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Abstract—Bug tracking systems, which help to track the
reported software bugs, have been widely used in software devel-
opment and maintenance. In these systems, recognizing relevant
source files among a large number of source files for a given bug
report is a time-consuming and labor-intensive task for software
developers. To tackle this problem, information retrieval methods
have been widely used to capture either the textual similarities
or the semantic similarities between bug reports and source files.
However, these two types of similarities are usually considered
separately and the historical bug fixings are largely ignored by the
existing methods. In this paper, we propose a supervised topic
modeling method (STMLOCATOR1) for automatically locating
the relevant source files for a given bug report. In particular,
the proposed model is built upon three key observations. First,
supervised modeling can effectively make use of the existing fixing
histories. Second, certain words in bug reports tend to appear
multiple times in their relevant source files. Third, longer source
files tend to have more bugs. By integrating the above three
observations, the proposed STMLOCATOR utilizes historical
fixings in a supervised way and learns both the textual similarities
and semantic similarities between bug reports and source files.
We further consider a special type of bug reports with stack-
traces in bug reports, and propose a variant of STMLOCATOR
to tailor for such bug reports. Experimental evaluations on three
real data sets demonstrate that the proposed STMLOCATOR
can achieve up to 23.6% improvement in terms of prediction
accuracy over its best competitors, and scales linearly with the
size of the data. Moreover, the proposed variant further improves
STMLOCATOR by up to 76.2% on those bug reports with stack-
traces.

Index Terms—Bug localization, bug reports, supervised topic
modeling

I. INTRODUCTION

During software development and maintenance, the project
team often receives and records a large number of bug reports
describing the details of program defects or failures. For
example, as recorded in the bug tracking system, there are
over 145,000 verified bug reports in the Eclipse project.
Based on these bug reports, however, it is time-consuming
and labor-intensive for developers to manually recognize the
relevant buggy source files and fix the bugs therein [1]. For
example, among the 9,000 bug reports we collected from the
Eclipse project, it takes 86 days on average to fix a single
bug. Therefore, automatically locating the relevant source files
for a given bug report is crucial to improve the efficiency
of software development and maintenance. We refer to this
problem as bug localization in this work.

1The code is available on https://github.com/Ghostcandywyj/STMLocator

In recent years, Information Retrieval (IR) methods have
been used to automatically identify the relevant source files
based on bug reports (see the related work section for a
review). The basic idea is to identify the possible buggy source
files based on their content similarities to the bug reports [2].
There are basically two types of content similarities used in
literature: textual similarities which can be captured by the
vector space, and semantic similarities which can be learned
by the topic models.

Despite the success of existing IR methods, they typically
suffer from the following two limitations. First, the existing
bug fixing histories are either ignored or used in an unsu-
pervised way (e.g., finding the source files of similar bug
reports). From data mining perspective, using such fixing
histories as supervision information can potentially achieve
higher localization accuracy compared to the unsupervised
IR methods. Second, the textual similarity and the semantic
similarity are usually considered separately, although these two
types of content similarities are inherently complementary to
each other.

In this paper, we propose a supervised topic modeling
method (STMLOCATOR) for automatically locating the rele-
vant buggy source files for a given bug report. In particular, the
proposed STMLOCATOR consists of three major components.
First, to make use of the historical fixings, we encode them
as supervision information in a generative model. Second, to
seamlessly integrate the textual similarity and semantic simi-
larity, we adopt topic modeling to capture semantic similarity
and further incorporate the textual similarity by modeling the
word co-occurrence phenomenon. Here, word co-occurrence
means that some words have appeared in both the bug reports
and the source files, and we provide empirical validation of
this phenomenon. Third, we encode the length of source files
(e.g., lines of codes) into the model as longer source files tend
to have more bugs. The empirical validation on this longer-
file phenomenon is also provided. Based on the proposed
STMLOCATOR, we further consider a special type of bug
reports with stack-traces (e.g., see Figure 4). Since the stack-
traces may directly contain the names of buggy source files, we
use regular expression to match the source files in stack-traces
and propose a variant of STMLOCATOR to integrate the results
from regular expression matching and STMLOCATOR for the
bug reports with stack-traces. Finally, we conduct experimental
evaluations on three real data sets, and the results demonstrate
the effectiveness and efficiency of the proposed method.

The main contributions of this paper include:



TABLE I: Notations.

Symbol Description
M # of bug reports
K # of topics/source files
V the vocabulary

D = {d1, d2, ..., dM} bug report collection
S = {s1, s2, ..., sK} source file collection
d = {w1, w2, ..., wNd

} a bug report d
s = {w1, w2, ..., wTs} a source file s

Λd relevant topics/source files for d

• A generative model STMLOCATOR for bug localization
based on bug reports. The proposed STMLOCATOR
model adopts supervised topic modeling and charac-
terizes both the textual similarities and the semantic
similarities between bug reports and source files. We
further tailor STMLOCATOR to deal with the cases when
there are stack-traces in bug reports.

• Experimental evaluations on three real data sets showing
that the proposed STMLOCATOR can achieve up to
23.6% improvement in terms of prediction accuracy over
its best competitors. Moreover, up to 76.2% additional
improvement can be achieved by tailoring STMLOCA-
TOR for bug reports with stack-traces.

The rest of the paper is organized as follows. Section 2
states the problem definition. Section 3 describes the proposed
approach. Section 4 presents the experimental results. Section
5 covers related work, and Section 6 concludes the paper.

II. PROBLEM STATEMENT

In this section, we present the notations and problem
definition. We use D to denote the collection of input bug
reports2. Each bug report d ∈ D contains a list of Nd words
and is relevant to a list of source files Λd

3. Similarly, we use
S to denote the collection of input source files. Each source
file s ∈ S contains a list of Ts words. All the words in bug
reports4 form the vocabulary V . Furthermore, we use M to
indicate the number of bug reports, and K to indicate the
number of topics. The main symbols used in this paper are
listed in Table I.

With the above notations, we define the bug localization
problem as follows.

Problem 1. Bug Localization Problem
Given: (1) a collection of bug reports D, where each bug

report d ∈ D contains Nd words and is relevant to
source files Λd, (2) a collection of source files S,
where each source file s contains Ts words, and (3)
a new bug report dnew /∈ D which contains Ndnew

words;
Find: the relevant source files for the new bug report dnew.

As we can see from the above problem definition, we have
the words from bug reports and source files as well as the

2In this paper, we interchangeably use ‘document’ and ‘bug report’.
3A bug report may relate to multiple source files.
4To simplify the processing of source files, we only keep the words in

source flies that have appeared in the bug reports.

historical fixings (i.e., bug reports and their relevant source
files) as input. The goal is to identify the relevant source files
for a new bug report.

III. THE PROPOSED APPROACH

In this section, we present the proposed STMLOCATOR.
We start with the key intuitions and observations, and then
present the proposed model followed by a brief description of
the learning algorithm. After that, we present a STMLOCATOR
variant for bug reports with stack-traces.

A. Intuitions and Observations

Before describing the proposed STMLOCATOR model, we
first present three key observations.

Observation 1: Supervised topic modeling. To make use
of the existing fixing histories between source files and bug
reports, as well as the rich text content in both bug reports
and source files, a natural tool is supervised topic modeling.
That is, we use the source files related to a bug report as its
labels, and the goal is to predict the relevant source files for a
new bug report. In particular, each source file is a unique topic
(i.e., K = |S|), and we leverage the relevant source files for a
bug report to guide its topics. The supervision information is
encoded in Λ, where Λd is a vector of length K with Λd,s ∈
{0, 1} indicating whether the source file s is relevant to bug
report d.

Observation 2: Word co-occurrence phenomenon. The
second key observation is the word co-occurrence in bug
reports and source files, i.e., the certain words in bug reports
tend to appear multiple times in their relevant source files.

To verify the co-occurrence phenomenon, we collect three
Eclipse projects (i.e., JDT, PDE, and Platform; see Section 5
for more details about the data sets). For each bug report, we
study the number of words in each of its relevant source files
that have also appeared in the bug report. The results of JDT,
PDE and Platform data are shown in Figure 1(a), Figure 1(b),
and Figure 1(c), respectively. In the figures, we denote a bug
report and its related source files as ‘R-S pairs’; the x-axis
indicates the number of common words in a R-S pair, and
the y-axis indicates the percentage of the corresponding R-S
pairs. Based on the figure, over 90% R-S pairs have at least
one common word, and there are 20, 11, and 10 common
words on average for R-S pairs in the JDT, PDE, and Platform,
respectively. Therefore, we can conclude that the word co-
occurrence phenomenon widely exists in our bug localization
data sets. We will explicitly model this phenomenon in our
STMLOCATOR.

Observation 3: Longer-file phenomenon. Intuitively,
longer source files tend to have more bugs [3]. To verify
such phenomenon, we calculate the Spearman correlation
coefficients between the length of a source file (i.e., LOC)
and the number of bugs in the source file (i.e., the number of
relevant bug reports). The results on JDT, PDE, and Platform
data are shown in Figure 2(a), Figure 2(b), and Figure 2(c),
respectively. The x-axis in the figures is the length of source
files, and the y-axis is the number of bugs in the corresponding



(a) Word co-occurrence phenomenon in
JDT

(b) Word co-occurrence phenomenon in
PDE

(c) Word co-occurrence phenomenon in
Platform

Fig. 1: Word co-occurrence phenomenon. That is, most of the words in bug reports have appeared in source files. This phenomenon widely
exists in the three data sets.

(a) Longer-file phenomenon in JDT
(Spearman coefficient=0.7031 with
p-value<0.001)

(b) Longer-file phenomenon in PDE
(Spearman coefficient=0.6216 with
p-value<0.001)

(c) Longer-file phenomenon in Platform
(Spearman coefficient=0.5162 with
p-value<0.001)

Fig. 2: Longer-file phenomenon. That is, longer source files tend to have more bugs. This phenomenon holds for all the three data sets.

source files. As we can see from the figures, there is a
significant positive correlation (i.e., the Spearman correlation
coefficient is larger than 0.5) between the length of source files
and the number of bugs. We will encode the length of source
files as prior in our model.

B. The STMLocator Model

Next, we describe the proposed STMLOCATOR model
which combines the above three observations together. Fig-
ure 3 shows the overall graphical representation for STMLO-
CATOR. Corresponding to the above three observations, there
are three integral parts in the STMLOCATOR model.
• Supervised topic modeling. First, STMLOCATOR builds

upon the LDA model [4] and its generalized version
LLDA [5] for supervised topic modeling. For each bug
report, LDA assumes that it has several latent topics (θ).
Words in the bug report are generated from a specific
topic (z) and the topic-word distributions (Φ). Then, we
assume that the relevant source files (Λ) of the given bug
report determine the latent topics during the generative
process. Here, each source file corresponds to one unique
topic.

• Modeling word co-occurrence phenomenon. Next, to
characterize the word co-occurrence phenomenon, when
generating a word, we either generate it from the topics
or directly from the co-occurrence words. Specially, we
introduce a latent variable x to indicate the probability

that the word w is generated by the co-occurrence words
in both source files and bug reports, or by the topic-word
distribution Φ. When the word is generated by the co-
occurrence words, we use the specific topic/source file
z and the topic-word distribution Ω. The latent variable
x is sampled from a Bernoulli distribution Ψ, and it is
dependent on the specific topic z (i.e., different topics
have different probabilities).

• Modeling longer-file phenomenon. Finally, to model
the longer-file phenomenon, we introduce an asymmetric
Dirichlet prior (l) to indicate the different probabilities to
choose different topics/source files for each bug report.
The intuition is that, if a source file has a longer length,
it is likely to contain more bugs and thus has a higher
probability to be chosen as the specific topic z.

Although the supervised topic modeling only allows predicting
the source files with bugs before, the word co-occurrence
phenomenon extends the prediction to non-buggy source files
with the help of the co-occurrence words.

In practice, there are several design choices to set the length
of source files (e.g., linear or logarithmic) and the range of
co-occurrence words (e.g., identifiers or annotations). We will
experimentally evaluate these choices in our experiments.

The generative process of STMLOCATOR is shown below.

1) Draw Dirichlet prior
a) Draw asymmetric prior l ∼ Dir(α′)



M: # bug reports
N: # words
K: # topics/source files
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Fig. 3: Graphical representation of STMLOCATOR.

2) Draw topic-word distributions
a) For each topic k ∈ [1,K]:

i) Draw probability distribution Ψk ∼ Beta(η)
ii) Draw topic-word distribution Φk ∼ Dir(β)

iii) Draw topic-term distribution Ωk ∼ Dir(µ)

3) Draw words for each document d ∈ [1,M ]

a) For each topic k ∈ [1,K]:
i) Draw Λd,k ∈ {0, 1} ∼ Bernoulli(γ)

b) Draw Dirichlet prior αd = Λd ◦ α · l
c) Draw topic distribution θd ∼ Dir(αd)
d) For each word i ∈ [1, Nd]:

i) Draw topic zi ∼Mult(θd)
ii) Draw potential word from Ωzi distribution

wi,Ω ∼Mult(Ωzi)
iii) Draw potential word from Φzi distribution

wi,Φ ∼Mult(Φzi)
iv) Draw xi ∈ {0, 1} ∼ Bernoulli(Ψzi)
v) Draw the final word wi = (wi,Ω)xi ·(wi,Φ)1−xi

In the above generative process, Step 1 draws an asymmetric
prior l from a Dirichlet prior α′. l indicates the weight of each
source file and it satisfies

K∑
k=1

α′lk = Kα′. (1)

C. Learning Algorithm

For the learning algorithm of STMLOCATOR, we first
need the computation of the following joint likelihood of
the observed variables (i.e., L, W , and Λ) and unobserved
variables (i.e., Z and X).

p(Z,X,W,Λ, L) =p(Z|αL,Λ) · p(L|α′)·
p(X|η, Z) · p(Λ|γ)·
p(W |Z,X, β) · p(W |Z,X, µ).

(2)

Then, we can use the above likelihood to derive update rules
for θ, Ψ, Ω, and Φ. In the model, p(L|α′) and p(Λ|γ) are
constants and they can be ignored in the inference5.

5We incorporate these two terms in the model for completeness

For Eq. (2), we first have

p(Z|αL,Λ) =

M∏
m=1

p(Zm|αL,Λ) =

M∏
m=1

∆(Nm + αL)

∆(α)
,

(3)
where Nm indicates the number of words in document m,
and L indicates the length of each source file in Z. The above
equations can be derived by expanding the probability density
expression of Dirichlet distribution, and applying the standard
Dirichlet multinomial integral.

Next, for p(X|η, Z), we have

p(X|η, Z) =

K∏
k=1

B(Nk + η)

B(η)
, (4)

where Nk incidates the number of words that belong to topic
k, and X is composed of 0s or 1s to determine where a word
is generated from. In following equations, we divide Nk into
two parts: Nk,1 and Nk,0. B(η) is a normalization constant to
ensure that the total probability integrates to 1. B(η) is defined

as B(η) =
Γ(η1)Γ(η0)

Γ(η1 + η0)
.

Finally, for p(W |Z,X, β, η), we have

p(W |Z,X, β, µ)

=

∫
p(W |Z,X,Φ)p(Φ|β) dΦ

∫
p(W, |Z,X,Ω)p(Ω|µ) dΩ

=

K∏
k=1

∆(Nk,0 + β)

∆(β)

K∏
k=1

∆(Nk,1 + µ)

∆(µ)
,

(5)
where Nk,1 is the number of words generated by topic-word
distribution Ωk, and Nk,0 indicates the number of words
generated by topic-word distribution Φk. The computation of
p(W |Z,X,Φ) and p(Φ|β) in the above equation is similar to
that of the traditional LDA model. For Eq. (5), when X is set
to 1,

∏K
k=1

∆(Nk,0 + β)

∆(β)
will be a constant; when X is set to

0,
∏K

k=1

∆(Nk,1 + µ)

∆(µ)
will be a constant.

Putting the above equations together, we have



Algorithm 1 The Learning Algorithm for STMLOCATOR

Input: Collection of bug reports D and source files S
Output: θ, Ψ, Φ, Ω

1: Initialize topic zm,i for all m and i randomly;
2: while not convergent do
3: for document m← [1,M ] do
4: for word i← [1, Nm] do
5: zm,i ← 0;
6: update nm,k, nm, nk,x, nk and nk,i,x;
7: for topic k ← [1,K] do
8: if word i ∈ Tk then
9: P (zm,i = k, x = 1)← nm,k+αlk

nm+Kα ·
nk,1+η1
nk+η0+η1

·
nk,i,1+µ
nk,1+V µ ;

10: P (zm,i = k, x = 0)← nm,k+αlk
nm+Kα ·

nk,0+η0
nk+η0+η1

·
nk,i,0+β
nk,0+V β ;

11: else
12: P (zm,i = k)← nm,k+αlk

nm+Kα ·
nk,i,0+β
nk,0+V β ;

13: end if
14: end for
15: sample topic zm,i by P (zm,i);
16: update nm,k, nm, nk,x, nk and nk,i,x;
17: end for
18: end for
19: update θ,Ψ,Φ,Ω via Eq. (7);
20: end while
21: return θ,Ψ,Φ,Ω

p(Z,X,W,Λ, L) ∝
M∏
m=1

∆(Nm + αL)

∆(α)
·
K∏
k=1

B(Nk + η)

B(η)

·
K∏
k=1

∆(Nk,0 + β)

∆(β)
·
K∏
k=1

∆(Nk,1 + µ)

∆(µ)
.

(6)
The purpose of the training stage is to obtain θ, Ψ, Ω, and

Φ, where θ represents the topic distribution of each document,
and Ψ represents the distribution to indicate whether the word
is generated by the topic-word distribution Ω or generated by
the topic-word distribution Φ. Based on Eq (6), the equations
for computing these parameters are listed as follows

θm,k =
nm,k + αklk∑K

k′=1(nm,k′ + αk′)
,

Ψk =
nk,1 + η1∑1

x=0(nk,x + ηx)
,

Φk,v =
nk,v,0 + βv∑V

v′=1(nk,v′,0 + βv′)
,

Ωk,v =
nk,v,1 + µv∑V

v′=1(nk,v′,1 + µv′)
,

(7)

where nm,k indicates the number of words that belong to topic
k in document m, nk,1 indicates the number of words that
belong to topic k and are generated by topic-word distribution

When finding references  Java Search fails with NullPointerException, I receive the following error when trying to find 

references to anything: An internal error occurred during: ”Java Search”.java.lang.NullPointerException

I have deleted my workspace created a new one and still am receiving this issue. Here is the stack trace:

java.lang.NullPointerException:

at org.eclipse.core.runtime.Path.<init>(Path.java:183) 

at org.eclipse.core.internal.resources.WorkspaceRoot.getProject(WorkspaceRoot.java:182) 

at org.eclipse.jdt.internal.core.JavaModel.getJavaProject(JavaModel.java:169)   

at org.eclipse.jdt.internal.core.search.IndexSelector.getJavaProject(IndexSelector.java:304)    

at org.eclipse.jdt.internal.core.search.IndexSelector.initializeIndexLocations(IndexSelector.java:232)  

at org.eclipse.jdt.internal.core.search.IndexSelector.getIndexLocations(IndexSelector.java:294) 

at org.eclipse.jdt.internal.core.search.JavaSearchParticipant.selectIndexURLs(JavaSearchParticipant.java:148)   

at org.eclipse.jdt.internal.core.search.PatternSearchJob.getIndexes(PatternSearchJob.java:84)   

at org.eclipse.jdt.internal.core.search.PatternSearchJob.ensureReadyToRun(PatternSearchJob.java:52) 

at org.eclipse.jdt.internal.core.search.processing.JobManager.performConcurrentJob(JobManager.java:174) 

at org.eclipse.jdt.internal.core.search.BasicSearchEngine.findMatches(BasicSearchEngine.java:215)   

at org.eclipse.jdt.internal.core.search.BasicSearchEngine.search(BasicSearchEngine.java:516)    

at org.eclipse.jdt.core.search.SearchEngine.search(SearchEngine.java:584)   

at org.eclipse.jdt.internal.ui.search.JavaSearchQuery.run(JavaSearchQuery.java:144) 

at org.eclipse.search2.internal.ui.InternalSearchUI$InternalSearchJob.run(InternalSearchUI.java:91) 

at org.eclipse.core.internal.jobs.Worker.run(Worker.java:54)
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Fig. 4: An example bug report that contains a stack-trace.

Ω, nk,0 indicates the number of words that belong to topic
k and are generated by topic-word distribution Φ, nk,v,1
indicates the number of word v that belongs to topic k and
is generated by topic-word distribution Ω, nk,v,0 indicates the
number of word v that belongs to topic k and is generated by
topic-word distribution Φ.

Algorithm. Based on Eq. (7), Gibbs sampling is widely used
to train the parameters. The algorithm is summarized in Alg. 1.
The zm,i in the algorithm indicates the topic that word i in bug
report m belongs to, and nk indicates the number of words that
belong to topic k. In the algorithm, Line 1 initializes all the
zm,i for each word with a random topic. Lines 2-20 iteratively
estimate the parameters based on Gibbs sampling. Line 6 and
Line 16 update the statistical variables nm,k, nm, nk,x, nk,
and nk,i,x which are computed based on zm,i. Line 19 updates
the four parameters via Eq (7). The iterative process terminates
when the parameters converge or when the maximum iteration
number is reached.

In practice, Gibbs sampling is inherently stochastic and
unstable, while the CVB0 learning algorithm [6] converges
faster and is more stable [7]. Therefore, we further build the
learning algorithm based on CVB0 learning, and the details
are omitted for brevity.

Time Complexity. In short, the time cost of the learning
algorithm scales linearly wrt the data size (e.g., the number of
topics/source files and the total number of words in the bug
reports). We will experimentally validate the time complexity
of the learning algorithm in the experiments.

Prediction Stage. Finally, based on the learned parameters,
we can predict the buggy files for a given bug report dnew as
follows,

p(t|dnew) =
∑
w

p(t|w) · p(w|dnew)

=
∑
w

p(w|t)p(t)
p(w)

· p(w|dnew).
(8)

We omit the detailed computations for brevity.

D. STMLocator Variant for Stack-Traces

Here, we present a variant of STMLOCATOR. For some
bug reports, the reporters may include the stack-traces of
the bugs. An example of bug reports containing stack-traces
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Fig. 5: STMLOCATOR variant for bug reports with stack-traces.

(each stack-trace is a list of method calls that trigger an
exception) is shown in Figure 4, where the software throws
a ‘NullPointerException’ and outputs the sequence of method
calls. The related classes (i.e., source file names) are colored
in red. Intuitively, the source files in the stack-traces are
highly related to the bug report and possibly contain the
buggy source files. For example, the buggy source file is
‘org.eclipse.jdt.internal.core.search.IndexSelector.java’ in the
above example which appears in Lines 4-6 of the stack-
trace. Based on this observation, we present a variant of
STMLOCATOR as shown in Figure 5.

To be specific, we first recognize whether a bug report
contains a stack-trace, and then extract all the source file names
in the stack-trace. These two steps are accomplished by regular
expression matching. Next, we rank these source files accord-
ing to their number of occurrences in a descending order. For
those source files have the same number of occurrences, we
rank them by the original up-down order in the stack-trace.
Finally, based on the ranking of above method, we combine
it with STMLOCATOR to obtain the final ranking list (which
contains the possibly related buggy files) for bug reports with
stack-traces. Specially, we combine the ranking list from stack-
traces (referred to as RST ) and the ranking list generated by
STMLOCATOR (referred to as RSTM ) as follows,

R(n) = concat(RST (1 : ε · n), RSTM (1 : (1− ε) · n)), (9)

where n indicates the top-n results as output, ε is the pro-
portion of source files we select from the stack-trace, and
concat(·, ·) concatenates the two lists into one list. For the
bug reports without stack-traces, we simply set ε = 0, i.e.,
only the results from STMLOCATOR are used as output.

IV. EXPERIMENTAL EVALUATIONS

In this section, we present the experimental results. The
experiments are mainly designed to answer the following
questions:

TABLE II: Statistics of the data sets.

Data set # reports # sources vocabulary size
PDE 3900 2319 2964

Platform 3954 3696 3677
JDT 6267 7153 4304

• Effectiveness: How accurate is the proposed method for
bug localization?

• Efficiency: How scalable is the proposed method for bug
localization?

A. Data sets

We collect the data sets from three open-source projects,
i.e., PDE, Platform, and JDT. All the data sets are collected
from the official Bug Tracking Website of Eclipse6 and the
Eclipse Repository7. The statistics of the data sets are shown
in Table II.

For each project, we collect the bug reports (each bug report
contains bug id, title, and description) from the bug tracking
website. Then, we collect the corresponding source files from
the git repository by bug id. For each bug report, we combine
its title and description as its content. We adopt standard NLP
steps including stop-words removal, low-frequency and high-
frequency words removal to reduce noise. In bug reports, there
are many combined words (e.g., ‘updateView’). We separate
these words into simple words (e.g., ‘update’ and ‘view’)
while keeping the combined words at the same time. For
the source files, there are typically two types of words, i.e.,
annotations and source code. For annotations, we adopt the
same processing steps with bug reports. For source code,
we additionally remove the keywords (e.g., ‘for’ and ‘if’)
and extract identifiers (i.e., variable and function names)
before adopting the processing steps. The identifiers are also
separated from combined words to simple words.

B. Experimental Setup

For the three data sets described above, we follow existing
experiment framework [8] of 10-fold cross validation. For
the test set, we sort the source files based on the predicted
probabilities in a descending order, and use the ranking list
as output. For the hyper-parameters, we fix α = 200/K,
η = 0.01, and β = µ = 0.1.

Evaluation Metrics. For the evaluation metrics, we first
adopt Hit@n for effectiveness comparison. Hit@n is defined
as follows,

Hit@n =

Mtest∑
d=1

hitn,d
Mtest

,

hitn,d =

{
1, hit(n, d) > 0,

0, hit(n, d) = 0,

where hit(n, d) is the hit number of source files that have been
successfully recommended in the top-n ranking list for the d-
th bug report, hitn,d indicates whether the top-n ranking list

6https://bugs.eclipse.org/
7http://git.eclipse.org/,https://github.com/eclipse/



contains a hit or not, and Mtest is the number of bug reports in
the test data. Note that Hit@n cares about whether there is a hit
or not. The reason is that finding one of the buggy source files
will help developers find other relevant buggy source files [3].

We also use the Mean Reciprocal Rank (MRR) to evaluate
the quality of the ranking list. The MRR is defined as

MRR =
1

Mtest

Mtest∑
i

∑
j∈Λi

1

rank(j)
,

where Λi indicates the relevant source files of document i,
and rank(j) indicates the rank postition of source file j in
the ranking list for bug report i. Larger MRR value is better.
Both Hit@n and MRR are widely used in other studies [3],
[9], [10].

In addition to Hit@n and MRR, developers also care about
the position of the buggy files in the ranking list. The higher
the first hit in the ranking list, the fewer source files that
the developers would need to check. Therefore, we adopt
the AFH@n (Average First Hit at Top-n) for measuring the
workload of developers. AFH@n is defined as

AFH@n =

∑Mtest

d=1 δn(posd)

Mtest
,

δn(posd) =

{
posd, posd 6 n,

n, posd > n,

where posd indicates the first hit in the ranking list for
document/bug report d. Smaller AFH is better.

As to the list size n, we choose n = 5 and n = 10 for
Hit@n, and n = 10 for AFH@n as such choices will not cause
many burdens to the developers. For efficiency, we record the
wall-clock time of the proposed algorithm. All the experiments
were run on a machine with eight 3.5GHz Intel(R) Xeon(R)
and 64GB memory.

Compared Methods. To evaluate the effectiveness of the
proposed method, we compare the following methods in our
experiments.
• LLDA [5]: LLDA is a supervised generative model pro-

posed for tag recommendation. It can be seen as a special
case of STMLOCATOR by ignoring word co-occurrence
phenomenon and longer-file phenomenon.

• tag-LDA [11]: tag-LDA is another generative model for
tag recommendation. The basic idea of tag-LDA is to
combine two LDA models with the same θ value. It
can be similarly adapted for bug localization by treating
source files as tags.

• VSM [12]: VSM model embeds each document (both
bug report and source file) into a vector, and then uses
the cosine distance between vectors to identify the most
similar source files for a given bug report.

• rVSM [3]: rVSM (which is also known as BugLocator)
is built upon VSM. It further finds similar bug reports
and uses their relevant source files as output. The LOC
of each source file is also considered.

• NP-CNN [8]: NP-CNN is a deep learning based method
to locate bugs. It uses a CNN network to train the
features/embeddings of source files, and then calculates
the similarities between embeddings to obtain the ranking
list.

• LLDA+W: LLDA+W is a special case of STMLOCA-
TOR. It combines the supervised modeling and word co-
occurrence phenomenon.

• LLDA+S: LLDA+S is a special case of STMLOCATOR
by combining the supervised modeling and longer-file
phenomenon.

• STMLOCATOR: STMLOCATOR is the proposed method
that combines supervised modeling, word co-occurrence
phenomenon, and longer-file phenomenon.

C. Effectiveness Results

(A) Effectiveness Comparisons. For effectiveness, we first
compare the proposed STMLOCATOR with several existing
methods. In the compared methods, LLDA and tag-LDA use
topic models, VSM and rVSM are textual models, and NP-
CNN applies deep convolutional neural networks. The results
are shown in Table III, where the relative improvements com-
pared to the best competitors are also shown in the brackets.

We can first observe from Table III that STMLOCATOR
outperforms all the compared methods on all the three data
sets. For example, on PDE data set, STMLOCATOR achieves
3.2% and 3.8% relative improvements on Hit@5 and Hit@10
over its best competitor. On Platform data set, STMLOCATOR
improves its best competitor by 4.9% and 2.0% wrt Hit@5
and Hit@10, respectively. On JDT data set, the improvement
of STMLOCATOR over the best competitor is 13.1% and 0.8%
wrt Hit@5 and Hit@10, respectively. Similarly, STMLOCA-
TOR achieves the highest MRR values and smallest AFH@10
values compared to other methods as shown in Table III. For
example, STMLOCATOR achieves up to 23.6% improvement
wrt MRR over its best competitors.

For all the reported results above, we conduct paired t-
test on the average rankings, and the results show that the
improvements on all three data sets are statistically significant,
with p-values less than 0.001.

In the compared methods, VSM and rVSM consider the
textual similarity and ignore the semantic similarity, while
tag-LDA and LLDA consider semantic similarity and ignore
textual similarity, and thus they are less effective than STM-
LOCATOR. This result indicates the usefulness of combining
textual similarity with semantic similarity. LLDA is a su-
pervised topic model and it can be seen as a special case
of STMLOCATOR by ignoring word-occurrence and source
file length. This result further indicates the usefulness of
modeling the two corresponding observations. Our method
also outperforms the NP-CNN method. The possible reason
is that NP-CNN may need a large volume of data to avoid
overfitting.

(B) Performance Gain Analysis. Next, since STMLOCATOR
has three integral building blocks, we further study the effec-
tiveness of each block. The results are also shown in Table III.



TABLE III: Effectiveness comparisons of Hit@n, AFH@n and MRR on three data sets. The proposed STMLOCATOR outperforms the
compared methods. (For Hit@N and MMR, larger is better. For AFH@n, smaller is better.)

Methods LLDA tag-LDA VSM rVSM NP-CNN LLDA+W LLDA+S STMLOCATOR

PDE

Hit@5 0.347 0.204 0.276 0.443 0.375 0.404 0.384 0.457 (3.16%)
Hit@10 0.434 0.284 0.338 0.523 0.516 0.483 0.457 0.543 (3.82%)

AFH@10 6.569 7.341 7.147 6.507 6.469 6.827 6.562 6.328 (2.18%)
MRR 0.288 0.192 0.231 0.329 0.323 0.314 0.291 0.346 (5.16%)

Platform

Hit@5 0.422 0.364 0.332 0.612 0.489 0.525 0.463 0.642 (4.90%)
Hit@10 0.527 0.422 0.392 0.689 0.643 0.612 0.555 0.703 (2.03%)

AFH@10 5.781 6.473 6.224 5.593 5.478 5.676 5.779 5.247 (4.22%)
MRR 0.335 0.301 0.283 0.443 0.401 0.398 0.372 0.494 (11.5%)

JDT

Hit@5 0.333 0.152 0.203 0.344 0.337 0.381 0.364 0.389 (13.1%)
Hit@10 0.425 0.212 0.271 0.442 0.488 0.482 0.435 0.492 (0.82%)

AFH@10 6.703 7.483 7.372 6.749 6.843 6.713 6.686 6.668 (0.53%)
MRR 0.218 0.112 0.127 0.241 0.234 0.274 0.223 0.298 (23.6%)

TABLE IV: Results on different design choices of length functions.

Length function Experession MRR
Linear f(x) = x 0.346

Logarithmic f(x) = log(x) 0.345
Exponential f(x) = ex 0.331
Square root f(x) =

√
x 0.343

TABLE V: Results on different design choices of co-occurrent words.

Co-occurrent words Words MRR
(1) Identifiers 0.325
(2) Annotations 0.312

(1)+(2) Identifiers + Annotations 0.346

In the table, the results when the source file length or the word-
occurrence is not incorporated are denoted as ‘LLDA+W’ and
‘LLDA+S’, respectively.

As we can see from the table, both LLDA+W and LLDA+S
are better than LLDA, indicating the usefulness of both com-
ponents. Additionally, STMLOCATOR significantly outper-
forms all its sub-variants. For example, on the Hit@10 metric
of the Paltform data, LLDA+W and LLDA+S improves LLDA
by 16% and 5.3%, respectively; STMLOCATOR improves
LLDA+W and LLDA+S by 14.8% and 26.5%, respectively.

(C) The Effect of Different Design Choices. Next, as men-
tioned before, there are several design choices in terms of how
to set the length of source files and how to determine the range
of co-occurrence words. In this part, we consider the following
choices.
• Source file length. To determine the source file length, we

consider several length functions as shown in Table IV.
• Co-occurrent words. The source file contains several

types of information. In this work, we consider the words
from variable/function identifiers and the annotations as
shown in Table V.

The results are shown in Table IV and V, respectively. Here
we only report the MRR results on PDE data set for brevity.
Similar results are observed on JDT and Platform as well as
on other metrics.

As we can see from Table IV, we experiment with four
length functions including linear, logarithmic, exponential,
and square root. These functions weight source file length to
different scales. The results show that most functions have

TABLE VI: Hit@10 results on the ST cases and the NST cases.

Methods PDE Platform JDT
ST NST ST NST ST NST

LLDA .38 .44 .32 .57 .31 .46
tag-LDA .27 .28 .38 .43 .21 .21

VSM .26 .35 .26 .42 .22 .28
rVSM .47 .53 .65 .70 .38 .46

NP-CNN .45 .55 .61 .65 .50 .48
STMLOCATOR .39 .57 .57 .73 .42 .53

close performance. This indicates that the proposed method is
robust wrt the difference choices source file length function.
In our experiments, we use linear function.

In Table V, we change the range of co-occurrent words. We
consider three cases: using identifiers only, using annotations
only, and using both identifiers and annotations. As we can
see from the table, combining both identifiers and annotations
can produce the best MRR result. In other words, this result
indicates that both identifiers and annotations are useful for
our bug localization problem.

(D) The Effect of Stack-traces. As mentioned above, a bug
report may contain program stack-traces. Intuitively, textual
similarity may be more suitable for such bug reports, as the
buggy file names may have already been included in the stack-
traces. Here, we split the bug reports into two parts: with stack-
traces (denoted as ‘ST’) and without stack-traces (denoted as
‘NST’), and then compare the Hit@10 results on these two
parts. Based on our split, there are 18.6%, 20.5%, and 26.2%
ST bug reports in PDE, Platform, and JDT, respectively. The
results are shown in Table VI. As we can see, STMLOCATOR
performs better than the compared methods for the NST case.
For the ST case, rVSM performs relatively well, which is
consistent with our intuition. This result indicates that better
combinations of textual methods and semantic methods can be
explored to further improve localization accuracy, especially
for the bug reports containing stack-traces.

(E) The Effectiveness of the STMLOCATOR Variant for ST
Cases. For the ST case (i.e., bug reports with stack-traces), we
use the variant of STMLOCATOR in Figure 5 to generate the
top-10 ranking list. We set the parameter ε in Eq. (9) as 1, 0,
and 0.5, standing for the ranking results from stack-trace only,
from STMLOCATOR only, and from the combination of the
above two ranking results, respectively. The Hit@10 results



TABLE VII: Hit@10 results of the STMLOCATOR variant on ST bug
reports and all bug reports. The variant can significantly improve the
localization accuracy for ST bugs.

Data Hit@10
ε = 1 ε = 0 ε = 0.5

PDE ST bugs 0.27 0.39 0.49
Platform ST bugs 0.58 0.57 0.62

JDT ST bugs 0.65 0.42 0.74
PDE all bugs 0.51 0.54 0.55

Platform all bugs 0.70 0.70 0.71
JDT all bugs 0.56 0.49 0.58

Fig. 6: Scalability of STMLOCATOR. It scales linearly wrt the data
size.

are shown in Table VII, where we report the results on the
bug reports that contain stack-traces and the results over all
bug reports.

As we can see, the ranking results only from the stack-traces
already perform better than STMLOCATOR in some cases.
For example, on JDT, it achieves 54.7% relative improvement
compared to STMLOCATOR. Combining stack-traces with
STMLOCATOR can achieve the best results. For example,
for the ST case, it achieves additional 25.6%, 8.8%, and
76.2% relative improvements compared to STMLOCATOR on
PDE, Platform, and JDT, respectively. This result indicates that
leveraging the stack-traces can further improve the localization
accuracy. As to the improvement of the STMLOCATOR ex-
tension over all bug reports, it can also achieve 18.3% relative
improvement on the JDT data due to the relatively higher
proportion of ST cases.

D. Efficiency Results

(F) Scalability. Finally, we study the scalability of the
proposed method in the training stage. We vary the size of
training data, and report the results on the three data sets in
Figure 6. As we can see, STMLOCATOR scales linearly with
the size of the data, which is consistent with our algorithm
analysis. As for the response time, it takes around 200 ms to
return the ranking list for a bug report on the largest JDT data.

V. RELATED WORK

In this section, we briefly review the related work in-
cluding textual analysis methods, semantic analysis methods,
spectrum-based methods, and deep learning methods.

The key insight of textual analysis methods is to find
textually similar source files for a bug report. Typically, these
methods are built upon the VSM model. For example, based
on the VSM model, Zhou et al. [3] propose a method to
incorporate similar bug reports and their related source files for
a given bug report; Saha et al. [14] further consider the code
structure information such as variables and function names;
later, Wang et al. [15] propose a method that combines similar
bug reports, code structure, and the version history of source
files. Recently, Wang et al. [16] examine a special type of
bug reports, i.e., crash reports where the crash stack-trace
is recorded. Ye et al. [17] propose to use skip-gram [18] to
measure the similarities between bug reports and their related
source files. Other examples in this class include [9], [10],
[19], [20].

As to semantic analysis methods, they usually learn the
latent topics/representations of bug reports and source files.
For example, Lukins et al. [21] directly apply LDA on bug
reports and then computed the topic distribution similarities
between source files and bug reports. Nguyen et al. [22]
propose a modified LDA model to detect latent topics from
both bug reports and source files. Other examples in this class
include [23]–[25].

Although usually treated separately, the above two types
of methods are actually complementary to each other. In this
work, we propose to combine them together by using topic
modeling to capture semantic similarity and modeling the
word co-occurrence phenomenon to capture textual similarity.
Additionally, the historical fixings are largely ignored by
the existing IR methods, and we use them as supervision
information to further improve localization accuracy.

In addition to the above IR methods, there are other methods
for locating buggy files. These methods, which are referred
to as spectrum-based methods, take the program execution
information instead of bug reports as input. Examples in-
clude [25]–[28]. The combination of IR-based method and
spectrum-based method has also been studied [29], [30].

Recently, deep learning methods have been used to solve the
bug localization problem. Lam et al. [31] apply deep neural
networks on both bug reports and source files, and combine
the results with IR methods. Huo et al. [8], [13] propose to
use convolution neural network (CNN) to capture the structure
of both bug reports and source files. Other deep learning
based methods include [32]–[34]. The main limitation of these
deep learning methods lies in the efficiency aspect. Moreover,
although these methods make use of the historical fixings, they
still follow the IR methods by using the learned representations
of bug reports and source files to locate source files. Instead,
we directly propose a supervised model and use it to make
the predictions.

VI. CONCLUSIONS

In this paper, we have proposed STMLOCATOR for finding
relevant buggy source files based on bug reports. STMLO-
CATOR seamlessly combines textual analysis and semantic
analysis, uses historical fixings as supervised information, and



characterizes the word co-occurrence phenomenon and the
long-file phenomenon. We further tailor STMLOCATOR for
the bug reports with stack-traces. Experimental evaluations on
three real projects show that the proposed method significantly
outperforms existing methods in terms of accurately locating
the relevant source files for bug reports. For future directions,
it will be interesting to further improve the accuracy of bug
reports with stack-traces. It will be also interesting to make
use of the additional metadata such as component and platform
information in the bug reports.
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