
Fast Direction-Aware Proximity for Graph Mining

Hanghang Tong
Carnegie Mellon University

htong@cs.cmu.edu

Yehuda Koren
AT&T Labs – Research

yehuda@research.att.com

Christos Faloutsos
Carnegie Mellon University

christos@cs.cmu.edu

ABSTRACT
In this paper we study asymmetric proximity measures on directed
graphs, which quantify the relationships between two nodes or two
groups of nodes. The measures are useful in several graph min-
ing tasks, including clustering, link prediction and connection sub-
graph discovery. Our proximity measure is based on the concept
of escape probability. This way, we strive to summarize the mul-
tiple facets of nodes-proximity, while avoiding some of the pit-
falls to which alternative proximity measures are susceptible. A
unique feature of the measures is accounting for the underlying
directional information. We put a special emphasis on computa-
tional efficiency, and develop fast solutions that are applicable in
several settings. Our experimental study shows the usefulness of
our proposed direction-aware proximity method for several appli-
cations, and that our algorithms achieve a significant speedup (up
to 50,000x) over straightforward implementations.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
Mining

General Terms
Algorithm, experimentation

Keywords
Proximity, random walk, directionality, fast solution

1. INTRODUCTION
Measuring node proximity is a fundamental problem in many

graph mining settings. While most of existing measurements are
(implicitly or explicitly) designed for undirected graphs; edge di-
rections in the graph provide a new perspective to proximity mea-
surement: measuring the proximity from A to B; rather than be-
tween A and B (See Figure 1). Here, we study the role of direction
in measuring proximity on graphs. To be specific, we will try to
answer the following questions in this paper:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

Q1 Problem definitions: How to define a direction-aware prox-
imity? How to generalize the definition to measure the prox-
imity for two groups of nodes?

Q2 Computational issues: How to compute the proximity score
efficiently in all settings of interest?

Q3 Applications: How can direction-aware proximity benefit
graph mining?

(a) Undirected graph

(b) Directed graph

Figure 1: On undirected graphs (a) we are interested in the
proximity between A and B, whereas in a directed graph (b)
we make the distinction between the proximity from A to B, or
from B to A

We begin (Section 2) by proposing a novel direction-aware prox-
imity definition, based on the notion of escape probability of ran-
dom walks. It is carefully designed to deal with practical prob-
lems such as the inherent noise and uncertainties associated with
real life networks. Moreover, the proposed definition is general-
ized to measure group proximities by defining group escape prob-
ability. Then, in Section 3, we address computational efficiency,
by concentrating on two scenarios: (1) the computation of a single
proximity on a large, disk resident graph (with possibly millions of
nodes). (2) The computation of multiple pairwise proximities on
a medium sized graph (with up to a few tens of thousand nodes).

For the former scenario, we develop an iterative solution to avoid
matrix inversion, with convergence guarantee. For the latter sce-
nario, we develop an efficient solution, which requires only a single
matrix inversion, making careful use of the so-called block-matrix
inversion lemma. Finally (Sections 4-5), we apply our direction-
aware proximity to some real life problems. We demonstrate some
encouraging results of the proposed direction-aware proximity for
predicting the existence of links together with their direction. Other
applications include directed center-piece subgraphs, and attribute
graphs.

2. DIRECTION-AWARE PROXIMITY
Here we give the main definitions behind our proposed node-

to-node proximity measure, namely, the escape probability; then
we give the justification for our modifications to it; and finally we
generalize our definition to handle the group-to-group proximity.

2.1 Node-to-Node Proximity
Let us start with the node-to-node proximity score, or simply

node proximity. (We will introduce a more general, group proxim-
ity score, in Subsection 2.3.) Following some recent works [6, 15,
19], our definition is based on properties of random walks associ-
ated with the graph. Random walks mesh naturally with the ran-
dom nature of the self-organizing networks that we deal with here.
Importantly, they allow us to characterize relationships based on
multiple paths. Random walk notions are known to parallel proper-
ties of corresponding electric networks [5]. For example, this was
the basis for the work of Faloutsos et al. [6] that measured nodes
proximity by employing the notion of effective conductance. Since
electric networks are inherently undirected, they cannot be used for
our desired directed proximity measure. Nonetheless, the effective
conductance can be adequately generalized to handle directional
information by using the concept of escape probability [5]:

DEFINITION 1. The escape probability from node i to node j,
epi,j , is the probability that the random particle that starts from
node i will visit node j before it returns to node i

Thus we adopt the escape probability as the starting point for
our direction-aware node-to-node proximity score. That is, for the
moment, we define the proximity Prox(i, j) from nodes i to j as
exactly epi,j .

An important quantity for the computation of epi,j is the gen-
eralized voltage at each of the nodes, denoted by vk(i, j): this is
defined as the probability that a random particle that starts from
node k will visit node j before node i. This way, our proximity
measure can be stated as:

Prox(i, j) � epi,j =

nX
k=1

pi,k · vk(i, j) (1)

where pi,k is the probability of a direct transition from node i to
node k.

For example, in Figure 1(b), we have Prox(A,B) = 1 and
Prox(B, A) = 0.5, which is consistent with our intuition that con-
nections based of longer paths should be weaker. Table 1 gives a
list of symbols used in this paper. Following standard notation, we
use calligraphic font for sets (e.g., V), bold capitals for matrices
(e.g., W, P), and arrows for column vectors (e.g.,�1).

2.2 Practical Modifications
Given a weighted directed graph W, there is a natural random

walk associated with it whose transition matrix P is the normal-
ized version of W, defined as P = D−1W. Recall that D is

Table 1: Symbols
Symbol Definition

W = [wi,j] the weighted graph, 1 ≤ i, j ≤ n, wi,j

is the weight of edge i→ j

AT the transpose of matrix A
D n× n diagonal matrix of out-degrees:

Di,i =
P

j wi,j and Di,j = 0 for i �= j

P = [pi,j] the transition matrix associated with the graph
G = [gi,j] the G-matrix associated with P:

G = (I− cP)−1

V the whole set of the nodes V = {1, .., n}
A,B two groups of nodes A = {i1, ...i|A|},

B = {j1, ...j|B|}, A,B ⊆ V
P(A,B) a block of matrix P: P(A,B)= [pi,j],

(i ∈A, j ∈ B)

P(i, :) ith row of matrix P

P(:, j) jth column of matrix P
Prox(i, j) node proximity from node i to node j
Prox(A,B) group proximity from group A to group B
�1 a (column) vector whose all elements are 1’s
�ei a column vector whose ith element is 1

and the rest elements are 0’s
c 1− c is the transition probability from

each node to the sink
n the total number of the nodes in the graph
m the maximum number of iterations

the diagonal matrix of the node out-degrees (specifically, sum of
outgoing weights). However, for real problems, this matrix leads
to escape probability scores that might not agree with human intu-
ition. In this subsection, we discuss three necessary modifications,
to improve the quality of the resulting escape probability scores.

2.2.1 Augmenting the network with a universal sink

(a)

(b)

Figure 2: Nodes F and E have no influence on the A→ B escape
probability

When measuring the escape probability from i to j we assume
that the random particle must eventually reach either i or j. This
means that no matter how long it wanders around, it will make
unlimited tries, till reaching i or j.

This ignores any noise or friction that practically exist in the sys-
tem and causes the particle to disappear or decay over time. In par-
ticular, this problem is manifested in dead-end paths, or degree-1

nodes, which are very common in practical networks whose degree
distribution follows a power law. We demonstrate this in Figure 2
where, intuitively, nodes E and F, distract the A-D-B connection, so
the proximity from A to B in (a) should be larger than that in (b).
However, in terms of the escape probability, they are the same (both
equal 1). In other words, the influence of those degree-1 nodes (E
and F) is not taken into account. To address this issue, we model
the friction in the system by augmenting it with a new node with a
zero out degree known as the universal sink (mimicking an absorb-
ing boundary): Now, each node has some small transition proba-
bility, 1-c, to reach the sink; and whenever the random particle has
reached the sink, it will stay there forever. For example, if we add
a sink to Figure 2 with c = 0.9, Prox(A,B) is 0.81 in (a), but only
0.74 in (b), which is consistent with our intuition. Note that in this
case, equation (1) becomes:

epi,j =

nX
k=1

c · pi,k · vk(i, j) (2)

2.2.2 Partial symmetrization
A weakly connected pair is two nodes that are not connected by

any directed path, but become connected when considering undi-
rected paths (see, e.g., Figure 3(a)). For such weakly connected
pairs, the direction-aware proximity will be zero. However, in some
situations, especially when there are missing links in the graph, this
might not be desirable. In fact, while we strive to account for di-
rectionality, we also want to consider some portion of the directed
link as an undirected one. For example, in phone-call networks, the
fact that person A called person B, implies some symmetric rela-
tion between the two persons and thereby a greater probability that
B will call A (or has already called A but this link is missing).

A random walk modeling of the problem gives us the flexibil-
ity to address this issue by introducing lower probability backward
edges: whenever we observe an edge wi,j in the original graph, we
put another edge in the opposite direction wj,i ∝ wi,j . In other
words, we replace the original W with (1 − β)W + βWT (0 <
β < 1). For example, in Figure 3(b), by introducing backward
edges with β = 0.1, we get Prox(B,A) = 0.009, which is much
smaller than Prox(A, B) = 0.081, but nonetheless greater than
zero. Note that β = 0.5 is equivalent to ignoring edge directions.

(a)

(b)

Figure 3: Dealing with weak connections by partial sym-
metrization

2.2.3 Preventing size bias
Many of the graphs we deal with are huge, so when computing

the proximity, a frequently used technique is to limit its computa-
tion to a much smaller candidate graph, which will significantly
speed-up the computation. Existing techniques [6, 15], are look-
ing a for a moderately sized graph that contains the relevant por-
tions of the network (relatively to a given proximity query), while

(a) Prox(A, B) = 0.875

(b) Prox(A,B) = 1

(c) Prox(A,B) = 0.75

Figure 4: Dealing with size bias: (a) is the original graph;
(b) and (c) are candidate graphs with and without out-degree
preservation, respectively.

still enabling quick computation. These techniques can be directly
employed when computing our proximity measure.

As pointed out in [15], for a robust proximity measure, the score
given by the candidate graph should not be greater than the score
which is based on the full graph. The desired situation is that the
proximity between two nodes will monotonically converge to a sta-
ble value as the candidate graph becomes larger. However, this is
often not the case if we compute the escape probability directly on
the candidate graph (see Figure 4(a) and (b) for an example)

To address this issue, we should work with degree preserving
candidate graphs. That is, for every node in the candidate graph, its
out degree is the same as in the original graph. Now in Figure 4(c),
by preserving degrees, the proximity from A to B is smaller than
that in (a). More precisely, we have the following lemma:

LEMMA 1. Consider two nodes i and j, and let ProxOri be
their proximity score computed on the original graph, and ProxCand

be the one computed on the degree preserving candidate graph.
Then we have ProxOri ≥ ProxCand, for any pair of nodes i and
j.

Proof: Omitted for brevity

2.3 Group-to-Group Proximity
Now, let us generalize our directed proximity measure to mea-

sure the proximity between two groups of nodes. To this end, we
define the group escape probability as:

• gepA,B: the probability that a random particle, starting from
any node in group A (uniformly chosen), will visit any node
in group B, before it returns to any node in group A.

Analogously, we define:

• vk(A,B): the probability that a random particle, starting
from node k, will visit any node in group B, before it vis-
its any node in group A

Therefore our group proximity is defined as follows:

Prox(A,B) � gepA,B =
1

|A|
X
i∈A

nX
k=1

c · pi,k · vk(A,B) (3)

From equations (2) and (3), we see that the node-to-node prox-
imity is a special case of the group-to-group proximity, by setting
A = {i} and B = {j}.

3. FAST SOLUTIONS
Here we deal with the computational aspects of the directed prox-

imity measures defined by equations (2) and (3). First, we will
show that straight-forward ways to compute these proximities cor-
respond to solving a specific linear system, which involves a ma-
trix inversion. Then, we will propose fast solutions for computing
a single proximity on a large graph or all pairwise proximities on
a medium sized graph. Notice that these fast solutions will be also
beneficial for measuring undirected proximity.

3.1 Straightforward Solvers

3.1.1 Node proximity computation
Node proximity is based on the linear system [5]:

vk(i, j) =
nX

t=1

c · pk,tvt(i, j)(k �= i, j)

vi(i, j) = 0; and vj(i, j) = 1 (4)

By solving the above linear system, we have [5]:

Prox(i, j) = c2P(i, I)G′′P(I, j) + cpi,j (5)

where I = V − {i, j}; P(i, I) is the ith row of P without ith and
jth elements; P(I, j) is the jth column of P without ith and jth

elements; and

G′′ = (I− cP(I, I))−1 (6)

3.1.2 Group proximity computation
Using a similar procedure, we reach the following lemma for

computing group proximity:

LEMMA 2. Let C = A ∩ B. If C = Φ, the group proximity –
Prox(A,B) of equation (3) – is determined by equation (7); other-
wise, it is determined by equation (8).

Prox(A,B) =
�1T (c2P(A, I)G′′P(I,B) + cP(A,B))�1

|A| (7)

Prox(A,B) =
|A − C|Prox(A− C,B − C) + |C|

|A| (8)

where I = V − (A∪ B), A− C = {i, i ∈ A, i /∈ C}, B − C =
{i, i ∈ B, i /∈ C}, and G′′ = (I− cP(I))−1

Proof: Omitted for brevity. �

3.1.3 Analysis of computational bottlenecks
Both equations (5) and (7) involve G′′ – an inversion of a matrix.

Suppose |A| � n and |B| � n,1 the major computational cost in
both cases is the inversion of an n×n matrix, which brings up two
computational efficiency challenges:

1. (Setting 1) For a large graph, say with hundreds of thousands
of nodes, matrix inversion would be very slow if not impos-
sible. In this case we would like to completely avoid matrix
inversion when computing a single proximity.

2. (Setting 2) The above computation requires a different ma-
trix inversion for each proximity value. Thus, computing
k proximities, requires performing k separate matrix inver-
sions. We will show how to eliminate all matrix inversions,
but one, regardless of the number of needed proximities.

3.2 Setting 1: Computing a Single Proximity

3.2.1 Fast direction-aware node proximity
We propose FastOneDAP (Table 2), a fast iterative solution for

computing one node proximity.

Table 2: FastOneDAP
Input: The transition matrix P, c, the starting node i
and the ending node j

Output: The proximity from i to j : ̂Prox(i, j)
1. Initialize:

1.1 If i > j, i0 = i; else, i0 = i− 1
1.2 �vT = �yT = �eT

i0
2. Iterate until convergence:

2.1 �yT ← c�yT P(V − {j},V − {j})
2.2 �vT ← �vT + �yT

3. Normalize: �vT ← �vT

�vT (i0)
;

4. Return: ̂Prox(i, j) = c�vT P(V − {j}, j)
In FastOneDAP , the major computational cost lies in the iter-

ative step. Let m be the maximum number of iterations and E
the number of total edges in the graph, The complexity of Fas-
tOneDAP is O(mE). In other words, FastOneDAP is linear in the
number of edges in the graph. Often, real graphs are very sparse,
which means that E is much less than n2 (e.g., for typical graphs
that obey power law [7]: E ∝ n1+ε). Thus, FastOneDAP is signif-
icantly more efficient than the straightforward solver, whose run-
ning time is O(n3) due to matrix inversion.

Before discussing the correctness of FastOneDAP , we need the
following block matrix inversion lemma, which plays an essential
role in our fast solutions:

LEMMA 3. Block Matrix Inversion Lemma: Partition the ma-
trix M into four blocks:

M =

„
A B
C D

«
(9)

1On the other hand, if this is not true, we can always directly get
Prox(A,B) by equation (7) efficiently. Thus, throughout this pa-
per, we suppose that the size of the group is always much smaller
than that of the whole graph.

Then,

M−1 =

„
A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

«
(10)

where S = D−CA−1B

Proof: See, e.g., [10] �

Based on the block matrix inversion lemma, the correctness of
FastOneDAP is guaranteed by the following lemma.

LEMMA 4. The value ̂Prox(i, j), as computed by FastOneDAP con-
verges to the proximity Prox(i, j) defined in equation (5).

Proof: Without loss of generality, we only need to prove the case
when i = n−1 and j = n. Let Vn−1 = V −{j} = {1, ..., n−1}
and Vn−2 = V − {i, j} = {1, ..., n − 2}. (for uniformity, from
now on, we refer V as Vn.) With this notation, we have i0 = n− 1
and G′′ = [g′′

i,j] = (I− cP(Vn−2,Vn−2))
−1.

Define: G′ = [g′
i,j] = (I− cP(Vn−1,Vn−1))

−1 (11)

First, Note that as the iteration k of step 2 goes to infinite:

‖�yT ‖ = ‖�eT
i ckP(Vn−1,Vn−1)

k‖
≤ ck‖�eT

i ‖‖P(Vn−1,Vn−1)
k‖

≤ ck‖P‖ ≤ ck → 0 , (12)

which proves the convergence of step 2 in FastOneDAP .
Next, by Taylor expansion, we have the following equation:

�vT =
∞X

k=0

�eT
i ckP(Vn−1,Vn−1)

k

= �ei

∞X
k=0

ckP(Vn−1,Vn−1)
k

→ �ei · (I− cP(Vn−1,Vn−1)
−1

= G′(i, :) (13)

which proves that at the end of step 2, �vT will converge to the ith

row of G′.
Furthermore, by the lemma for block matrix inversion, we have:

s = c2P(i,Vn−1)G
′′P(Vn−1, i)

g′
i,i =

1

1− cpi,i − s

G′(i,Vn−2) = cP(i,Vn−2)G
′′g′

i,i (14)

Finally, we have:

̂Prox(i, j) = �vT cP(Vn−1, j)

→ G′(i, :)
g′

i,i

cP(Vn−1, j)

= cP(i,Vn−2)G
′′P(Vn−2, j) + cpi,j

= Prox(i, j) (15)

which completes the proof of lemma 4. �

3.2.2 Fast direction-aware group proximity
Similarly, we can develop the following fast algorithm (FastOneG-

DAP ; Table 3) for computing one group proximity on a large graph.

P′ =

„
P(I, I) P(I,A)�1

�1T P(A, I) �1T P(A,A)�1

«
(16)

where I = V − (A∪ B)

Table 3: FastOneGDAP
Input: The transition matrix P, c, the starting group A
and the ending group B(A∩ B = Φ)
Output: The group proximity from A to B : ̂Prox(A,B)
1. Initialize:

1.1 Define matrix P′ as in equation (16)
1.2 �vT = �yT = �eT

i0 , (i0 = |V − A− B|+ 1)
2. Iterate until convergence:

2.1 �yT ← c�yT P′

2.2 �vT ← �vT + �yT

3. Normalize: �vT ← �vT

�vT (i0)
;

4. Return: ̂Prox(A,B) = 1
|A| c�v

T P(V − B,B)�1

As in FastOneDAP , let m be the maximum number of itera-
tions and E′ the total number of edges in P′, the complexity of
FastOneGDAP is O(mE′). Suppose |A| � n and |B| � n, we
have E′ ≈ E. Thus, the complexity of FastOneGDAP is O(mE).
Similarly, we can prove the following lemma for FastOneGDAP .

LEMMA 5. The group proximity ̂Prox(A,B) by FastOneGDAP con-
verges to the proximity Prox(A,B) by equation (7).

Proof: Omitted for brevity. �

3.3 Setting 2: Computing Multiple Proximi-
ties

Earlier we showed how to make the computations efficient, when
we have only one pair of nodes (or one pair of groups) for which we
want the proximity score. Here we show how to estimate multiple
such pairs of scores very efficiently.

3.3.1 Fast direction-aware all-pairs proximity
Suppose that we want to compute all n(n − 1) pairwise node

proximities. There are various situations where one might want to
compute all (or many) proximities. First, collecting all proximi-
ties and studying their distribution can reveal interesting features
of the network and tell us about its global structure. In addition,
some algorithms – such as distance based clustering – require the
knowledge of all (or at least many) pairwise proximities.

Computation of many pairwise proximities in the same network
involves solving many linear systems (in fact, one matrix inversion
for each proximity). However, there is a lot of redundancy among
different linear systems. In fact, we propose a much more efficient
method, that need only solve one linear system (or, invert a sin-
gle matrix) and leverage its result to quickly solve all the others.
Consequently, we suggest the FastAllDAP algortihm (Table 4).

Table 4: FastAllDAP
Input: The transition matrix P, c

Output: All proximities Pr′ = [̂Prox(i, j)]1�i�=j�n

1. Compute G = (I− cP)−1

2. For i = 1 : n
For j = 1 : n (j �= i)

Compute: ̂Prox(i, j) =
gi,j

gi,igj,j−gi,jgj,i

EndFor
EndFor

The major benefit of FastAllDAP is the dramatic reduction of
matrix inversion operations from n(n − 1) to a single one. Its
correctness is guaranteed by the following lemma:

LEMMA 6. FastAllDAP gives exactly the same result as equa-
tion (5) .

Proof: Without loss of generality, we only need to prove that when
i = n − 1 and j = n, ̂Prox(n − 1, n) = Prox(n − 1, n) holds.
Let G′ be defined as in equation (11).

According to the proof of Lemma 4 (Eq. 15), we have

Prox(n− 1, n) =
G′(n− 1, :)cP(Vn−1, n)

g′
n−1,n−1

(17)

Furthermore, by applying the lemma of block matrix inversion [10]
on G and G′, we have:

G′(n− 1, :)cP(Vn−1, n) =
gn−1,n

gn,n

g′
n−1,n−1 = gn−1,n−1 − gn−1,ngn,n−1

gn,n

(18)

Combining equations (17) and (18) we have the proof. �

3.3.2 Fast direction-aware all-pairs group proximity
Let {A1, ...,An1}, {B1, ...,Bn2} be two sets of groups. To

compute all n1 × n2 induced group proximities, we employ the
FastManyGDAP algorithm (Table 5).

Table 5: FastManyGDAP
Input: The transition matrix P, c, two sets of groups:

{A1, ...,An1},{B1, ...,Bn2}
Output: Pr′ = [Prox(Ai,Bj)]1�i�n1 ,1�j�n2

1. Compute G = (I− cP)−1

2. For i = 1 : n1

For j = 1 : n2

2.1 If Ai �= Bj :
2.1.1 M0 = G(Bj ,Bj)

−1

2.1.2 M← G(Ai,Bj)M0G(Bj ,Ai)
2.1.3 M← (G(Ai,Ai)−M)−1

2.1.4 M←MG(Ai,Bj)M0

2.1.5 ̂Prox(Ai,Bj) = 1
|Ai|

�1T M�1

2.2 Else: ̂Prox(Ai,Bj) = 1
EndFor

EndFor

Suppose that |Ai| � n and |Bj | � n. Then, compared with
step 1, the computational cost of Step 2.1.1 and 2.1.3 can be ig-
nored. Thus, if we take matrix inversion as the basic operation,
FastManyGDAP reduces the computational cost from O(n1 × n2)
to O(1). By extending the proof of Lemma 6, we have the follow-
ing lemma:

LEMMA 7. FastManyGDAP gives exactly the same result as
equation (5).

Proof: Omitted for brevity. �

4. APPLICATIONS
We focus on three graph mining applications, to illustrate the ef-

fectiveness of our proposed proximity functions. The applications
are (a) link prediction (b) “Center Piece Subgraphs” for the directed
case and (c) the creation of “Attribute Graphs”.

4.1 Link Prediction
As a proximity measurement, our direction-aware proximity can

be directly used for link prediction. More specifically, it can be
used for the following two tasks:

T1: (Existence) Given two nodes, predict the existence of a link
between them

T2: (Direction) Given two adjacent (linked) nodes, predict the
direction of their link

For T1, we use the simple rule:

A1: Predict a link between i and j iff Prox(i, j) + Prox(j, i) >
th (th is a given threshold).

Alternatively, we can use group proximity for T1:

A1’: (Node Expansion) Predict a link between i and j iff
Prox(N (i),N (j))+Prox(N (j),N (i)) > th, whereN (i)
and N (j) are the neighborhoods of i and j, respectively.

As for directionality prediction, T2, we use the rule:

A2: Predict a link from i to j if Prox(i, j) > Prox(j, i), other-
wise predict the opposite direction.2

Related experimental results will be given in Section 5.

4.2 Directed Center-Piece Subgraph
The concept connection subgraphs, or center-piece subgraphs,

was proposed in [6, 19]: Given Q query nodes, it creates a sub-
graphH that shows the relationships between the query nodes. The
resulting subgraph should contain the nodes that have strong con-
nection to all or most of the query nodes. Moreover, since this sub-
graphH is used for visually demonstrating node relations, its visual
complexity is capped by setting an upper limit, or a budget on its
size. These so-called connection subgraphs (or center-piece sub-
graphs) were proved useful in various applications, but currently
only handle undirected relationships.

With our direction-aware proximity, the algorithm for construct-
ing center-piece subgraphs (CePS) can be naturally generalized to
handle directed graphs. A central operation in the original CePS
algorithm was to compute an importance score, r(i, j) for a sin-
gle node j w.r.t. a single query node qi. Subsequently, these per-
query importance scores are combined to importance scores w.r.t.
the whole query set, thereby measuring how important each node
is relatively to the given group of query nodes. This combination
is done through a so-called K softAND integration that produces
r(Q, j) – the importance score for a single node j w.r.t. the whole
query set Q. For more details please refer to [19].

The main modification that we introduce to the original CePS al-
gorithm is the use of directed proximity for calculating importance
scores. The resulting algorithm is named Dir-CePS and is given in
Table 6.

Directional information must also involve the input to Dir-CePS ,
through the token vector �f = [f1, ...fQ], (fi = ±1), which splits
the query set into “sources” and “targets”, such that each proximity
or path are computed from some source to some target. The re-
maining parts of Dir-CePS are exactly the same as in [19]; details
are skipped here due to space limitations.

Figure 5 presents an example of our Dir-CePS on a citation net-
work (see Subsection 5.1.1 for a description of the data). Given two
papers as the query nodes, by setting different token vectors �f , we
can visually explore different perspectives on how these two papers
relate: (1) let �f = [+1,−1], we can examine how the former paper
influences the latter one (Figure 5(a)); (2) let �f = [+1, +1], we
can visually show how these papers influence other papers (Fig-
ure 5(b)); and (3) let �f = [−1,−1], we can examine how these
papers are influenced by other papers (Figure 5(c)).
2On the other hand, from practical point of view, if Prox(i, j) and
Prox(j, i) is closed with each other(say, by some threshold), we
can always predict a bi-directional edge.

(a) �f = [+1,−1] (b) �f = [+1, +1] (c) �f = [−1,−1]

Figure 5: By employing directional information, Dir-CePS can explore several relationships among the same query nodes (the two
octagonal nodes): (a) A query-node to query-node relations; (b) common descendants of the query nodes (paper number 22154
apparently merged the two areas of papers 2131 and 5036); (c) common ancestors of the query nodes: paper 9616 seems to be the
paper that initiated the research areas of the query papers/nodes.

Table 6: Dir-CePS
Input: digraph W, query setQ = {q1, ..., qQ},

budget b, token vector �f = [f1, ...fQ], (fi = ±1)
Output: the resulting subgraph H
1. For each query node qi ∈ Q

For each node j in the graph
If fqi = +1, r(i, j) = Prox(qi, j)
Else, r(i, j) = Prox(j, qi)

2. Combine r(i, j) to get r(Q, j) by K softAND
3. WhileH is not big enough

3.1 Pick up the node pd = argmaxj/∈Hr(Q, j)
3.2 For each active source qi wrt pd

3.2.1 If fqi = +1, find a key path from qi to pd
Else, find a key path from pd to qi

3.2.2 Add the key path toH

4.3 Attribute Graph
For graphs whose nodes are associated with discrete attributes,

we would like to explore the relationships among these attributes,
and find, e.g., which attributes are close and whether we can find
symmetric attributes. For example, consider an who-mails-whom
network, where nodes/people are labeled by their job title - we want
to find whether and how “managers” are related to “sales-persons”,
and conversely. We propose to use our group proximity scores, to
construct an Attribute Graph (AG):

DEFINITION 2. Let W be a directed graph, where the nodes
have an attributed with n′ categorical values (a1, ..., an′). Let Ai

be the group of nodes whose attribute value is ai. The associated
attribute graph AG is an n′ × n′ weighted digraph where every
node corresponds to an attribute and the edge weights show the
group-to-group proximity scores: AG(ai, aj) = Prox(Ai,Aj).

The Web Link dataset (WL) is described in Subsection 5.1.1. It
consists of web pages pointing to each other, and every web page
has one of the labels: ’faculty’, ’project’, ’staff’ etc. We show
its attribute graph in Figure 6. All edges of weight less than 0.05
were removed for visual clarity. This graph reveals interesting re-
lationships among the attributes. For example, we can observe the
roles of different attributes: ‘department’ as the “core”, ‘staff’ as
the “sent-out guy”, and ‘student’ as the “sink”. Closely related
attributes include ‘faculty’–‘course’, and ‘staff’–‘project’. How-
ever, we can see that while ‘faculty’ and ‘course’ are symmetrically
close, the ‘staff’–‘project’ closeness is asymmetric.

Figure 6: Attribute graph for the Web Link dataset

5. EXPERIMENTAL RESULTS
We present experiments on large, real datasets. Our goals are to

do an evaluation of our design decisions, to illustrate the effective-
ness of our approach on real tasks like link prediction, and to study
the scalability of our methods. We start with the description of our
datasets.

5.1 Experimental Setup

5.1.1 Datasets
We experimented with the following directed networks:
WL (Web Link Graph)3. In this unweighted graph, nodes de-

note web pages, and edges correspond to web links. The nodes are
associated with one of the seven attributes: ‘Department’, ‘Staff’,
‘Student’, ‘Faculty’, ‘Course’, ‘Project’ and ‘Other’. Totally, there
are ≈ 4K nodes and ≈ 10K edges.

PC Personal Contact Network This dataset is a subset of an
anonymized who-contacts-whom network. Nodes correspond to
users, and edges are weighted by the corresponding average daily
contact time. Totally, there are ≈ 36K nodes and ≈ 64K edges.

CN (Citation Network)4. This is an unweighted citation net-
work, containing a subset of the arXiv dataset. Nodes are papers
and edges are citations. It has ≈ 28K nodes and ≈ 353K edges.

3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
20/www/data/
4http://www.cs.cornell.edu/projects/kddcup/datasets.html

EP (Epinions Who-Trusts-Whom Network)5. Unweighted net-
work, used in [4]. Nodes denote users, and edge (i, j) means that
user i trusts user j. It has ≈ 76K nodes and ≈ 509K edges.

AE (Anonymous Email Network). This network describes un-
weighted relations among email accounts from a large research or-
ganization. Nodes are (anonymized) accounts, and edge (i, j) in-
dicates that account i has sent one or more e-mail messages to ac-
count j. There are ≈ 38K nodes and ≈ 115K edges.

5.1.2 Parameter settings
After a parametric study (details skipped for space limitation),

we set low values to the parameters c (strength of sink connec-
tions) and β (the symmetrization factor), and specifically c = 0.99
and β = 0.001 for all the experiments. We stop the iterations in
both FastOneDAP and FastOneGDAP when we reach m = 80 it-
erations, or when the L2 difference between successive values of
�v is below some threshold (ξ = 10−9). All experiments were per-
formed on the same machine with a 3.2GHz Pentium CPU and 2GB
memory.

5.2 Link Prediction Effectiveness
First, we evaluate the ability to predict the existence of a link.

We compare four methods: A1 (plain node-to-node comparisons,
see Subsection 4.1) utilizing directionality (ND), and ignoring di-
rectionality (NU); A1’(Node Expansion - see Subsection 4.1) uti-
lizing directionality (GD), and ignoring it (GU). For all the meth-
ods, the threshold (th) is determined by leave-one-out cross valida-
tion [12]. For all the experiments, the number of test pairs with link
between them roughly equals the number of unlinked test pairs. In
addition to the prediction accuracy, we also use average margin
(AM):6. Suppose we have n′ test pairs: (i1, j1), . . . , (in′ , jn′).
Let Sc(k) = Prox(ik, jk)+Prox(jk, ik) when using A1 or Sc(k) =
Prox(N (ik),N (jk))+Prox(N (jk),N (ik)) when using A1’. The
average margin (AM) is defined as:

AM =
1

n′

n′X
k=1

e(Sc(k)−th)y(k) (19)

where y(k) = 1 if there exists a link between ik and jk, whereas
y(k) = −1 otherwise. Basically, AM estimates the confidence
of the prediction by measuring how far the test pair is from the
threshold (further is better).

The results are shown in Tables 7 and 8. It can be seen that while
all four methods are effective for link prediction, the direction-
aware proximity (both node and group versions) is usually better
than the undirected proximity. E.g., in terms of prediction accuracy,
the winning method is always based on direction-aware proximity.
Another interesting observation is that the methods based on group
proximity (GD and GU) usually outperform those based on node
proximity (PD and PU). In particular, GD and GU tend to lead to
much higher margins (AM) than PD and PU.

We also evaluated the performance on predicting the direction
of a link; see Table 9. Please notice that here comparison with
an undirected version is inherently impossible. Our method seems
to be effective on all datasets, though its degree of success varies
a lot among the datasets . Additionally, we construct a test set
(i1, j1), . . . , (in′ , jn′), such that for each pair (ik, jk) in the test
set, there exists a link from ik to jk and there is no link in the
opposite direction. Figure 7 plots the histogram of Prox(ik, jk)−
Prox(jk, ik) for WL . It can be seen that as desired, the histogram

5http://www.epinions.com/
6The motivation behind it is based on the optimization criteria in
logistic regression and boosting [3, 8]

Table 7: Existence of link (Accuracy); percents indicates frac-
tion of successful predictions. Directionality-aware methods
(GD, ND) outperform the rest

Dataset GD GU ND NU

WL 65.49% 65.42% 65.42% 65.42%
PC 81.20% 81.20% 79.60% 80.78%
AE 82.51% 81.81% 81.51% 80.60%
CN 85.10% 86.71% 86.71% 84.00%
EP 88.07% 87.31% 92.21% 92.09%

Table 8: Existence of link (Average Margin); higher values in-
dicate greater confidence. Again, directionality-aware methods
win (GD,ND); Node expansion also helps (GD method).

Dataset GD GU ND NU

WL 1.58 1.58 1.16 1.16
PC 1.36 1.36 1.12 1.12
AE 1.33 1.33 1.03 1.03
CN 1.44 1.48 1.48 1.44
EP 1.28 1.25 1.02 1.02

is biased w.r.t. the origin: there are many more pairs in the positive
zone.

Table 9: Predicting the direction of a link
Dataset Accuracy

WL 62.4%
AE 81.4%
EP 75.2%
PC 56.7%
CN 92.4%

5.3 Computational Efficiency
We measured the efficiency of the proposed fast solutions. A

subset of the EP network is adopted to verify how the fast solutions
scale with the size of the graph. Let N ′ be the number of nodes
in the subset. We fix the group size to be 0.01N′ . To test Fast-
ManyGDAP , we generate two sets of groups, each of them contains
0.25N ′ groups; and we compute totally 0.25N′ × 0.25N ′ group
proximities. Figure 8 plots the mean running times vs. the number
of the nodes. Notice that the y axis is logarithmic, to accommodate
the huge performance savings of our methods. In all cases, our so-
lutions are 1-4 orders of magnitude faster than the straight-forward
ones. For example, for a graph with 61K nodes and 484K edges,
FastOneDAP is 59,000 times faster than the straight-forward meth-
ods (2.2 sec vs. 114K sec), and FastOneGDAP is 18,000 times
faster(6.2 sec vs. 111K sec); for a graph with 5K nodes and 25K
edges, FastAllDAP is 3, 000 times faster (57 sec vs. 167K sec),
and FastManyGDAP is 57 faster (2.8K Sec vs. 163K Sec). We
stress that, in all cases, our proposed methods do not lose accuracy
since they either converge (FastOneDAP and FastOneGDAP) or
are exactly equal (FastAllDAP and FastManyGDAP) to the true
proximity value.

Figure 8: Evaluation on the efficiency of the proposed fast solutions(The running time is in Log scale)

1 2 3 4 5 6 7 8

x 10
4

0.1

1

10

10^2

10^3

10^4

10^5

10^6

of Nodes in the Graph

M
ea

n
R

un
ni

ng
 T

im
e

FastOneDAP
Straight_OneDAP
FastOneGDAP
Straight_OneGDAP

1000 2000 3000 4000 5000 6000
0.1

1

10

10^2

10^3

10^4

10^5

10^6

of Nodes in the Graph

M
ea

n
R

un
ni

ng
 T

im
e

Straight_AllDAP

FastAllDAP

1000 2000 3000 4000 5000 6000
1

10

10^2

10^3

10^4

10^5

10^6

of Nodes in the Graph

M
ea

n
R

un
ni

ng
 T

im
e

Straight_ManyGDAP

FastManyGDAP

Computation of one proximity Computation of all proximities Computation of many proximities

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10^(−6)

10^(−4)

10^(−2)

1

Figure 7: Density histogram of Prox(ik, jk) − Prox(jk, ik) on
the WL dataset. Successful predictions correspond to the posi-
tive values of the x axis, and they clearly outnumber the wrong
predictions (the negative x-values).

6. RELATED WORK
In the literature, there are several measures of node proximity.

Most standard measures are based on basic graph theoretical con-
cepts - the shortest path length and the maximum flow. However
the dependency of these measures on a single element of the graph
– the shortest path or the minimum cut – makes them more suitable
to managed networks, but inappropriate for measuring the random
nature of relationships within social networks or other self orga-
nizing networks. Consequently, some works suggested more in-
volved measures such as the sink-augmented delivered current [6],
cycle free effective conductance [15], survivable network [11], ran-
dom walks with restart [14, 17] and more. Notice that none of the
existing methods meets all the three desirable properties that our
approach meets: (a) dealing with directionality, (b) quality of the
proximity score and (c) scalability.

Graph proximity is an important building block in many graph
mining settings. Representative work includes connection subgraph [6,
15, 19], personalized PageRank [13], neighborhood formulation
in bipartite graphs [18], content-based image retrieval [14], cross
modal correlation discovery [17], the BANKS system [1], link pre-
diction [16], detecting anomalous nodes and links in the graph [18],
ObjectRank [2] and RelationalRank [9].

7. CONCLUSIONS
In this work, we study the role of directionality in measuring

proximity on graphs. We define a direction-aware proximity mea-
sure based on the random walk notion of escape probability. This
measure naturally weights and quantifies the multiple relationships
which are reflected through the many paths connecting node pairs.
Moreover, the proposed proximity measure is carefully designed
to deal with practical situations such as accounting for noise and

facing partial information. A useful generalization of the measure
deals with proximity between groups of nodes.

Given the growing size of networked data, a good proximity
measure should be accompanied with a fast algorithm. Conse-
quently we offer fast solutions, addressing two settings. First, an it-
erative algorithm, with convergence guarantee, to compute a single
node-to-node proximity value on a large graph. Second, an accurate
algorithm that computes all (or many) pairwise proximities on a
medium sized graph. These proposed algorithms achieve orders of
magnitude speedup compared to straightforward approaches, with-
out quality loss.

We have studied the applications of the proposed proximity mea-
sure to real datasets. Encouraging results demonstrate that the mea-
sure is effective for link prediction. Importantly, being direction-
aware, it enables predicting not only the existence of the link but
also its direction. Another application is the so-called directed
center-piece subgraph, where we employ the proposed proximity
measure to carefully select presentable subgraphs that capture rela-
tions among a set of query nodes. In addition, our proposed group
proximity is useful to explore the relationship among attributes by
building Attribute Graph.

8. REFERENCES
[1] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe,

and S. S. Parag. Banks: Browsing and keyword searching in
relational databases. In VLDB, pages 1083–1086, 2002.

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Objectrank: Authority-based keyword search in databases. In
VLDB, pages 564–575, 2004.

[3] M. Collins, R. Schapire, and Y. Singer. Logistic regression,
adaboost and bregman distance. In Proceedings of Thirteenth
Annual Conference on Computational Learning Theory,
2000.

[4] P. Domingos and M. Richardson. Mining the network value
of customers. KDD, pages 57–66, 2001.

[5] P. Doyle and J. Snell. Random walks and electric networks,
volume 22. Mathematical Association America, New York,
1984.

[6] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast
discovery of connection subgraphs. In KDD, pages 118–127,
2004.

[7] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. SIGCOMM, pages
251–262, Aug-Sept. 1999.

[8] J. Friedman. Greedy function approximation: A gradient
boosting machine. In Annual of Statistics, 2001.

[9] F. Geerts, H. Mannila, and E. Terzi. Relational link-based
ranking. In VLDB, pages 552–563, 2004.

[10] G. Golub and C. Loan. Matrix Computation. Johns Hopkins,
1996.

[11] M. Grötschel, C. L. Monma, and M. Stoer. Design of
survivable networks. In Handbooks in Operations Research
and Management Science 7: Network Models. North
Holland, 1993.

[12] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. Springer.

[13] T. H. Haveliwala. Topic-sensitive pagerank. WWW, pages
517–526, 2002.

[14] J. He, M. Li, H. Zhang, H. Tong, and C. Zhang.
Manifold-ranking based image retrieval. In ACM
Multimedia, pages 9–16, 2004.

[15] Y. Koren, S. C. North, and C. Volinsky. Measuring and
extracting proximity in networks. In KDD, pages 245–255,
2006.

[16] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In Proc. CIKM, pages 556–559,
2003.

[17] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu.
Automatic multimedia cross-modal correlation discovery. In
KDD, pages 653–658, 2004.

[18] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos.
Neighborhood formation and anomaly detection in bipartite
graphs. In ICDM, pages 418–425, 2005.

[19] H. Tong and C. Faloutsos. Center-piece subgraphs: Problem
definition and fast solutions. In KDD, pages 404–413, 2006.

APPENDIX

Variants
There are some plausible variants of the proposed direction-aware
proximity. One possibility is to multiply the escape probability by
the out-degree of the origin node:

Prox(i, j) � Di,i · epi,j (20)

By multiplying by the degree, we measure absolute connectiv-
ity instead of relative connectivity. This way, proximities related to
high degree nodes become more prominent. Interestingly, for undi-
rected graphs multiplying the escape probability by the origin’s de-
gree is equivalent to effective conductance [5].

Some recent works [17, 19] relied on another random work no-
tion for measuring node proximity on graphs - random walk with
restart. This notion considers a random walk that starts wander-
ing in the graph beginning at an origin node i, and at each step has
some probability 1− c to retract back to i. Then, Prox(i, j) could
be defined as the steady state probability ri,j that the particle will
finally stay at node j.

Based on the proof of Lemma 6, the relationship between ran-
dom walk with restart and escape probability (ep) is made explicit
by the following lemma:

LEMMA 8. Let ri,j be the steady-state probability for node j
w.r.t. node i, then:

epi,j =
(1− c)ri,j

ri,irj,j − ri,jrj,i
(21)

Acknowledgement
This material is based upon work supported by the National Sci-
ence Foundation under Grants No. IIS-0326322 IIS-0534205 and
under the auspices of the U.S. Department of Energy by University
of California Lawrence Livermore National Laboratory under con-
tract No.W-7405-ENG-48. This work is also partially supported
by the Pennsylvania Infrastructure Technology Alliance (PITA), an
IBM Faculty Award, a Yahoo Research Alliance Gift, with addi-
tional funding from Intel, NTT and Hewlett-Packard. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily re-
flect the views of the National Science Foundation, or other funding
parties. The authors give their sincere gratitude to Chris Volinsky,
Jure Leskovec, Pedro Domingos and Matt Richardson for helping
us collect some of the datasets.

