, j) is the element at the™
row and;'" column of the matrixA, and A (:, j) is the j** col-
umn of A, etc. With this notation, we can define mat as
Co = A(;,Z) = [A(:,41), ..., A(:,ic)]. In other words,Cy is
the sub-matrix ofA by stacking all its columns indexed by the set
Z.Without loss of generality, we assume that the numberspf ty
1 and type 2 objects (corresponding to rows and columns in the
adjacency matrix) are fixed, i.ez, and( are constant for all time
steps; if not, we can reserve rows/columns with zero elesnasit
necessary.

At each time step, we observe a set of new edges, with associ-
ated edge weights. While there are multiple choices to epthet
adjacency matrix (e.g. sliding window, exponential fotopef etc),
we use global aggregation for simplicity: once an edge agpaa
some time step, the corresponding entry of the adjacency matrix
is updated and the edge is never deleted or modified. Thisgssu
tion facilitates presentation, but our methods can ndiuaglply to
other update schemes.

With the above notations and assumptions, our problemsean b
formally defined as follows:

PROBLEM 1. (Static Case.)Low rank approximation for static
sparse graphs
Given: A large, static sparse grapA . «;, and sample size

Find: Its low-rank approximation structure efficiently. Thatfiad
three matriced.,, xz, Mzxz, and Rzx; such thatA, «; ~
L.xeMexzRexi, whereé <ec.

2In practice, we store these matrices using an adjacenagpiset-
sentation, since real graphs are often very sparse.

PROBLEM 2. (Dynamic Case.) Low rank approximation for
dynamic sparse graphs
()

Given: A large, dynamic sparse grapA, 7,

and the sample size

Track: Its low-rank approximation structure over time efficiently
That is, to find three matrices™, M), and R™® for each
i ® 1.0 (%) (t)
time stept such thatA, ', ~ L~ M i R,
whered® < c.

fort = 1,2,...,

4. colibri-s FOR STATIC GRAPHS

In this section, we address problem 1 and introduceCalibri-
Sfor static graphs. After some necessary background in subse
tion 4.1, we present the algorithm in subsection 4.2, fodvby
the proofs and complexity analysis in subsection 4.3.

4.1 Preliminaries

Here, we want to decompose the adjacency maijx,; of a
static graph into three matricek;, x s, Mezx s, andRzx;. The goal
is to achieve a good balance between efficiency and apprexima
tion quality. For the quality, we wamA = LMR to approximate
the original adjacency matriA as well as possible. Throughout
the paper, we use the Frobenius normAof- A to measure the
approximation error. As for efficiency, we want to (1) keep tha-
tricesL andR small ¢ < [) and sparse, to save space; and (2)
compute the decomposition using minimal running time.

The best known methods to achieve such balance are CUR [8]
and its improved version, CMD [28]. The key idea behind CUR
and CMD is to sample some columns Afwith replacement, bi-
ased towards those with larger nofimand then to use the projec-
tion of the original adjacency matrif into the subspace spanned
by these sampled columns as the low rank approximation of the
matrix A.. As shown in [8], such procedures provably achieve an
optimal approximation. Additionally, the matricds and R by
CUR/CMD are usually very sparse, thus the CUR/CMD decom-
position is shown to be much faster than standard SVD.

4.2 Algorithm

Our algorithm shares the same high-level principle as CUR an
CMD. That is, we want to sample some columns of the matrix
and then projectA into the subspace spanned by these columns.
As we show later, our method achieves exactly the same aipprox
mation accuracy as CUR/CMD, but it is equal or better congare
to CUR/CMD in terms of both space and time.

If we concatenate all the sampled columns into a maglix we
can useCo(CyCo)TC)A as the approximation of the original ad-
jacency matrixA, where(C)Co) is the Moore-Penrose pseudo-
inverse of the square matrX(Co.

However, the sampled columns@y may contain duplicates (or
near duplicates)—for example, all nodes that belong to dmees
closed and tightly-connected community would have the ssete
of neighbors (namely, the community’s members). CMD essen-
tially performs duplicate elimination. However, more geaily,
the columns ofCy may be unequal but linear dependences may
still be present. In other words, the columns@f form aredun-
dant or overcompletebasis. This is clearly not efficient in terms
of space. Moreover, if we keep these redundant columns, we ha

%In [8, 28], the authors also suggest simultaneously samplin
columns and rows. Our method can be naturally generalized to
handle this case. For simplicity, we focus on sampling colsim
only.
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Figure 2: A pictorial comparison for different methods. To construct the same subspace, SVD will use all the data pointdrk ones);
CUR will use a subset of data point with possibly a lot duplicéions (the number besides the arrow is the number of duplica copies);
CMD will remove the duplicate the columns in CUR; and our Colibri-S will further remove all linearly dependent columns which
is most efficient in both speed and space. For illustrative pgpose, we set the approximation accuracy of each method to kways

100% in this example.

to estimate the pseudo-inverse of a larger matrix, whicleiesshly
affects running time as well.

The heart ofColibri-Siis to iteratively construct the desired sub-
space, eliminate these redundant columns in the procesgo- Al
rithm 1 shows the full pseudocode.

Algorithm 1 Colibri-S for Static Graphs
Input: The adjacency matriXA,, «;, tolerancee, and the sample

sizec
Output: Three matriced., xz, Mz, andRzx;, whereé < c.
1: Compute column distribution for = 1,...,I: P(z) =

> Al 2)* ) 30, 5 A 5)%
2: Sample: columns fromA based orP(z). LetZ = {1, ...
be the indices of these columns.
3: Initialize L = [A(:,41)]); M = 1/(A(:,41)’
4: for k=2:cdo

7ic}

A1)

5:  Compute the residual€s = A(:,ix) — LML'A(:, i)
6: if ||rés|| < el|A(:, )] then
7: Continue;
8: else
9 Compute:s = ||r&s||*; andy = ML/ A(:, ix)
10: Update the core matrix M: M
(M + 75/ _W)
-y/6  1/s
11: ExpandL: L « [L, A(:, )]
12:  endif
13: end for

14: ComputeR = L'A.

There are three stages in algorithm 1. First (steps 1-2) amwe s
ple ¢ columns of matrixA with replacement, biased towards those
with higher norms, exactly as CUR does (first step in Figuje. 3
Then, we try to select linearly independent columns fromitiie
tially sampled columns and build thel matrix (referred to as the
“core matrix”): after an initialization step (step 3), weratively
test if a new columrA.(:, ix) is linearly dependent on the current
columns ofLL (steps 5-7). If so, we skip the colun#(:, i). Oth-
erwise, we append (:, i) into L and update the core matrdd
(steps 9-11). Note that if the new colur#(:, i) is linearly in-
dependent wrt the current columnsTtin(i.e., if ||rés|| > || A(:
,ik)|]), we can use the residuafs computed in step 5 to update

column (step 5). In this way, we simultaneously prune theined
dant columns and update the core matrix. The last step in€igu
shows the finaL. obtained after eliminating the redundant columns
from Cy. Finally, we define th&® matrix to bel’A?

4.3 Proofs and Analysis

Here we provide the proofs and the performance analysi®ibri-
S We also make a brief comparison with the state-of-art tieghes,
such as CUR/CMD.
4.3.1 Proof of Correctness faolibri-S

We have the following theorem for the correctness of Alg. 1:

THEOREM 1. Correctness ofColibri-S. Let the matrixC, con-
tain the initial sampled columns frodi(i.e. Co = A(:,Z)). With
tolerancee = 0, the following facts hold for the matricdsand M
in Alg. 1:

P1: the columns dL are linearly independent;
P2: L shares the same column space@s
P3: the core matriXM satisfiesM = (L'L) ™.

PROOF. First, we will prove ‘P3" in Theorem 1 by induction.
The base case (step 3 of Alg. 1) is obviously true.

For the induction step of ‘P3’, let us suppose that M) =
(L’L)~" holds up to theki"(2 < k; < ¢) iteration; and (2)L
will be expanded next in thil" iteration 1 < k2 < ).

LetL = (L A(:ix,)). We have
it o= (8 L) x (@ AG)
A k) o ke
_ L'L L'A(:,ix,) 1)
A(:vikz)/L A(:vik2)/A(:7ik2)
- (M4 §y/6 —§/ . '
DeflneM_< —' /s 1/6 , whereyf andd are defined
in Alg. 1.

“Note that whileL is sparse since it consists of a subset of the
original columns fromA, the matrixR is the multiplication of two
sparse matrices and is not necessarily sparse. In ordertt@ifu
save space, we can use a randomized algorithm [7] to appadim
R.. This can be naturally incorporated into Alg. 1. Howeveis &n

the core matriXM in step 9. Conversely, we use the core matrix orthogonal to what we are proposing in this paper. For sicitpli
M to estimate the residual and test linear dependence of the ne we will useR = L’ A throughout this paper.



SinceM = (L’L) ™! by inductive hypothesis, it can be verified
thatrés is the residual if we project the colum(:, ix, ) into the
column space oL.. Based on the orthogonality property of the
projection, we have

5 = Hré’s”2
= 7rés'(rés + LML A(:, ix,))
rés' A(:, %)

@)

_ Now, applying the Sherman-Morrison lemma [24] to the matrix
L'L in the form of eq. 1, based on eq. 2, we can verify that=
(L’L)~" holds, which completes the proof of ‘P3’.

Next, let us prove ‘P1’ in Theorem 1 by induction. Again, the
base case for ‘P1’ is obviously true (step 3 of Alg. 1).

For the induction step for ‘P1’, let us suppose that (1) adl th
columns inL,,x. are linearly independent up to thé" iteration
(2 < ¢é < ki < c¢); and (2)L will be expanded next in thes”
iteration 1 < k2 < ¢). We only need to prove thak(:,ix,)) is
linear independent wrt the columns in the currennatrix.

By ‘P3’, therés computed in step 5 is the exactly the residual if
we project the columr (:, ix, )) into the column space spanned by
the currenfl. matrix. Since we decide to expadidby A (:,ix,)),
with tolerancee = 0, it must be true that the residual satisfies
res > 0 (step 8). In other words, the columA(:,ix,)) is not
in the column space dt.

Now, suppose thaA (:, ix, )) is linearly dependent to the columns
in the currenf. matrix. The columnA (, ix, )) must lie in the col-
umn space oL. This is contra-positive, which completes the proof
of ‘P1'.

Finally, from ‘P1’, for each columi € {Co — L} (steps 5-7 of
Alg. 1), there must exist a vectd = (3, ..., Bz)’ = ML'#, such
thato = Lﬁ holds. In other wordsi must be in the column space
of L. Therefore, removing the columifrom L will not change
the column space d. This completes the proof of ‘P2’. m|

Notice thatColibri-S iteratively finds the linearly independent
set of columns (i.e., the matrik). For the same initially sampled
columns Co), it might lead to a differenL. matrix if we use a
different order in the index sé&i. However, based on Theorem 1,
this operation will not affect the subspace spanned by themaws

of the matrixL since it is always the same as the subspace spanned

by the columns of the matri€,. Therefore, it will not affect the
approximation accuracy for the original matex
4.3.2 Efficiency ofolibri-S

We have the following lemma for the speed of Alg. 1.

LEMMA 1. Efficiency of Calibri-S. The computational com-
plexity to outpudM and L in Alg. 1 is bounded b (cé® 4 cm),

whereé, m are the number of columns and edges in the mdtrix
respectively; ana is the number of columns 6.

PrROOF Omitted for brevity.

4.3.3 Comparison with CUR/CMD

Next we compareColibri-S against the state-of-art techniques,
i.e. CUR [8] and CMD [28]. We compare with respect to accuracy
time and space cost.

LEMMA 2 (ACCURACY). Using the same initial sampled

igigigigig =i
347910-1-2

S &

t t
Cg) L®

10 = 3,7,10, ... 1 -2}
KO= {49 .}

Al

Figure 3: lllustration of notation and process for Colibri-
S. Shaded columns are part of initial sample, dark shaded
columns are linearly independent among those.

PROOF. DefineA asA = LMR. By Theorem 1, the matriA
satisfiesA = L(L'L)"'L’A. In other words A is the projection
of the matrixA into the column space df. On the other hand, by
Theorem 1, the matri¥. has the same column space@Gs, i.e.,
A = Cy(C{HCo)TCHA, which is exactly how CUR/CMD [8, 28]
tries to approximate the original matrix. a

LEmMMA 3 (SPACE). Using the same initial sampled columns
Co, Alg. 1 is better than or equal to CUR in [8] and CMD in [28]
in terms of space.

PROOF Notice thatL is always a subset df,. On the other
hand, if there exist duplicate columns@y, they will appear only
once inL. O

LEMMA 4 (TIME). Using the same initial sampled columns
Co, Alg. 1 is faster than, or equal to CUR ([8]) and CMD ([28]).

PrROOF By Lemma 1, the computational complexity of Alg. 1
at the worst case is the same as the original CUR method in [8]
(O(em) for multiplying Cf, and Cy together; and)(c?) for the
Moore-Penrose pseudo-inverse@§Cy. Also notice that < ¢
andm < m). On the other hand, if there exist duplicate columns
in Co, we can always remove them before step 3 in Alg.1 and then
CMD in [28] will degenerate to CUR [8]. a

In particular, the complexity is proportional to the squaféhe
“true” dimensionalityé of the approximating subspace. Since, as
we shall see in the experimental evaluation, in real dataset
significantly smaller tham, this translates to substantial savings in
computation time as well as space.

INTUITION. The intuition behind the above proofs and sav-
ings is shown in Figure 2, which gives a pictorial comparisdn
our Colibri-Swith SVD/CUR/CMD. Figure 2 shows that: (1) SVD
(Figure 2(a)) uses all data points (dark ones) and the negult
matrix is dense. (2) CUR (Figure 2(b)) uses sampled coluehausk
ones) but there may be many duplicate columns (the number nex
to each arrow stands for the multiplicity) The resultiagnatrix of
CUR is sparse but it has totally 16 columns. (3) CMD (Figu®@(
removes the duplicate columns in CUR and the resullingvith
6 columns) is more compact. (4) OGolibri-S (Figure 2(d)) fur-

columnsCy, Alg. 1 has exactly the same approximation accuracy ther removes all the linearly dependent columns and thétiggu

as CUR [8] and CMD [28].

L only contains 2 sparse columns. Therefore, while all these f
methods leads to the same subsp&ibri-S is most efficient in
both time and space.



5. colibri-D FOR DYNAMIC GRAPHS

In this section, we deal with problem 2 and prop&aibri-D
for dynamic, time-evolving graphs. Our goal is to find the lamk
approximation structure of the adjacency matrix at eack step:
efficiently. As for static graphs, we first give the algoritfimsub-
section 5.1 and then provide theoretical justification amalysis in
subsection 5.2.

5.1 Algorithm

Conceptually, we could call Alg. 1 to output the low rank ap-
proximation for each time stef In this way, we will have to
compute the core matri¥, which is the most expensive part in
Alg. 1, for each time step from the scratch. On the other hind,
the graph changes “smoothly” between two consecutive tiepss
(i.e., the number of affected edges is reasonably smalf), tinéu-
itively, we do not expect its low rank approximation struetuo
change dramatically. This is exactly the heart of @glibri-D.
We want to leverage the core mati® to quickly get the core
matrix M+ in the next time step, given that the graph changes
“smoothly” from time steg to (¢ + 1).

For simplicity, we assume that the indices of the initial psed
cqumnsCEf) are fixed. That is, we will fix the index sé&t =
{41, ..., 1.} over time, and we will always use the projection of the
adjacency matriA® in the columns space @ = A (:, )
as the low rank approximation a&(*) for each time steb Note
that even if we use the same initial column indices, the curdé

j,ft) corresponds to those changed columns ftaan(t+1). These
sets are shown in Figure. 4 on the left: notice that theirmisa *)
from Figure. 3.
With the above notations, the complete pseudocode to update
the low rank approximation from time stefo (¢ + 1) is given in
Alg. 2.

Algorithm 2 Colibri-D for Dynamic Graphs

Input: The adjacency matriceA® and A“+")| the indices set
7 =79 UK, tolerance:, and the core matrivI*) at time
stept

Output: Three matriced.®**?, MY and R**V; and up-
dated indices partitiof = 7+ U D),

1: set7 " and7" based oA ") and A (“+1);
2: Initialize LY = A(;, 7)) K = 7P u K®

Cif | 789 1<) 7P | then

4:  ComputeM(+D = (LE+D T+ ~1

5: else O o

. . t 1)\ —

6: ComputeA = MW (7Y 7)1

5

8

9

> W

Compute:A = M@ (7", 7)) AM@ (7, 7)
ComputeM 1) = M® (7, 79y — A
: endif
0: for each index in IC do
1: Compute the residual: rés = A k) —
L(tJrl)1\/[('5+1)L(tle)'A(tle)(:7 k)

matrix C{’ keeps changing over time and so does the subspace it12: if ||rés|| < ¢[|A®+D(:, k)| then

spans. Our goal is to efficiently update the non-redundasisiiar
the subspace spanned by the columnﬁléff over time. Note that

in Figure. 4, the column indices &/ ™" are exactly the same as
those forC((f) in Figure. 3. However, in this example, the contents
of columns 3 and — 2 have changed.

The basic idea of our algorithm for dynamic graphs is as faito
once the adjacency matrix “*1) at time stef(t + 1) is updated,
we will update the matrixC{™". Then, we will try to identify
those linearly independent columhé’™") within C{'*" as well
as the core matridM“*tY). To reduce the computational cost, we
will leverage the core matrix from the current time steff® to
updateL**? as well asM Y instead of computing them from
the scratch. Finally, we will update tHR matrix asR¢+tY =
L&D A+,

Next, we will describe how to updale‘*") andM ¢+ at time
stept + 1. At time stept, we might find some redundant columns
in C((f) which are linearly dependent wrt the remaining columns in

Cgt). In Figure. 3, these were columns 4 and 9. We split the indices

setZ into two disjoint subsets;7® and K*, as shown in Fig-
ure. 3. We require thaf = 7 UK®, andL® = A®(:, 7).
In other words,7 ") corresponds to those columnsGt” that are
actually used to construct the subspace; it corresponds to
those redundant columns (ﬂét). Notice that even though we fix

the index sefZ over time, the subset§ ¥ and (" change over
time. Updating the matrit.*) is equivalent to updating the subset
J® . To simplify the description of the algorithm, we furthergia

tion 7 into two disjoint subsetg,"” and.7,", such that7 ") =

DU g, We require thatd @ (:, 7)) = AC+D(;, 79,
and A (;, 7M7) # ATV, 7). In other words, 7. " corre-
sponds to those unchanged column&ifrom ¢ to (¢ + 1), while

SHow to update the indices s&tover time is beyond the scope of
this paper.

13: Continue;

14: else

15: Compute: & = |res||?; and § =
1\/I(t+1)L(t+1)'A(tJrl)(:7 k)

16: Update the core matrix M(t+D): M+
o (MUY L5/ —g)s

—y'/6 1/6

17: ExpandL(+1: LD — LD ACHD (g

18: endif

19: end for

20: ComputeR (“+1) = L¢+D A+,
21: Update7 *+1 and D),

Comparing Alg. 2 with its static version (Alg. 1), the mairf-di
ferences are (1) we do not need to test the linear dependadce a
build our core matrix from the scratch if the subsgtis not empty
(steps 3-9), since the columnsfh are guaranteed to be linearly
independent; (2) furthermore, if the changeZiis relatively small
(ie.| 7 |>| J,,(t) ). we do not need to initialize our core matrix
M+ from the scratch. Instead, we can leverage the information
in M® to do fast initialization (steps 6-8). These strategies, as
will be shown in the next subsection, will dramatically reduthe
computational time, while the whole algorithm will give exly the
same low rank approximation as if we had called Alg. 1 for time
step(t + 1). After we initialize the core matrid“+1) (after step
9), we will recursively test the linear dependence for eadbran
in K® and 7" and possibly incorporate them to expand the core
matrix M¢+Y | which is very similar to what we do for the static
graphs in Alg. 1.

In our running example of Figure. 3 and 4, since columns 7 and
10 were linearly independent at timeand they have remained un-
changed, we can safely initialiZ&€**") to include these. However,
since columns 3 antl— 2 have changed, we need to re-test for lin-
ear independence. In this example, it turns out that 3 idieglarly



independent, whereds— 2 is not any more. Additionally, some
of the columns that were previously excluded as linearlyedéepnt
(e.g., 4 and 9) may now have become linearly independent,eso w
need to re-test those as well. In this example, it turns attttiey

are still redundant.

5.2 Proofs and Analysis

5.2.1 Correctness @olibri-D
We have the following lemma for the correctness of Alg. 2:

LEMMA 5. Correctness ofColibri-D. Let the matrixCy con-
tain the initial sampled columns fro ¢+ (i.e. Co = AUHV(:
,Z)). With tolerance: = 0, the following facts hold for the matri-
cesLt+D and MY in Alg. 2:

P1: the columns oE“*Y are linearly independent;
P2: LY shares the same column spaceGs
P3: the core matriM (1) satisfieMI(“+1) = (L¢+D ¢+ 1,

PROOF. : Similar as for Theorem 1. Omitted for brevity O

By Lemma 5 and Theorem 1, the three matrik&s™), M+1),
andR®“*? produced by Alg. 2 are exactly the same as if we had
called Alg. 1 for time ste§t + 1) from the scratch. Therefore, we
have the following corollary:

COROLLARY 2. Using the same index sg&tof initial sampled
columns for all time steps, Alg. 2 has exactly the same appex
tion accuracy as Alg. 1, CUR [8] and CMD [28].

5.2.2 Efficiency oolibri-D

Since the three matricds**?, M*+Y | andR*+Y by Alg. 2
are exactly the same as if we had called Alg. 1 for time étejpl),
we have the following corollary for the space cost of Alg. 2:

COROLLARY 3. Using a fixed indices séf of initial sampled

123456789 -oemmeemsmmnnnas 347910 |-2 3710
Alt+D) Cgﬂ) L (1)
1,= {710, ..} = 83,12}
1D = 137 10, ..}
K®D= 149, .. -2}

Figure 4: lllustration of notation and process for Colibri-D—
compare with Figure. 3. Shaded and dark shaded columns as in
Figure. 3, shaded and filled columns are those from the previgs
timestep that contain at least one new entry.

6. EXPERIMENTAL EVALUATIONS

Here we give experimental results for the propo€edibri. Our
evaluation mainly focuses on (1) the reconstruction astirg?)
the running time and (3) the space cost. After a brief intobidm
of the datasets and the evaluation criteria, we give thdtsefar
Colibri-Sin subsection 6.2, and f&olibri-D in subsection 6.3.

6.1 Experimental Setup

We use a network traffic dataset from the backbone router of a
class-B university network. We create a traffic matrix foemgv
hour, with the rows and columns corresponding to the IP ssurc
and IP destinations. We turn the matrix into a binary mattiat
is, a "1’ entry means that there is some TCP flow from the corre-
sponding IP source to the destination within that hour. lorshve
ignore the volume of such traffic. Overall there are 21,8¥eéxtint
source/destination pairs, 1,222 consecutive hours ar@gK2tlges
per hour, on average.

Let A = LMR. We use the standard reconstruction accuracy to

columns, the space cost of Alg. 2 is the same as Alg. 1 and it is measure the approximation quality (exactly as in [28]),dtineate

equal or better compared to CUR [8] and CMD [28].

We have the following lemma about the speed of Alg. 2.

LEMMA 6. Efficiency of Colibri-D. Letry =| 7. |, r2 =|
T |andrs =| K |. The computational complexity of Alg. 2 is
bounded by) (max(r1, ra, r3)* + (ro+r3)m ), whererm ¢+
is number of edges in the matixX‘*Y.

PROOF. : Omitted for brevity. |

In terms of speed, the difference between Alg. 2 and Alg. 4 lie
in the different way of initializing the matri?Mi‘+) (steps 3—
9 of Alg. 2). More specifically, ifr; < r2, the computational
cost for initializing M+ is asymptotically the same for both
algorithms—both are @%). On the other hand, if; > ra, we
only needO(rirs) for Alg. 2 while Alg. 1 still requiresO(r3).
Based on this fact as well as Lemma 1, we have the followingleor
lary.

COROLLARY 4. Using a fixed seT of initial sampled columns,
the running time of Alg. 2 is equal or better compared to Alg. 1
CUR [8] and CMD [28].

To summarize, if we fix the index sétof initial sampled columns
for all time steps, the proposed Alg. 2 will produce the lowkap-
proximation at each time stepvith the same accuracy as CUR/CMD
and our own Alg. 1 for static graphs. For both speed and spste ¢
it is always equal or better than CUR/CMD as well as our Alg. 1.

the SSE, the sum-squared-error, with sample siz&,000 for both
rows and columns:

1—SSE

1-> (A,

%)

Accu

J) = A(LJ’)W(Z A(i,5)*) (3)

For a given low rank approximatiofL.. xz, Mzxs, Rexi}, the
matricesL: and R are usually sparse, and thus we store them as
adjacency lists. In contrast, the mathf is usually dense, and we
store it as a full matrix. Thus, the space cost is:

SPCost = NNZ(L) + NNZ(R) + & (4)
whereNNZ(.) is the number of non-zero entries in the matrix.

For the computational cost, we report the wall-clock timdl A
the experiments ran on the same machine with four 2.4GHz AMD
CPUs and 48GB memory, running Linux (2.6 kernel). For each
experiment, we run it 10 times and report the average.

Notice that for both Theorem 1 and Lemma 5, we require the
tolerances = 0. In our experiments, we find by changiago be
a small positive number (e.g,= 10~°), it does not influence the
approximation accuracy (up to 4 digits precision), whilenitkes
the proposed algorithms more numerically stibl€herefore, for

Sthis is an implementation detail. We omit the detailed désion
due to the space limit. How to choose an optimas$ out-of the
scope of this paper.



all the experiments we reported in this paper, weaise10~° for
both Colibri-S andColibri-D.

6.2 Performance ofcolibri-S

Here, we evaluate the performance of @wnlibri-S for static
graphs, in terms of speed and space.

We compareColibri-S against the best published techniques, and
specifically against CUR [8] and CMD [28]. For brevity andrela
ity, we omit the comparison against SVD, because CMD [28] was
reported to be significantly faster and nimbler than SVDhwiv-
ings up to 100 times.

We aggregate the traffic matrices within the first 100 hours an
then ignore the edge weights as the target mairixTotally, there
are 158,805 edges in this graph. We vary the samplecsimam

Relative space cost (it CUR)
~
3
5

'@ CMD
—&— Colibri-S|{

091

093 094 095
Approximation accuracy

0.92

0.96 0.97

1,000 to 8,000, and study how the accuracy changes with the ru  Figure 6: Relative space cost ofColibri-S and CMD, ver-
sus accuracy. Space costs are normalized by the space of

CUR. Calibri-S consistently requires a fraction of the space by
CUR/CMD, for same accuracy.

ning time and space cost for all three methods.

Figure 5 plots the mean running time vs. the approximatien ac
curacy. Notice that the y-axes is in the logarithm sc&elibri-S
is significantly faster than both CUR and CMD, by 28353x and
12x~52x respectively.

100,000

@ CcMD
—=— Colibri-S
-+ - CUR +
10,000 +

1,000 -

Log running time (seconds)
\

100

10

093 094 095
Approximation accuracy

0.9 0.92 0.96 0.97

Figure 5: Running time vs. accuracy. OurCalibri-S (in green

squares) is significantly faster than both CUR and CMD, for

the same approximation accuracy. Note that the y-axis is in
logarithmic scale.

With respect to space cost, CUR is always the most expensive
among the three methods and therefore we use it as the mselin
Figure 6 plots the relative space cost of CMD &ulibri-S, vs. the
approximation accuracy. Agaigolibri-S outperforms both CUR
and CMD. Overall,Colibri-S only requires 7.4%28.6% space
cost of CUR, and 28.6%59.1% space cost of CMD for the same
approximation accuracy.

The reader may be wondering what causes all these savings. Th
answer is the reduction in columns kept:Golibri-Swe only keep
those linearly independent columns, and discard all therooi
the ¢ columns that CUR chooses (and keeps). This idea eventually
leads to significant savings. For example, with a sampledfize=
8,000 (the number of columns that CUR will keep), CMD discards
duplicates, keeping on the average ahlg20 unique columns, and
Colibri-S further discards the linearly dependent ones, eventually
keeping onlyl, 101. And, thanks to our Theorem 1, the columns

r out of these 2,000 sampled columns and update the low rank ap-
proximation of the updated adjacency matrix. Si@mibri-D has
the same space cost@slibri-S, we only present the results on the

running time.

We compare oucColibri-D against both CMD and against our
own Colibri-S We apply CMD andColibri-S for each (static) in-
stance of the graph and report the wall-clock times. Foralislar-
ity, we omit the comparison against CUR, since it is conatbje
slower than both CMD an@olibri-S on static graphs, as shown in

subsection 6.2.

Figure 7 plots the wall-clock time of CMOZolibri-SandColibri-
D, versug (the number of updated columng)olibri-D is 2.5x~112x
faster than CMD. Even compared against our @uatibri-S Colibri-
D is still about 2x-5x faster. The computational savingsQiflibri-
D overColibri-S come from the Sherman-Morrison Lemma: if the
graph evolves smoothlgolibri-D leverages the low rank approxi-
mation of the previous time step, and does a fast (but expdgte.
We repeat that all three methods hagtentical approximation ac-
curacy, if they use the same initial sampled columns.

600

500
400

Lo+
3007

Update time (seconds)

- 4 = CMD
=+ Colibri-S
——=a— Colibri-D|]

1 50

100 150 200 250 300 350 400 450 500

# of columns updated (r)

thatColibri-S discards have no effect on the desired subspace, andFigure 7: Performance for dynamic graphs: Speed versus
number of updated columns. Colibri-D (in green squares) is

2.5%~112x faster than the best published competitor (CMD);
and also faster than our ownColibri-S, applied on each individ-

neither on the approximation quality.

6.3 Performance ofcolibri-D

We use the same aggregated traffic matrix as in subsection 6.2
and initialize the algorithm by a sample size= 2,000 (which
gives an average accuacy of 93.8%). Then, we randomly pertur

ual graph instance.



7. CONCLUSION

In this paper, we propose the family@blibri methods to do fast
mining on large static and dynamic graphs. The main cortidghs
of the paper are:

e A family of novel, low rank approximation methodS¢libri-

S Colibri-D) for static and dynamic graphs, respectively:
Colibri-Ssaves space and time by eliminating linearly depen-
dent columnsColibri-D builds onColibri-S, and performs
incremental updates efficiently, by exploiting the “smaoth
ness” between two consecutive time steps.

e Proofs and complexity analysis, showing our methods are
provably equal or better compared to the best known meth-
ods in the literature, while maintaining exactly the same ac
curacy;

e Extensive experimental evaluation, showing that our meth-
ods are significantly faster and nimbler than the state of the
art (up to 112 times faster). See Figure 1 for comparisons
against CUR [8] and CMD [28].
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