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ABSTRACT
How can we find the virtual twin (i.e., the same or similar user) on
Twitter for a user on Facebook? How can we effectively link an in-
formation network with a social network to support cross-network
search? Graph alignment – the task of finding the node correspon-
dences between two given graphs – is a fundamental building block
in numerous application domains, such as social networks analysis,
bioinformatics, chemistry, pattern recognition, etc.

In this work, we focus on the alignment of bi-partite graphs,
which despite their ubiquity, has been largely ignored by the ex-
tensive existing work on graph matching. We introduce a new
optimization formulation for aligning bipartite graphs (e.g., users-
groups graph); and propose an effective and fast algorithm to solve
it. The extensive experimental evaluations show that our method
outperforms the state-of-art graph matching algorithms in both match-
ing accuracy and running time.

1. INTRODUCTION
Can we spot the same people in two different social networks,

say Twitter and Facebook? An equally interesting question is how
to find similar people across different graphs. In both settings, a
key step is to align1 the two graphs so that we can find similarities
between the people of the two networks.

Informally, the problem is defined as follows: given two graphs,
GA(NA, EA) and GB(NB , EB) - where N and E are the nodes
and edges sets respectively -, how can we permute their nodes, so
that the graphs have as much similar structure as possible? This is
a core building block in many desciplines as it essentially enables
us to link the different networks together so that we can search
and/or transfer valuable knowledge across different networks. To
name a few, the notion of graph similarity and alignment appears
in protein-protein alignment [5, 2], chemical compound compari-
son [18], information extraction for finding synonyms in a single
language or translation between different languages [2], answering
similarity queries in databases [12], pattern recognition [6, 24] and
many more.
1Throughout this work we use the words ’align(ment)’ and
’match(ing)’ interchangeably.
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Among others, bipartite graphs stand for an important class of
real graphs and appear in many different settings, such as author-
conference publishing graphs, user-group membership graphs, user-
movie rating graphs, etc. Despite their ubiquity, most - if not all - of
the existing work on graph alignment/matching are tailored for uni-
partite graphs and, thus, might be sub-optimal for bipartite graphs.

In this paper, we mainly focus on the alignment of such bipartite
graphs. Our main contributions are:

1. Formulations. We introduce a powerful primitive with new
constraints for the graph matching problem.

2. Algorithms. We propose an effective and fast procedure,
BIG-ALIGN, to solve our constrained optimization problem
with careful handling of many subtleties. We further gener-
alize it for matching unipartite graphs (UNI-ALIGN).

3. Evaluations. We conduct extensive experiments, which demon-
strate that our algorithms, BIG-ALIGN and UNI-ALIGN, are
superior to existing graph matching methods in terms of both
accuracy and and efficiency, for both bipartite graphs and
unipartite graphs.

The rest of the paper is organized as follows: Section 2 presents
the formal definition of the graph matching problem; Section 3 our
proposed method; and Section 5the experimental results. Finally,
we give the related works and conclusions in Section 6 and 7.

2. PROPOSED PROBLEM FORMULATION
Table 1: Description of major symbols.

Notation Description
A,B adjacency matrix of bipartite graph GA, GB
AT ,BT transpose of matrix A, B
NA, NB set of nodes of A, B
EA, EB set of edges of A, B
nA1, nA2 number of nodes of graph A in set 1 and 2 resp.
nB1, nB2 number of nodes of graph B in set 1 and 2 resp.
P node (user)-level correspondence matrix
Q community (group)-level correspondence matrix
P(v) row or column vector of matrix P
1 vector of 1s
||A||F =

√
Tr(ATA), Frobenius norm of A

λ, µ sparsity penalty parameters for P, Q resp. (equiv. to lasso)
η1, η2 step of gradient descent for P, Q
ε small constant (> 0) for the convergence of grad. descent

The alignment of graphs is a problem that has been studied in
numerous communities in the past about three decades due to its
occurrence in many applications. However, most of the research
has been focused on unipartite graphs, i.e. graphs that consist of
only one type of nodes. In this work, we introduce the problem



of aligning bipartite graphs (i.e., graphs that consist of edges only
between two disjoint sets of vertices, e.g. user-group graph, where
the edges represent that a user belongs to a specific group). First,
we give the definition of bipartite graph alignment by extending
the traditional unipartite graph alignment problem definition, and
then we introduce a new formulation that also accommodates the
requirements of the current applications in data mining. We list the
frequently used symbols in Table 1.

PROBLEM 1 (ADAPTATION OF TRADITIONAL DEFINITION).
Given two bipartite graphs, GA and GB , with adjacency matrices
A and B, we want to find the permutation matrices P and Q that
minimize the cost function f0:

min
P,Q

f0(P,Q) = min
P,Q
||PAQ−B||2F ,

where || • ||F is the Frobenius norm of the corresponding matrix.

The permutation matrix (i.e., a square binary matrix with exactly
one entry 1 in each row and column, and 0s elsewhere) P, which
reorders the rows of the adjacency matrix A, encodes the 1-to-1
correspondences between the nodes of the first set of the input bi-
partite graphs. Similarly, Q, which reorders the columns of A, is
related to the second set of the input bipartite graphs.

The above-mentioned problem is not only hard to solve due to its
combinatorial nature, but also the permutation matrices imply that
we are in search for hard assignments between the nodes of the in-
put bipartite graphs. However, finding hard assignments might not
be possible nor realistic. For instance, suppose that the input graphs
have perfect star structure: aligning the spokes of the two stars is
impossible, since they have exactly the same structural “footprint”;
any way of aligning the spokes is equiprobable, and soft assign-
ment may be more valuable than hard assignment.

That said, we relax problem 1 that is directly adapted from the
well-studied case of unipartite graphs, and formulate it in a more
realistic way:

PROBLEM 2 (SOFT, SPARSE BIPARTITE GRAPH ALIGNMENT).
Given two bipartite graphs, GA and GB , with adjacency matrices
A and B, we want to find the correspondence matrices P, Q that
minimize the cost function f :

min
P,Q

f(P,Q) = min
P,Q
||PAQ−B||2F

under the following constraints:

(1) [Probabilistic] each matrix element is a probability, i.e. 0 ≤
Pij ≤ 1 and 0 ≤ Qij ≤ 1, and

(2) [Sparsity] the matrices are sparse, i.e. ||P(v)||0 ≤ t and
||Q(v)||0 ≤ t for some small, positive constant t. The || • ||0
denotes the l0-norm of the enclosed vector, i.e., the number
of its non-zero elements.

Throughout the paper we will refer to the following example in
order to simplify our description: Let A be the “user-group” Twit-
ter graph, and B the corresponding Facebook graph. The optimiza-
tion problem given in Problem 2 involves finding how we should
permute the users of Twitter (P), as well as its groups or commu-
nities (Q), so that it resembles structurally the Facebook network
as much as possible.

The first constraint of Problem 2 lends a probabilistic interpre-
tation to the node matchings: the entries of the correspondence
matrix P (or Q) describe the probability that a person (or com-
munity) of Twitter corresponds to a user (or group) of Facebook.

The requirement of non-integer entries for the matrices (a) ren-
ders the optimization problem easier to solve, and (b) has a nice,
realistic interpretation for the large networks that are of interest
nowadays; it does not provide only 1-to-1 correspondence, but also
reveals similarities between people/communities across networks.
Note that these properties are not guaranteed when the correspon-
dence matrix is required to be permutation or even doubly stochas-
tic (square matrix with non-negative real entries, each of whose
rows and columns sum to 1), which is common practice in the lit-
erature. Another important property of our formulation is that the
matrices P and Q do not have to be square, which means that the
matrices A and B can be of different size (this is yet another re-
alistic requirement). Therefore, our formulation includes not only
graph alignment, but also subgraph alignment.

The second constraint follows naturally from the first one, as
well as the large size of the social, and other networks. We want
the correspondence matrices to be as sparse as possible, so that
they encode few potential correspondences per node. Allowing ev-
ery person/group of Twitter to be matched to every person/group
of Facebook is not realistic and, actually, it is problematic -if not
impossible- for large graphs, as it would have quadratic space cost
w.r.t. the size of the input graphs.

Note that the existing approaches do not distinguish the nodes
by types (e.g. users and groups), treat the graphs as unipartite, and,
thus, aim at finding a permutation matrix P, which gives a hard
assignment between the nodes of the input graphs. In contrast, our
formulation separates the nodes in categories, and can find corre-
spondences at different granularities at once (e.g., individual and
community-level correspondence in the case of the “user-group”
graph.)

3. BIG-ALIGN FOR BIPARTITE GRAPHS
Here, we present our algorithm, BIG-ALIGN. The design objec-

tive is two-fold. In terms of effectiveness, given the non-convexity
of Problem 2, our goal is to find a ‘good’ local minimum. We also
carefully design the search procedure to improve the efficiency of
BIG-ALIGN. To this end, BIG-ALIGN comprises several impor-
tant ideas: (i) a projected, alternating gradient descent (PAGRAD)
approach to find the local minima of the newly-defined optimiza-
tion problem 2, (ii) a net-inspired initialization (NET-INIT) of the
correspondence matrices to find a good starting point, (iii) auto-
matic choice of the step(s) of the gradient descent, and (iv) han-
dling the node-multiplicity problem, i.e. the “problem” of having
nodes with exactly the same structural “footprint” (e.g. spokes of
a star) to improve both effectiveness and efficiency. Next, we de-
scribe these individual components before we present the overall
algorithm, BIG-ALIGN.

3.1 PAGRAD: Mathematical formulation
In order to solve the optimization problem 2, we first relax the

sparsity constraint, which is mathematically represented by the l0-
norm of the matrices’ columns, and replace it with the l1-norm,∑
i |P

(v)
i | =

∑
iP

(v)
i , where we also use the probabilistic / non-

negativity constraint. Therefore, the sparsity constraint now takes
the form:

∑
i,j Pij ≤ t and

∑
i,j Qij ≤ t. Based on this approach,

our bipartite graph alignment problem is equivalent to the problem
described in the following theorem.

THEOREM 1. [Augmented Cost Function] The optimization
problem for the alignment of the bipartite graphsGA andGB , with
adjacency matrices A and B, under the probabilistic and sparsity



constraints (Problem 2), can be equivalently described as:

min
P,Q

faug(P,Q) =

= min
P,Q
{||PAQ−B||2F + λ

∑
i,j

Pij + µ
∑
i,j

Qij}

= min
P,Q
{Tr(PAQ(PAQ)T − 2PAQBT )+ (1)

+ λ1TP1 + µ1TQ1},

where ||•||F is the Frobenius norm of the enclosed matrix, P and Q
are the node- and community-level correspondence matrices, and
λ and µ are the sparsity penalties of P and Q respectively.

PROOF. See Lemma 1 in Appendix A.

Note that the probabilistic constraint is not explicitly accommo-
dated by the augmented cost function (faug); instead we apply
the projection technique to the solution matrices: If Pij < 0 or
Qij < 0, we project the entry to 0. If Pij > 1 or Qij > 1, we
project it to 1.

We solve the minimization problem by using a variant of the
gradient descent algorithm. First, notice that the cost function (1)
is bivariate, as it encompasses the minimization of both P and Q.
Therefore, we use an alternating procedure to minimize it; we fix
Q and minimize faug w.r.t. P, and vice versa. If during the two
alternating minimization steps, the entries of the matrices become
invalid temporarily, we use the projection method described above
(probabilistic constraint guaranteed). The update steps of our pro-
jected, alternating gradient descent approach (PAGRAD) are given
by the following theorem.

THEOREM 2. [Update Step] The update steps for the node (P)
and community-level (Q) correspondence matrices of PAGRAD
are given by:
P(k+1) = P(k) − η1 ·

(
2(P(k)AQ(k) −B)QT (k)

AT + λ11T
)

Q(k+1) = Q(k)−η2·
(

2ATPT (k+1)

(P(k+1)AQ(k) −B) + µ11T
)
,

where P(k), Q(k) are the correspondence matrices at iteration k,
η1 and η2 are the steps of the alternating gradient descent, and 1
is the all-1 column-vector.

PROOF. See Lemmas 2, 3, and Observation 3 in Appendix A.

Note that in the above formulas, we assume that A and B are the
rectangular, adjacency matrices of the bipartite graphs. It turns out
that this formulation has a nice connection to the standard formu-
lation for unipartite graph matching if we treat the input bipartite
graphs as unipartite (i.e., symmetric - square - adjacency matrix).
We summarize this equivalence in the following proposition.

PROPOSITION 1. [Equivalence to Unipartite Graph Align-
ment] If the rectangular adjacency matrices of the bipartite graphs
are converted to square matrices, then the minimization is done
w.r.t. the coupled matrix P∗:

P∗ =

(
P 0
0 Q

)
.

That is, Problem 2 becomes:

minP∗||P∗AP∗T −B||2F .

3.2 NET-INIT: Initialization of Alignment
Up to this point, we have the whole arsenal of the mathemati-

cal foundation at our disposal to build our algorithm, BIG-ALIGN.

There is only one basic component missing: the initialization of the
correspondence matrices. Our optimization problem is non-convex
(not even bi-convex), and the gradient descent is known for getting
stuck in local minima, depending heavily on the initialization.

There are several different ways of initializing the correspon-
dence matrices P and Q, such as random, degree-based, eigenvalue-
based as in [19] and [7]. While each of these initializations has its
own rationality, they are designed for unipartite graphs and hence
ignore the skewness of the real, large-scale bipartite graphs.

To address this issue, we propose a network-inspired approach
(NET-INIT). Our initialization apograph is based on the following
observations of large-scale, real biparite graphs:

OBSERVATION 1. Large, real networks have skewed or power-
law-like degree distribution. Specifically in bipartite graphs, usu-
ally one of the node sets is significantly smaller than the other, and
has skewed degree distribution.

The implicit assumption of NET-INIT is that a person is almost
equally popular in different social networks, or more generally, the
same entity has almost similar ‘behavior’ in the input graphs. In
our work, we found that such behavior can be well captured by
the node degree; however, the technique we describe below can be
naturally applied to other metrics/features (e.g., weight, ranking,
etc) that may capture better the node behavior.

Our initialization approach consists of 4 steps. We refer to the
example of Twitter and Facebook that we mentioned above; the first
set of the bipartite graphs consists of users, and the second set of
groups. Assume that the set of groups is significantly smaller than
the set of users. In a nutshell, the steps, which are pictorially shown
in Fig. 1(b), are:

1. Match 1-by-1 the top-k high-degree groups in the Twitter
and Facebook graphs.

2. For each of the matched groups, align their neighbors based
on their relative degree difference (RDD), which we explain
next.

3. Create cg clusters of the remaining groups in both net-
works, based on their degrees. Align the clusters 1-by-1
according to the degrees (e.g., “high”, “low”), and initialize
the correspondences within the matched clusters using the
RDD approach.

4. Create cu clusters of the remaining users in both networks,
based on the degrees. Align the users using the RDD ap-
proach withing the corresponding user clusters.

Finding the top-k high-degree nodes of Step 1.
To find k, we borrow the idea of scree plot, which is used in the

Principal Component Analysis (PCA): we sort the unique degrees
of each graph in descending order, and create the plot of unique de-
gree vs. rank of node (Fig. 1(a)). In this plot, we detect the “knee”
and up to the corresponding degree we “safely” match the users of
the two graphs one-by-one, i.e. the most popular user of Twitter is
aligned initially with the most popular user of Facebook etc. For
the automatic detection of the knee, we use the following heuristic:
we assume that we have detected the knee if the slope of a piece-
wise line in the plot is less than 5% of the slope of the previous
line.

Relative Degree Distance (RDD).
As mentioned above, we match the nodes in corresponding clus-

ters using the RDD method. The idea behind this approach is that a
node in one graph corresponds most probably to a node with similar
degree in another graph, than to a node with very different degree.
Therefore, we are in search of a function that assigns higher prob-



(a) “Scree-like” plot
for NET-INIT.

(b) Pictorial initialization of P.

Figure 1: (a) Choise of k in Step 1 of NET-INIT. (b) Initialization
of the node/user-level correspondence matrix by NET-INIT.

abilities to matchings of similar nodes, and lower probabilities to
matchings of very dissimilar nodes w.r.t. their degrees.

DEFINITION 1 (RDD). The Relative Degree Distance func-
tion that aligns node i of graph A to node j of B is given by:

rdd(i, j) =

(
1 +

|deg(i)− deg(j)|
(deg(i) + deg(j))/2

)−1

(2)

where deg(•) is the degree of the corresponding node.

Notice that rdd(i, j) corresponds to the similarity between the
nodes i and j. Equation (2) captures one additional desired prop-
erty: it penalizes the alignments based on the relative difference of
the degrees, e.g., two nodes of degrees 1 and 20 respectively are less
similar than two nodes with degrees 1001 and 1020 respectively.

3.3 Step choice for PAGRAD
One of the most important parameters that come up in the pro-

jected, alternating gradient descent method is η (the step of ap-
proaching the minimum point), which determines its convergence
rate. In an attempt to automatically determine the step, we use “line
search” (Algorithm 2).

Here, we explain how line search works only for the first phase
of PAGRAD, since it’s symmetric for the second phase. The step η1
is used in the the first phase, where we are minimizing the objective
function w.r.t. P, and the correspondence matrix Q is considered
fixed. Line search consists of viewing the augmented cost function,
faug , as a function of η1 only (not as a function of P and Q), and
the goal is to find the value of η1 that loosely minimizes it.

The baseline approach (BIG-ALIGN-Points) consists of approxi-
mately minimizing the augmented cost function: we randomly pick
some values for η1 within some reasonable range, and compute the
value of the cost function. For the current gradient descent step,
we choose the value of η1 that corresponds to the minimum cost
function value. This approach is computationally expensive, as we
shall see in Section 5.

By carefully handling the objective function of our optimization
problem, we can find closed forms for η1 and η2. We call the ver-
sion of our algorithm that uses exact line search for choosing the
gradient descent steps BIG-ALIGN-Exact.

THEOREM 3. [Optimal Step Size for P] In the first phase of
PAGRAD, the value of the step η1 that exactly minimizes the aug-
mented function, faug(η1), is given by:

η1 =
2 Tr {(P(k)AQ)(∆PAQ)T − (∆PAQ)BT }+ λ

∑
i,j ∆Pij

2||∆PAQ||2F
,

(3)
where P(k+1) = P(k)− η1∆P, ∆P = ∇Pfaug|P=P(k) and Q =

Q(k).

PROOF. See Appendix B.

Similarly, we find the appropriate value for the step η2 of the
second phase of PAGRAD.

THEOREM 4. [Optimal Step Size for Q] In the second phase
of PAGRAD, the value of the step η2 that exactly minimizes the
augmented function, faug(η2), is given by:

η2 =
2 Tr {(PAQ(k))(PA∆Q)T − (PA∆Q)BT }+ µ

∑
i,j ∆Qij

2||PA∆Q||2F
, (4)

where ∆Q = ∇Qfaug|Q=Q(k) , P = P(k), and Q(k+1) = Q(k)−
η2∆Q.

PROOF. Omitted for brevity.

Compared with BIG-ALIGN-Points, BIG-ALIGN-Exact is sig-
nificantly faster. It turns out that we can do even better based on
the following observation. Experimentation with real data revealed
that the values of the gradient descent steps that minimize the ob-
jective function do not change drastically in every iteration (Fig. 2).
This led to the third variation of our algorithm, BIG-ALIGN-Skip,
which does line search for the first few (say, 100) iterations, and
then updates the values of the steps every few (say, 500) iterations,
thus leading to significantly fewer computations to search for opti-
mal step sizes.

3.4 Handling the node-multiplicity problem
Before presenting our algorithm, BIG-ALIGN, we mention one

more observation that is important when trying to solve the align-
ment problem for real bipartite graphs.

OBSERVATION 2. In the majority of graphs, there is a signif-
icant number of nodes that cannot be distinguished, because they
have exactly the same structural features.

For instance, in many real-world networks, a commonplace struc-
ture is stars, but it is impossible to tell the “spokes” apart. Other
examples of non-distinguishable nodes include the members of a
cliques, etc.

To address this problem, we introduce a pre-processing phase
at which we eliminate nodes with identical “structural footprints”
by aggregating them in super-nodes. For example, a star with 100
spokes which are connected to the center by edges of weight 1,
will be replaced by a super-node connected to the central node of
the star by an edge of weight 100. This subtle step not only leads
to a better optimization solution, but also improves the efficiency
by reducing the scale of graphs that are actually fed into our BIG-
ALIGN.

3.5 BIG-ALIGN: Putting everything together
The previous subsections shape up our proposed algorithm, BIG-

ALIGN, whose pseudocode is given in Algorithms 1 and 2.
In our implementation, the only parameter that the user is re-

quired to input is the sparsity penalty, λ. The bigger this parameter
is, the more entries of the matrices are forced to be 0. Although the
optimization problem contains one more sparsity penalty, µ, we set
µ = λ∗(elements in Q)

elements in P
so that we put same amount of penalty for each

non-zero element of P and Q.
It is worth mentioning that our method does not use the classic

Hungarian algorithm to find the hard correspondences between the
nodes of the bipartite graphs. Instead, we rely on a fast approxi-
mation: we align each row i (node/user) of PT with the column j
(node/user) that has the maximum probability, Pij . It is clear that
this assignment is very fast, and even parallelizable; the assignment



(a) Graph with 50 nodes. (b) Graph with 300 nodes. (c) Graph with 900 nodes.

Figure 2: (Hint for speedup.) Size of optimal step for P (blue) and Q (green) vs. the number of iterations. Notice that the optimal step sizes
do not change dramatically in consecutive iterations, and, thus, skipping some computations almost does not affect the accuracy at all.

per row is independent of all other row assignments. What is more,
this strategy brings another desirable property - in the case of du-
plicate nodes (which is often the case in real bipartite graphs), it
is desirable to align multiple nodes of graph GA (all the duplicate
nodes) to the same node of graph GB .

Algorithm 1 BIG-ALIGN-Exact: Bipartite Graph Alignment

INPUT: A, B, λ, MAXITER
ε = 10−6; cost(0) = 0; k = 1;
/* STEP 1: pre-processing for node-multiplicity */
aggregating identical nodes
/* STEP 2: initialization */
[P0, Q0] = NET-INIT-ialization
cost(1) = faug(P0,Q0)
/* STEP 3: alternating gradient descent with projection */
while |cost(k)− cost(k + 1)| > ε & k < MAXITER do

k + +
/* PHASE 1: fixed Q, minimization w.r.t. P */
η1k = LINESEARCH-P(P(k),Q(k),∇Pfaug|P=P(k))

P(k+1) = P(k) − η1k∇Pfaug(P
(k),Q(k))

VALIDPROJECTION(P(k+1))
/* PHASE 2: fixed P, minimization w.r.t. Q */
η2k = LINESEARCH-Q(P(k+1),Q(k),∇Qfaug|Q=Q(k))

Q(k+1) = Q(k) − η2k∇Qfaug(P
(k+1),Q(k))

VALIDPROJECTION(Q(k+1))
cost(k) = faug(P,Q)

end while
return P(k+1), Q(k+1)

/* PROJECTION STEP */
function VALIDPROJECTION(P)

for all i, j
if Pij < 0 then Pij = 0
else if Pij > 1 then Pij = 1

end function

4. UNI-ALIGN: EXTENSION TO UNIPAR-
TITE GRAPHS

Although our primary target for BIG-ALIGN is bipartite graphs,
which by themselves already stand for a significant portion of real
graphs, as a side-product, BIG-ALIGN also offers an alternative,
fast solution to the alignment problem of unipartite graphs. Our
approach consists of two steps:

Step 1: Uni- to Bi-partite Graph Conversion. The first step
involves converting the n× n unipartite graphs to bipartite graphs.

Algorithm 2 Line Search for η1 and η2
function LINESEARCH-P(P,Q,∆P)

return

η1 =
2 Tr {(P(k)AQ)(∆PAQ)T − (∆PAQ)BT }+ λ

∑
i,j ∆Pij

2||∆PAQ||2F

end function

function LINESEARCH-Q(P,Q,∆Q)
return

η2 =
2 Tr {(PAQ(k))(PA∆Q)T − (PA∆Q)BT }+ µ

∑
i,j ∆Qij

2||PA∆Q||2F

end function

(a) Cost function. (b) Accuracy.

Figure 3: BIG-ALIGN: As desired, the cost of the objective func-
tion drops with the number of iterations, and at the same time the
accuracy both on node- (green) and community- (red) level in-
creases. The blue line corresponds to the total accuracy; i.e., the
accuracy of all the alignments independently of the node type (user
or group).

Specifically, we can extract d node features (invariants), and form
the n× d bipartite graph node-to-feature, where n� d.

Step 2: Finding P. Note that in this case, the alignment of the
second sets of the bipartite graphs is known, i.e., Q is an identity
matrix, since we extract the same type of features from the graphs.
Thus, we only need to align the nodes that belong to the first sets
of the graphs, i.e., compute P. We revisit Eq. (1) of our initial min-
imization problem, and now we want to minimize it only w.r.t. P.
By setting the derivative of faug w.r.t. P equal to 0, we have:

P · (AAT) = BAT − λ/2 · 11T

Note that A is n × d. If we do SVD on this matrix, i.e., A =



USV, the Moore-Penrose pseudo-inverse of AAT is (AAT)† =
US−2UT. Therefore, we have

P = (BAT − λ/211T)(AAT)†

= (BAT − λ/211T)(US−2UT)

= B · (ATUS−2UT)− 1 · (λ/2 · 1TUS−2UT)

= B ·X− 1 ·Y (5)

where X = ATUS−2UT and Y = λ/2 · 1TUS−2UT. In other
words, we can exactly (and non-iteratively) find P from Eq. (5).

It can be shown that the time complexity for finding P is O(nd2)
(after omitting the simpler terms), which is linear on the number of
nodes of the input graphs.

What is more, we can see from Equation (5) that P itself has
the low-rank structure. In other words, we do not need to store
P in the form of n × n. Instead, we can represent (compress) P
as the multiplication of two low-rank matrices X and Y, whose
additional space cost is just O(nd+ n) = O(nd).

5. EXPERIMENTAL EVALUATION
In this section, we evaluate our proposed algorithms, BIG-ALIGN

and UNI-ALIGN, w.r.t. alignment accuracy and runtime, and also
compare them to the state-of-art methods.

5.1 Baseline Methods
To the best of our knowledge, no graph matching algorithm has

been designed for bipartite graphs. Throughout this section, we
compare our algorithms to 3 state-of-the-art approaches, which are
succinctly described in Table 2: (i) the influential eigenvalue decomposition-
based approach proposed by Umeyama [19], (ii) a recent NMF-
based approach (Non-negative Matrix Factorization) [7], and (iii) a
fast, and scalable Belief Propagation-based (BP) approach [2].

It should be pointed out that these algorithms are designed for
unipartite graphs, so before applying them to the bipartite graphs
that we study, we convert them to unipartite graphs as in Proposi-
tion 1. Moreover, the BP-based approach is not readily applicable
in our setting; the input of the algorithm is not only the two graphs
that we want to align, but also a bipartite graph that encodes the
potential alignments for each node of the input graphs. Given that
this information is not available in our setting, we use the following
heuristics: (a) full bipartite graph, which essentially conveys that
we have no domain information about the possible alignments, and
each node of the first graph can be aligned with any node of the
second graph; and (b) degree-based bipartite graph, where only
nodes with the same degree in both graphs are considered possible
matchings.

Table 2: Graph Alignment Algorithms: name conventions, short
description, type of graphs on which they were designed for (‘uni-’
for unipartite, ‘bi-’ for bipartite graphs), and reference.

Name Description Graph Source
Umeyama eigenvalue-based uni- [19]
NMF-based NMF-based uni- [7]
NetAlign-full BP-based with uniform init. uni- Modified
NetAlign-deg BP-based with same-degree init. uni- from [2]

BIG-ALIGN-Points PAGRAD + approx. Line Search bi- current
BIG-ALIGN-Exact PAGRAD + exact Line Search bi- current
BIG-ALIGN-Skip PAGRAD + skip some Line Search bi- current
UNI-ALIGN BIG-ALIGN-inspired (SVD) uni- current

5.2 BIG-ALIGN

Setup. For the experiments on bipartite graphs, we use the movie-
genre graph of the MovieLens network 2. Each of the 1,027 movies
is linked to at least one of the 23 genres (e.g., comedy, romance,
drama). To evaluate the accuracy and runtime of our method, we
extract from the MovieLens network subgraphs with different sizes.
For each of them, following the tradition in the literature, we gen-
erate permutations, B, with noise level (noise) from 0% to 20%
using the formula Bij = (PAQ)ij · (1+noise∗rij), where rij is
a random number in [0, 1]. For each noise level and graph size, we
generate 10 distinct permutations of the initial subnetwork; we run
the alignment algorithms on all of the pairs of subnetworks, and
report the mean accuracy and runtime.

Accuracy. First, we compare the alignment algorithms with re-
spect to the accuracy of the matchings. Figures 4 (a) and (b) present
the accuracy of the methods for varying levels of noise in the per-
mutations, B, of initial graphs, A, of two different sizes. We ob-
serve that BIG-ALIGN outperforms all the competitor methods in
most cases with a large margin. The only exception is the case of
20% noise in the graphs with 900 nodes where NetAlign-deg
and NetAlign-full perform slightly better than our algorithm,
BIG-ALIGN-Exact. The results for other graph sizes are along the
same lines, and therefore are omitted for space.

(a) Graphs of 50 nodes. (b) Graphs of 900 nodes.

Figure 4: (Higher is better.) Accuracy of bipartite graph alignment
vs. level of noise (0-20%). BIG-ALIGN-Exact (red line with square
marker), almost always, outperforms the baseline methods.

Figure 5(a) depicts the accuracy of the alignment approaches for
varying graph size. For graphs with different sizes, the variants of
our method achieve significantly higher accuracy (70%-98%) than
the baselines (10%-58%). Moreover, surprisingly, BIG-ALIGN-
Skip performs slightly better than BIG-ALIGN-Exact, although the
former skips several updates of the gradient descent steps. The
only exception is for graphs of size 50, where the consecutive op-
timal step sizes change significantly (Fig. 2(a)), and, thus, skip-
ping computations affects the performance. NetAlign-full
and Umeyama’s algorithm are the least accurate methods, while
NMF-based and NetAlign-deg achieve medium accuracy. Fi-
nally, the accuracy vs. runtime plot in Fig. 5(b) shows that our al-
gorithms have two desired properties: they achieve better perfor-
mance, faster than the baseline approaches.

Runtime. As shown in Fig. 5(c) with runtime vs. number of
edges in the graphs, Umeyama’s algorithm and NetAlign-deg
are the fastest methods (but at the cost of accuracy). The third best
method is BIG-ALIGN-Skip, closely followed by BIG-ALIGN-Exact.
BIG-ALIGN-Skip is upto 174× faster than the NMF-based ap-
proach, and upto 19× faster than NetAlign-full. However,
our non-optimized algorithm, BIG-ALIGN-Points, is the slowest
approach that takes considerable amount of time for graphs with
more than 1.5K edges (and, thus, we omit several data points in the
plot).

2http://www.movielens.org



(a) (Higher is better.) Accuracy of
alignment vs. number of nodes.

(b) (Higher and left is better.) Accuracy of align-
ment vs. runtime (in seconds) for graphs with 300
nodes (small markers), and 700 nodes (big mark-
ers).

(c) (Lower is better.) Runtime in seconds vs. the
number of edges in the graphs in log-log scale.

Figure 5: Accuracy and runtime of alignment of bipartite graphs. (a) BIG-ALIGN-Exact and BIG-ALIGN-Skip (red lines) significantly
outperform, in terms of accuracy, all the alignment methods for almost all the graph sizes; (b) BIG-ALIGN-Exact and BIG-ALIGN-Skip (red
points) are more accurate and, at the same time, faster than the baselines for both graph sizes. (c) The BIG-ALIGN variants are faster than
all the baseline approaches, except for Umeyama’s algorithm.

It is worth mentioning that currently BIG-ALIGN is a single ma-
chine implementation, but it has the potential for further speed-
up. For example, it could be parallelized by splitting the optimiza-
tion problem to smaller subproblems (by decomposing the matri-
ces, and doing simple column-row multiplications). Moreover, in-
stead of the basic gradient descent algorithm, we can use a variant
method, the stochastic gradient descent, which is based on sam-
pling.

Variants of BIG-ALIGN. Table 3 presents the runtime and ac-
curacy of BIG-ALIGN-Points, BIG-ALIGN-Exact, and BIG-ALIGN-
Skip, for graphs with different sizes. Note that BIG-ALIGN-Skip
is not only ∼ 350× faster than the non-optimized variant, BIG-
ALIGN-Points, but also more accurate. In addition, it is ∼ 2×
faster than BIG-ALIGN-Exact with higher or equal accuracy. This
speedup can be further increased by skipping more updates of the
gradient descent steps.

Table 3: Runtime (top) and accuracy (bottom) comparison of
the BIG-ALIGN variants: BIG-ALIGN-Points, BIG-ALIGN-Exact,
and BIG-ALIGN-Skip. BIG-ALIGN-Skip is not only faster, but
also comparably or more accurate than BIG-ALIGN-Exact.

BIG-ALIGN-Points BIG-ALIGN-Exact BIG-ALIGN-Skip
Nodes mean std mean std mean std

R U N T I M E (SEC)

50 17.3 0.05 0.24 0.08 0.56 0.01
100 1245.7 394.55 5.6 2.93 3.9 0.05
200 2982.1 224.81 25.5 0.39 10.1 0.10
300 5240.9 30.89 42.1 1.61 20.1 1.62
400 7034.5 167.08 45.8 2.058 21.3 0.83
500 - - 57.2 2.22 36.6 0.60
600 - - 64.5 2.67 40.8 1.26
700 - - 73.6 2.78 44.6 1.23
800 - - 86.9 3.63 49.9 1.06
900 - - 111.9 2.96 61.8 1.28

A C C U R A C Y

50 0.982 0.02 0.988 0 0.904 0.03
100 0.922 0.07 0.939 0.06 0.922 0.07
200 0.794 0.01 0.973 0.01 0.975 0.00
300 0.839 0.02 0.972 0.01 0.964 0.01
400 0.662 0.02 0.916 0.03 0.954 0.01
500 - - 0.66 0.20 0.697 0.24
600 - - 0.67 0.20 0.713 0.23
700 - - 0.69 0.20 0.728 0.19
800 - - 0.12 0.02 0.165 0.03
900 - - 0.17 0.20 0.195 0.22

5.3 UNI-ALIGN
Setup. To evaluate our proposed method, UNI-ALIGN, for align-

ing unipartite graphs, we use the 63731 × 63731 Facebook who-
links-to-whom graph [20]. In this case, the baseline approaches are
readily employed, while our method requires the conversion of the
given unipartite graph to bipartite. We do so by extracting some un-
weighted egonet features for each node (degree of node, degree of
egonet, edges of egonet, mean degree of the node’s neighbors). As
before, from the initial graph we extract subgraphs of size 100-800
nodes (or equivalently, 264-6K edges), and create 10 noisy permu-
tations (per noise level) as before.

Accuracy. The accuracy vs. runtime plot in Fig. 6(a) shows
that UNI-ALIGN outperforms all other methods in terms of accu-
racy and runtime for all the graph sizes depicted. Although NMF
achieves a reasonably good accuracy for the graph of 200 nodes, it
takes too long to terminate; we killed the runs for graphs of bigger
sizes as the execution was too long. The rest approaches are fast
enough, but yield poor accuracy.

Runtime. Figure 6(b) compares the graph alignment algorithms
w.r.t. their running time. UNI-ALIGN is the fastest approach, closely
followed by Umeyama’s algorithm. NetAlign-deg is some or-
ders of magnitude slower than the previously mentioned methods.
However, NetAlign-full ran out of memory for graphs with
more than 2.8K edges; we killed NMF-based as it was taking too
long to terminate even for small graphs with 300 nodes and 1.5K
edges. The results are similar for other graph sizes that, for sim-
plicity, are not shown in the figure. For graphs with 200 nodes
and ∼ 1.1K edges (which is the biggest graph for which all the
methods were able to terminate), UNI-ALIGN is 1.75× faster than
Umeyama’s approach; 2× faster than NetAlign-deg; 2, 927×
faster than NetAlign-full; and 31, 709× faster than the
NMF-based approach.

6. RELATED WORK
The graph alignment problem is of such great interest that the

number of publications exceeds 150 and spans numerous research
fields: from data mining to security and re-identification [13, 9],
bioinformatics [17, 10, 3], databases [12], chemistry [18], vision,
and pattern recognition [6]. Among the suggested approaches are
genetic, spectral, clustering algorithms [15], decision trees, expecation-
maximization [11], graph edit distance [16], simplex [1], non-linear
optimization [8], iterative HITS-inspired [4, 23]. Notice that all



(a) (Higher and left is better.) Accuracy of alignment vs. runtime
(in seconds) for facebook frienship subgraphs of size 200 (small
markers), 400 (medium markers), and 800 (big markers).

(b) (Lower is better.) Runtime (in seconds) vs. number of edges in
log-log scale.

Figure 6: Accuracy and runtime of alignment of unipartite graphs. (a) UNI-ALIGN (red points) is more accurate and faster than all the
baselines for all graph sizes. (c) UNI-ALIGN (red squares) is faster than all the baseline approaches, followed closely by Umeyama’s
approach (green circles).

these works are designed for unipartite, while we focus on bipartite
graphs.

One of the well-known approaches is Umeyama’s near-optimum
solution for nearly-isomorphic graphs [19]. The method solves the
optimization problem minP||PAPT −B|| (where P is permuta-
tion matrix) based on the eigendecomposition of the matrices, and
operates on unipartite, weighted graphs with the same number of
nodes. The Hungarian algorithm [14] is employed at the end to
find the node correspondences. The constraint that P is doubly
stochastic matrix is imposed in [21], and [24], where the proposed
formulation, PATH, is based on convex and concave relaxations.
Ding et al [7] recently proposed a Non-Negative Matrix Factoriza-
tion (NMF) approach, which starts from Umeyama’s solution, and
then applies an iterative algorithm to find the orthogonal matrix P
with the node correspondences.

Bradde et al. [5] propose distributed, heuristic, message-passing
algorithms - based on Belief Propagation [22] - for protein align-
ment and prediction of interacting proteins. Independently, Bayati
et al [2] formulate graph matching as an integer quadratic problem,
and also propose message passing algorithms for aligning sparse
networks. A sparse and weighted bipartite graph, whose edges rep-
resent the possible node matchings between the two graphs is re-
quired by these algorihms. The use of the full bipartite graph was
proposed earlier by Singh et al. [17].

In all these works, the graphs that are studied are unipartite,
while we are focusing on bipartite graphs, and also propose an ex-
tension of our method to handle unipartite graphs.

7. CONCLUSION
In this paper, we study the problem of graph matching for an

important class of real graphs - bipartite graphs. Our contributions
can be summarized as follows:

1. Formulations. We introduce a powerful primitive with new
constraints for the graph matching problem.

2. Algorithms. We propose an effective and efficient algorithm,
BIG-ALIGN, based on gradient descent (PAGRAD) to solve
our constrained optimization problem with careful handling
of many subtleties. We also give a generalization of our ap-
proach to align unipartite graphs (UNI-ALIGN).

3. Evaluations. Our extensive experiments show that BIG-ALIGN
and UNI-ALIGN are superior to state-of-the-art graph match-

ing algorithms in terms of both accuracy and and efficiency,
for both bipartite graphs and unipartite graphs.

Future work includes extending our problem formulation to sub-
graph matching by revisiting the initialization of the correspon-
dence matrices.
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Appendix A: Derivation of PAGRAD Equations
Here we give the lemmas and proofs that are used to derive the
updating steps of the PAGRAD method.

LEMMA 1. The minimization of f in Problem 2 can be reduced
to the problem: minP,Q {||PAQ||2F − 2 TrPAQBT }.

PROOF. Starting from the definition of the Frobenius norm of
PAQ−B, we obtain:

||PAQ−B||2F = Tr (PAQ−B)(PAQ−B)T

= ||PAQ||2F − 2 Tr (PAQBT ) + Tr (BBT ),

where we used the fact that Tr (PAQBT ) = Tr (PAQBT )T .
Notice that the last term, Tr (BBT ), does not depend on P or Q,
and does not affect the minimization.

LEMMA 2. The derivative of the objective function, f(•), w.r.t.
P is given by: ∂f(P,Q)

∂P
= 2(PAQ−B)QTAT .

PROOF. By using properties of matrix derivatives, we obtain:

∂(||PAQ||2F − 2 Tr (PAQBT ))

∂P
=

=
∂Tr (PAQQTATPT )

∂P
− 2

∂Tr (PAQBT )

∂P

= 2(PAQ−B)QTAT

LEMMA 3. The derivative of the cost function, f(•), w.r.t. Q is
given by:

∂f(P,Q)

∂Q
= 2ATPT (PAQ−B)

PROOF. By using properties of matrix derivatives, and the in-
variant property of the trace under cyclic permutations
Tr (PAQQTATP) = Tr (ATPTPAQQT ), we obtain:

∂(||PAQ||2F − 2 TrPAQBT )

∂Q
=

=
∂Tr(ATPTPAQQT )

∂Q
− 2

∂Tr (PAQBT ))

∂Q
=

= 2ATPT (PAQ−B)

OBSERVATION 3. The partial derivative w.r.t. P of the sparsity
penalty term of the cost function, faug , is ∂(1TP1)

∂P
= 11T .

Appendix B: Step Choice
To find the η1 that minimizes faug(η1), we take its derivative and
set it to 0:

dfaug

dη1

=
d(Tr{P(k+1)AQ(P(k+1)AQ)T − 2P(k+1)AQBT } + λ

∑
i,j P

(k+1)
ij

)

dη1

= 0,

(6)

where P(k+1) = P(k)− η1∆P , where ∆P = ∇Pfaug|P=P(k) . It
also holds that

Tr (P(k+1)AQ(P(k+1)AQ)T )− 2P(k+1)AQBT ) =

||P(k)AQ||2F − 2 TrP(k)AQBT + η21 ||∆PAQ||2F+

+2η1 Tr (∆PAQBT )− 2η1 Tr (P(k)AQ)(∆PAQ) (7)

Substituting Eq. (7) in (6), and solving for η1 yields the ‘best
value’ in the line search point of view. The computations are sym-
metric for η2, and, thus, omitted.


