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Observation: Graphs are everywhere!
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oal: understand and utilize graph data
Challenges: real graphs are often BIG!




BIG Graphs #1 The Size of Graphs Is Growing!

10B ~ s Web Link
[Kang 2009]
100M ¢ % NetFlix Rating oren 2007]
w Patent Citation [Leskdvec 2005]
# of edges |
(Log Scale)
* Paper Citation [chakrabarti 2003
100K | _
% Co-authorship Newman 2001]
*@et Routing [Faloutsos 1999]
Year
1 000 | | | | |
1,998 2,002 2,006 2,010

Q: How to Speed-up & Scale-up?



BIG Graphs #2: Data Complexity
(Rich graphs, e.g., geo-coded, attributed)

Q: What is difference between North America and Asia?;
How to find patterns? (e.g., anomalies, communities, etc)




_______________ B_I_G___G__r_a_ hs #3 Hi hVoIatlllt

EIVIAITIL.
USERS l_JPLOAD RECEIVES
RECEIVES <) & = = .
> == ‘ HOURS :

MESSAGES. ‘ ; ._g

= FACEBOOK
- 3 e | ARS8 SEARCHOQ UERIES.
USERS PUBLISH $ @ @ @ l SHARE
. POSTS. ATy \ \ / / PIECES OF CONTENI.
o o e W CONSUMERS
: , - ‘ RYIEELY

ARE CREATED.

Ssaasd ™ SE N
< - - - A > // \
FOURSQUARE USERS @ ng&%?cl;s ER:E{'
1] =< & 2= / I \ = ) _—

: a . TWEETS.

CHECK-INS. ‘7>‘:‘5<\j ﬂ-
USERS ADD g Q; D APPLE
TUMBLR ERANDS &
USERS BLOG

SHARE oo oN FAcEBOOK “DAPP
PHOTOS. ‘ DOWNLOADS.
7 g P o O UV U \, O 5% < >5 ¥

The amount of the data that is created every one minute

Q: How to respond in real-time or near-real time?



Graph Mining: An Overview

Level 1

Level 2 - m
\
/
Level 3 b‘

Q: Where does the graph come from?
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A Typical Graph Mining Paradigm

Graphs HEmmm Patterns

</

Graph Connectivity Optimization (GCO) - This Tutorial

Given:

(1) an initial graph_ Find:
(2) a graph operation # an ‘optimal’ graph

(3) a mining task

Graph operation: deleting 10 nodes; adding 5 links; etc. SATA _ _ _
Mining tasks: contain the virus; maximize the traffic flow [IE Arizona State University




GCO: Why Do We Care?

Dissemination: Think of it as Wine Spill

1. Spill a drop of wine on cloth
2. Spread/disseminate to the neighborhood
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GCO: Why Do We Care?

Dissemination: Wine Spill on a Graph

wine spill on cloth  Dissemination on a graph

Same Diffusion Eq.
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An Example: Virus Propagation/Dissemination

& Sick g Healthy

Contact
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An Example: Virus Propagation/Dissemination

& Sick 9 Healthy

Contact

1: Sneeze to neighbors
2: Some neighbors - Sick
3: Try to recover




An Example: Virus Propagation/Dissemination
1: Sneeze to neighbors

| & Sick 9 Healthy
2 Some neighbors - Sick

Contact
& b 3: Try to recover

Q: How to minimize infected population?
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An Example: Virus Propagation/Dissemination
&Sick QHealthy
‘ Contact
1: Sneeze to neighbors
2 Some neighbors - Sick
& b 3: Try to recover
Q: How to minimize infected population?

- Q1: Understand tipping point
- Q2: Affecting algorithms
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Why Do We Care? — Healthcare

US-Medicare Network

Critical Patient transferring

Move patients = specialized care
- highly resistant micro-

organism -> Infection controlling

—> costly & limited

Q: How to allocate resource to minimize overall spreading?

SARS costs 700+ lives; $40+ Bn; H1N1 costs Mexico $2.3bn; Flu 2013: one of the worst

in a decade, 105 children in US.



Why Do We Care? — Healthcare

Y

Current Method Our Method
Red: Infected Hospitals after 365 days

B. Aditya Prakash, Lada Adamic, Theodore Iwashnya, Hanghang Tong and Christos

Faloutsos: Fractional Immunization on Networks. SDM 2013



Why Do We Care? (More)

See all rumours i : ar-old girl'

EE ‘// \\ Aug 5, 09:30:12 "data request"

PLAY
6th Ai* st 7th August 8th August
Aug 5, 09:53:00 "Fw: data request”

How the rumour unfolded

At 4:30am, the story shows no signs of slowing
@brendadada links to a YouTube video - now
removed - which is apparently a news report
suggesting a 16-year-old girl approached police
to ask questions at which point they ‘set upon
her with batons’

’ Aug 6, 14:21:53 "Fw: Fw: data request"

http://bit.ly/qUpiUH "16-year-old girl
approached police to ask questions -
and they 'set upon her with batons'."
#tottenham

e Email Fwd in Organization

Influence of the tweet Relation to the rumour

— i Shared computers with weak ]
more influential = support @ @ @ @ opposition @ @ @ @ query ® ® comment 200 P m‘; ge“‘:"‘w';d )
less influential re recent recent recent the worm
|
. [
Rumor Propagation 90 T
I\
- {

Bkl gl o B
10% credit ﬁ 10% off
i = / \\SQ‘\
AN
D) =

software, and secured shares are protected
\

from infection of this worm

S
Removable devices, such

20;
as External Hard Drives i \
- and USB sticks, may get
infacted by the worm ) y  —
L L A
!'.5 ’ U ! I
|
- |

Worm:Win32/Conficker attempts to make
AUMOTOUS CONNBCHONS 10 COMPULOFS ACTOSS the
network, seeking systems that do not have
current security updates, or have open shares,
removable media, or weak passwords

IO £, T Computers with open shares. Computers without the latest security
e L e may get infected by the worm updates may get infected by the
worm

Viral Marketing Malware Infection

-16 - DALA Arizona State University



Roadmap

¥ Motivations and Background
=) Part |: GCO Measures
* Part Il: GCO Theories & Algorithms
e Part lll: GCO Applications
* Part IV: Open Challenges & Future Trends

-17 - D.gLA Arizona State University



-18 -

Part I: GCO Measures

GCO Measure #1: Epidemic Threshold (A)
GCO Measure #2: Graph Robustness
Other GCO Measures

Comparison of GCO Measures
Unification of GCO Measures

DG.LA Arizona State University



SIS Model (e.g., Flu)
(Susceptible-Infected-Susceptible)

 Each Node Has Two Statuses: &Sick 9 Healthy
* B: Infection Rate (Prob ( Q—»& |e))




B: Prob (& — & @)

SIS Model (e.g., Flu) 8: Prob (@—»& )

o O _HQ/QE Prs = H (P)

K \ e
WwW—p 1 ©—@
! ! 107" ++w*+v+nilil?ﬁieil+(§-lirl ++++++++++
—————————————————————————————————————————— = | _+:5:r:1:2

t'-Dh —_i_— ve:zthre hold

. ()

Theorem [Chakrabarti+ 2003, 2007]: =

. . =

IfA x (B/5) < 1; no epidemic o
for any initial conditions 5 -
- Time Ticks

A: largest eigenvalue of the graph (~ connectivity of the graph)

B, & : virus parameters (~strength of the virus)



Beyond Static Graphs: Alternating Behavior

DAY
(e.g., work, school)

N

9

A .

"
adjacency
matrix

B. Aditya Prakash, Hanghang Tong, Nicholas Valler, Michalis Faloutsos, Christos Faloutsos:Virus Propagation on Time-Varying
Networks: Theory and Immunization Algorithms. ECML/PKDD (3) 2010: 99-114

Nicholas Valler, B. Aditya Prakash, Hanghang Tong, Michalis Faloutsos, Christos Faloutsos:Epidemic Spread in Mobile Ad Hoc
Networks: Determining the Tipping Point. Networking (1) 2011: 266-280




Beyond Static Graphs: Alternating Behavior

NIGHT
(e.g., home)

A .

o
adjacency
matrix

B. Aditya Prakash, Hanghang Tong, Nicholas Valler, Michalis Faloutsos, Christos Faloutsos:Virus Propagation on Time-Varying
Networks: Theory and Immunization Algorithms. ECML/PKDD (3) 2010: 99-114

Nicholas Valler, B. Aditya Prakash, Hanghang Tong, Michalis Faloutsos, Christos Faloutsos:Epidemic Spread in Mobile Ad Hoc
Networks: Determining the Tipping Point. Networking (1) 2011: 266-280



Formal Model Description

[PKDD 2010, Networking 2011]
Healthy

* SIS mode] {mb-lj” )
rop.
—recovery rate 6 @ el

— infection rate B Infected @

e Set of T arbitrary graphs {A{. A, ... . A
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Epidemic Threshold for Alternating Behavior
[PKDD 2010, Networking 2011]

Theorem [pkpp 2010, Networking 2011]:
No epidemic IfA(S) 1.

Log (Infection Ratio) Above
1 T T T / T

System matrix S = I, S;
S;=(1-0)l + B A;

Y —
e
_I
-
S
D
72
=
o
o

\ \ Below

o: Prob — T e
I —lam=1.06

| —lam=1.01

——— lam = 0.998

— lam = 0.968

1 1 1 1 1
""" 0 500 1000 1500 2000 2500 3000
time step

Time Ticks

Also generalize to other 25
virus propagation models

B: Prob (& — & ‘3‘%)

e el Ry

——— e e e e e e Em Em Em Em Em Em EE Em o e R Em EE EE R . e e e e e =



Why is A So Important?
* A - Path Capacity of a Graph:

(T*Akf)l/k >\

G N\

(a)Chain(A, = 1.73) (b)Star(A, =2) (c)Clique(A, = 4)

Larger A - better connected
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Why is A So Important?

* Key 1: Model Dissemination as an NLDS:
B: Prob (B — & @) '

5: Prob (G—8)IX)
Pt+1 = 9 (pt)

P;: Prob. vector: nodes being sick at ¢
g : Non-linear function (graph + virus parameters)

* Key 2: Asymptotic Stability of NLDS:
p =p*=0is asymptotic stable if | A (J)|<1, where

(9p2t+2

* . 8pk,t+1 8p2t+1 |p 20+1=0 = (1 5)1 T ﬁAl Sl - Pi2t+1 = 1- 517 2t — (1 Di 2t)<2t(z)
et = gy oo
’ . (1 5)1 + ﬁAQ SQ Pi2t+2 = =1- 517 2t4+1 — (1 Pi 2t+1)<2t+1(l)

Opat Ip =0 t
/\ \W/ Cot(i) = (pj2c(l — B) + (1 —pjae)) Cat1(d) = H (pj2t+1(1 = B) + (1 — pjai+1))
JENS (4) JENEL(3)
= JI (-BAG)ps2e41))

(A) Unstable (B) Stable (1 - BAx(i, .])pj 2t))
JE{I n} je{l..n}

Jeg = [Vy(P
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Beyond A: Graph/Network Robustness

* Robustness is the ability of a network to continue
performing well when it is subject to failures or
attacks.

— random failure (server down)
— cascading failure (virus propagating)
— targeted attack (carefully-chosen agents down)

* How to measure the robustness of a given network?

— interpretable
— (strictly) monotonic
— captures redundancy

Hau Chan, Leman Akoglu, Hanghang Tong: Make It or Break It: Manipulating Robustness in Large Networks. SDM 2014: 325-333



Beyond A: Graph/Network Robustness

e Study of robustness:
— mathematics, physics, computer science, biology

 Along (!) and profoundly diverse list of measures:
— vertex/edge connectivity
— avg. shortest distance
— max. shortest distance (diameter)
— efficiency
— vertex/edge betweenness
— clustering coefficient
— largest component fraction/avg. component size
— total pairwise connectivity
— average available flows

Hau Chan, Leman Akoglu, Hanghang Tong: Make It or Break It: Manipulating Robustness in Large Networks. SDM 2014: 325-333



Beyond A: Graph/Network Robustness

—_—

algebraic connectivity
effective resistance
number of spanning trees |
principal eigenvalue A1 —
spectral gap A1 — A2
natural connectivity

[

other (combinatorial) measures:

eigenvalues
of the Laplacian L

eigenvalues
of the adjacency A

toughness, scattering number, tenacity, integrity, fault diameter,
isoperimetric number, min balanced cut, restricted connectivity, ...

Hau Chan, Leman Akoglu, Hanghang Tong: Make It or Break It: Manipulating Robustness in Large Networks. SDM 2014: 325-333



Beyond A: Graph/Network Robustness

—_—

algebraic connectivity
effective resistance
number of spanning trees |
principal eigenvalue A1 —
spectral gap A1 — A2
natural connectivity

[

other (combinatorial) measures:

eigenvalues
of the Laplacian L

eigenvalues
of the adjacency A

toughness, scattering number, tenacity, integrity, fault diameter,
isoperimetric number, min balanced cut, restricted connectivity, ...

Hau Chan, Leman Akoglu, Hanghang Tong: Make It or Break It: Manipulating Robustness in Large Networks. SDM 2014: 325-333



A “guide” for “good” robustness measures

* Strict monotonicity
— improves strictly when edges are added

— *related: differentiates graphs/I\ @

 Redundancy
— accounts for alternative/back-up paths

e Stability
— does not change drastically by small changes
— *related: meaningful for disconnected graphs

* |Interpretability
— its meaning is intuitively clear

Hau Chan, Leman Akoglu, Hanghang Tong: Make It or Break It: Manipulating Robustness in Large Networks. SDM 2014: 325-333



A “guide” for “good” robustness measures

Measures Redundant | Stable

vertex / edge connectivity e

Interpretable

avg. shortest distance
diameter

efficiency

vertex / edge betweenness
clustering coefficient
largest component fraction
total pairwise connectivity
avg. available flows

algebraic connectivity

effective resistance

number of spanning trees

spectral radius / gap

natural connectivity

O 000 D000
00 ORI

Hau Chan, Leman Akoglu, Hanghang Tong: Make It or Break It: Manipulating Robustness in Large Networks. SDM 2014: 325-333



Unification of Connectivity Measures

* Key Idea: graph connectivity as an aggregation
over the subgraph connectivity:

c(A) =" f(m)
TCA
— A: adjacency matrix of the graph
— 7. a hon-empty subgraph in A
— /(7r): connectivity of the subgraph 7
— C(A): connectivity of graph A

Chen Chen, Jingrui He, Nadya Bliss, Hanghang Tong: On the Connectivity of Multi-layered Networks: Models, Measures and Optimal

Control. ICDM 2015



Unification of Connectivity Measures

* Keyldea: C(A)= > f(m)

TCA

0 otherwise.

¢ Examples ) = {Bl"”(”) if 7 is a valid path of length len ()
° /
— Path Capacity:

1/len(m)! if 7 is a valid loop of length len ()
0 otherwise.

— Loop Capacity:— ) = {
— Triangle Capacity:

N 1 if 7 is a triangle
— f(m) = .
ces 0 otherwise.

Chen Chen, Jingrui He, Nadya Bliss, Hanghang Tong: On the Connectivity of Multi-layered Networks: Models, Measures and Optimal

Control. ICDM 2015



Roadmap

¥ Motivations and Background
v Part |: GCO Measures
= Part [I: GCO Theories & Algorithms
e Part lll: GCO Applications
* Part IV: Open Challenges & Future Trends
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Minimizing Dissemination: Immunization
*Given: a graph A, virus prop model and budget k;

[
b=

*Find: k ‘best’ nodes for immunization. )
e

SARS costs 700+ lives: $40+ Bn: H1N1 costs Mexico $2.3bn



Minimizing Dissemination: Immunization

Given: a graph A, virus prop model and budget k;
‘Find: k ‘best’ nodes for immunization. @

SARS costs 700+ lives: $40+ Bn: H1N1 costs Mexico $2.3bn



Optimal Method

* Select k nodes, whose absence creates the
largest drop in A

§ =argmaxy, , A S
©

Original Graph: 4 Without {2, 6}: 4
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Optimal Method

* Select k nodes, whose absence creates the

largest drop in A
S = arg maxlS| " /1@

° But we need 0( in time Largest eigenvalue
w/o subset of nodes S

— Example: 1,000 nodes, with 10,000 edges

* |t takes 0.01 seconds to compute A
* It takes 2,615 years to find best-5 nodes !

Theorem: Find Optimal k-node Immunization is NP-Hard

C. Chen, H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: Node Immunization on Large Graphs: Theory and Algorithms.
IEEE TKDE 2015



Optimal k-node immunization is NP-Hard

e Basic ldea: Reduction from P1 (known NP-hard)

Given an undirected/unweighted graph G, and k _ _
« P1 (k-independent set problem): is there k S X
nodes, no two of which are adjacent? A=| TRk (k)x(n-k)

P2 (k-node immunization problem): is there
k nodes, the deletions of which makes the
leading eigenvalues <0

* Proof #1: If YES to P1(G,k)—> YES to P2(G, n-k)
YESto Plwb S, = 0 e A(A) = /(0) = 0 = YES to P2

Nodesin T

* Proof #2: If NO to P1(G,k)=> NO to P2(G, n-k)

X (k)x(n-k) 7-(n-k)x(n-k

—

|

Suppose YES to P2 T%T /I(A) A0) < () — )
=S..= 0 «= Nodesin S being ind. set = contradict
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Netshield to the Rescue

Theorem:

(1) A- A=SV(S)= 5o 2AU(1)2-5, s Alif)uli)u()

mug] B

_— (=
_AF+F G50 )

!

— A, =A-u’ Eu/(u’u)+O(| E|?)
A u =AX |u = A-2u’ Fu+2u’ Eu+O(|E|?)

K = A-(Zies 2Au(iY-F; jes Alif)u(i)u())+O(] EW

T Footnote:

N l u(i) ~ PageRank(i) ~
u(l): eigen-score in-degree (i)

C. Chen, H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: Node Immunization on Large Graphs: Theory and Algorithms.

IEEE TKDE 2015



Netshield to the Rescue

Theorem:
(1) A- A =Sv(S)=> )




Netshield is near-opt

Netshield to the Rescue
Theorem:
(1) A- A=SV(S)= 3 s 2Au(i)?-3, es Al ) uli)u())
(2) Sv(S) is sub-modular (+monotonically non-decreasing)

3

Corollary:

(3) Netshield is near-optimal (wrt max Sv(S))
(4) Netshield is O(nk’+m)

 Example: 1,000 nodes, with 10,000 edges

— Netshield takes < 0.1 seconds to find best-5 nodes !
— ... as opposed to 2.615 years

Footnote: near-optimal means Sv(S



(1)A-A=5v(S)  /
(2) Sv(S) is subgnodular
Why Netshield is Near-Optimal? [y o

Netshield scales linearly

Marginal benefit of deleting {5,6} Marginal benefit of deleting {5,6}

\
Benefit of deleting {1,2} Benefit of deleting {1,2, 3,4}

u >= I 4= Sub-Modular (i.e., Diminishing Returns)
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Netshield is near-opts, .+’

Why Netshield is Near-Optimal?

u >= I @ S b-Modular (i.e., Diminishing Returns)

Theorem: k-step greedy alg. to maximize a sub-modular
function guarantees (1-1/e) optimal [Nemhauster+ 78]

-45 - D&LA Arizona State University



(1) A-A=Sv(S)  /

(2) Sv(S) is subgnodular . .+
(3) Netshield is near-opty /]
(4) Netshield scales linearly

Why Sv(S) is sub-modular?

Newly deleted

Already deleted

H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: On the Vulnerability of Large Graphs. ICDM 2010: 1091-1096
C. Chen, H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: Node Immunization on Large Graphs: Theory and Algorithms. IEEE

TKDE 2015



(DA-A=VS)
° (2) Sv(S) is subgnodular . .+
Why Sv(S) is sub-modular? 3) Netshield's near-opt oy
(4) Netshield scales linearly
Newly deleted p Marginal Benefit of deleting {5,6}
SV(S green U Sblue) - SV(S gred n) —

Sies, MUY jos, AUU(UG) | =

(Zies,,e. jSgreen A(i,j)U(i)U(l')"'Ziesgreen, joSpy,e AUNUNUG))
Already deleted Pure benefit Interaction between
from {5,6} {5,6} and {1,2}

Only purple term depends on {1, 2}!

TKDE 2015



A-A=SV(S)

Sv(S) is subgnodular . +*
Netshield is near-opty /|
Netshield scales linearly

Why Sv(S) is sub-modular? E

Marginal Benefit = Blue —Purple

More Green e More Purple e Less Red
Marginal Benefit of Left >= Marginal Benefit of Right

Footnote: greens are nodes already deleted; blue {5,6}

nodes are nodes to be deleted



Quality of Netshield

(better)] ————Optima
o | /
2 /:’:;\?etsh/eld
- o
.9 . P
L) ¥ N\
(1-1/e) x Optimal

! ! ! !
6 7 8 9 10

.49 - # of vaccines



Comparison of Immunization

Log(fraction of infected nodes)

(better) Abnormality

N 2
1 \ o S KﬁﬁPageRank
\yn  Between (short)
0.01F X \' ‘
| Acquaintance
Netshield 4()/ Eigs (=HITS)
0.001 . . k

0 1000 2000 3000 4000 SDDD 6000 7000 8000  S000 10000

.50 - Time Ticks



Speed of Netshield

>10 d\ays
€=‘I,OOO,OOO>—FN K3
100,000 ¢+ Com-Eigs 1
_ 10000 1 "*Com-Eval
Time} .00 ; ,' 10,000,000x
(better) 100! ,f |
0.1 secon ds _ ,’ Netshield
\' \1 — ) :
10 _# o@/accmes

0.01 :

NIPS co-authorship Network: 3K nodes, 15K edges



Scalability of Netshield

# of edges

| | |
0 0.5 1 15 2 25X 108
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From Node Deletion to Edge Deletion

*Given: a graph A, virus prop model and budget k;
*Find: delete k ‘best’ edges from A to minimize A

Our Solutions: 18t order matrix perturbation again!

A - As =Mv(S)=c D s U(ie)v(je)
=S

Left eigen-score of source Right eigen-score of target

-53 - DGLA Arizona State University



Minimizing Propagation: Evaluations
L?g (Infected Ratio)

—Rand
0.5F — Line—-Page
—Line-Deg
- |ine—-Eig
Original
0.1F - K -EdgeDelete
0.05F
(better)
0.01r A
0051 Our Method
0 500 1000 1500 2000

Time Step Time Ticks

Data set: Oregon Autonomous System Graph (14K node, 61K edges)
-54 -



Discussions: Node Deletion vs. Edge Deletion

Observations:

* Node or Edge Deletion = A Decrease
* Nodes on A = Edges on its line graph L(A)
4.1 3,4

4

] 4,3
1 2,4 |
2 1,2 2,3
Original Graph A Line Graph L(A)
*Questions?

» Edge Deletion on A = Node Deletionon L(A)?
» Which strategy is better (when both feasible)?



Discussions: Node Deletion vs. Edge Deletion

*Q: Is Edge Deletion on A = Node Deletion on L(A)?
*A: Yes!

Theorem: Line Graph Spectrum.

Eigenvalue of A = Eigenvalue of L(A)




Discussions: Node Deletion vs. Edge Deletion

*Q: Which strategy is better (when both feasible)?
*A: Edge Deletion > Node Deletion

18
16
14

(better)

Delta Lambda

11

)Y
SO > oﬁ\?’ 0«0 o“» o“$ o“ﬁ' o“'G o“x\ oo

Oit? O(Qv 0‘29 0‘60 O(Qv O‘Qv 0\69 O\Qv oﬁb

O D W= 1 0

Green: Node Deletion (e.g., shutdown a twitter account)
Red: Edge Deletion (e.g., un-friend two users)
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Maximizing Dissemination: Edge Addition

*Given: a graph A, virus prop model and budget K;
*Find: add k ‘best’ new edges into A.

* By 15t order perturbation, we have
A -A=Gv(S)=c Y, culi,)v(,)

Left eigen-score  Right eigen-score
of source of target

* So, we are done =2 need O(n’-m) complexity

- 58 - ngh Gv g DQ.LA Arizona State University



Maximizing Dissemination: Edge Addition
A, -A=GV(S)=c . uli)vij,)

* Q: How to Find k new edges w/ highest Gv(S) ?

* A: Modified Fagin’s algorithm

k #2: Sorting k+d

| . Targets by v |
#3:

|
|
=
)
7

k

(0p)

| | space k+d b

#1: Sorting ‘ | B

Sources by u

Time Complexity: O(m+nt+kt?), t = max(k,d) W :existing edge



Maximizing Dissemination: Evaluation

(better)

- 60 -

-2- Log (Infected Ratio)

K-EdgeAdd

Original

CompDelete

Time Ticks

0 1000 2000 3000 4000 5000



More on GCO Algorithms

* M1: Higher Order Variants

— "Better’ Matrix Perturbation = Better Approximation of Eigen-
gap?

— C. Chen, H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C.
Faloutsos, D. Chau: Node Immunization on Large Graphs:
Theory and Algorithms. IEEE TKDE 2015

* M2: Beyond Full & Symmetric Immunity

— Immunizing a node weakens (but not deleting) the incoming
(but not the out-going) links

— B. Aditya Prakash, Lada Adamic, Theodore Iwashnya, Hanghang
Tong and Christos Faloutsos: Fractional Immunization on
Networks. SDM 2013
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More on GCO Algorithms (cont.)

* M3: Immunization on Dynamic Graphs

— Optimize connectivity on Time-Varying Graphs (with alternating
behavior)

— B. Aditya Prakash, Hanghang Tong, Nicholas Valler, Michalis
Faloutsos, Christos Faloutsos: Virus Propagation on Time-

Varying Networks: Theory and Immunization Algorithms. ECML/
PKDD (3) 2010: 99-114

 M4: Manipulating Network Robustness
— Beyond A: Optimizing an eigen-function of the underlying graph

— Hau Chan, Leman Akoglu, Hanghang Tong: Make It or Break It:
Manipulating Robustness in Large Networks. SDM 2014:
325-333
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More on GCO Algorithms (cont.)

e M5: Robust Network Construction

— How to building a ‘well-connected’ network, that is robust to
external intentional attack, with resource constraint?

— Hui Wang, Wanyun Cui, Yanghua Xiao, Hanghang Tong:Robust
network construction against intentional attacks. BigComp
2015: 279-286

* M6: Vaccine Distribution with Uncertainty
— Optimizing the connectivity of a ‘noisy’, uncertain graph.

— Yao Zhang and B. Aditya Prakash: Scalable Vaccine Distribution
in Large Graphs given Uncertain Data. ICDM 2014

— Code available at: http://people.cs.vt.edu/badityap/CODE/
UDAV.zip
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More on GCO Algorithms (cont.)

e M7: Handling Small Eigen-Gap

— Optimal edge deletion strategy on a graph with small eigen-gap
(e.g., social networks), where matrix-perturbation might
collapse.

— L. Le, T. Eliassi-Rad and H. Tong: MET: A Fast Algorithm for
Minimizing Propagation in Large Graphs with Small Eigen-Gaps.
SDM 2015

* MS8: Source/Target-Specific Connectivity Optimization

— ldentifying most important nodes in connecting two nodes, or
two groups of nodes

— Hanghang Tong, Spiros Papadimitriou, Christos Faloutsos, Philip
S. Yu, Tina Eliassi-Rad: Gateway finder in large graphs: problem
definitions and fast solutions. Inf. Retr. 15(3-4): 391-411 (2012)
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Roadmap

¥ Motivations and Background

v Part |: GCO Measures

v Part Il: GCO Theories & Algorithms
= part I11: GCO Applications

* Part IV: Open Challenges & Future Trends
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Al:
A2:
A3:
A4:
A5:
Ab:
A7
A8:
A9:

Part Ill: Applications

Immunization

Optimal Resource Allocation

Optimal Network Demolition: Collective Influence
Diversified Ranking on Graphs

Information Spreading in Context

Vulnerability of Cyber-Physical Systems

Team Member Replacement

Competitive Virus on Composite Networks
Gateway finder

- 66 -
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Al: Immunization

Log(fraction of infected nodes)

(better) Abnormality

/

01F

Between (short)

0.01F

Acquaintance
Netshield\_| ‘) Eigs (=HITS)

0 1000 2000 SDDD 4000 5000 BDDD 7000 8000  S000 10000

Time Ticks

H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: On the Vulnerability of Large Graphs. ICDM 2010: 1091-1096

0.001

C. Chen, H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: Node Immunization on Large Graphs: Theory and Algorithms. IEEE
TKDE 2015



A2: Optimal Recourse Allocation

US-Medicare Network

Critical Patient transferring

Move patients = specialized care
- highly resistant micro-

organism -> Infection controlling

—> costly & limited

Q: How to allocate resource to minimize overall spreading?

SARS costs 700+ lives; $40+ Bn; H1N1 costs Mexico $2.3bn; Flu 2013: one of the worst

in a decade, 105 children in US.



A2: Optimal Recourse Allocation

Y

Current Method Out Method
Red: Infected Hospitals after 365 days

B. Aditya Prakash, Lada Adamic, Theodore Iwashnya, Hanghang Tong and Christos

Faloutsos: Fractional Immunization on Networks. SDM 2013



A3: Optimal Network Demolition:
Collective Influence

™\ ;/‘A-\‘-
, ( )
\_/ N/
7\
\_/
o O )
. S~ N
)

(a): the original input network.

(b): removing six (white) nodes w/ highest
individual influence scores - GCC of size12.
(c): removing four (white) nodes with highest
collective influence> GCC of size 10.

Istvan A. Kovacs & Albert-Laszlo Barabasi: Network science: Destruction perfected.

Nature 524, 38-39, 2015



A4: Diversified Ranking on Large Graphs

* Q: Why Diversity?
* Al: Uncertainty & Ambiguity in an Information

GOK /8[6 jaguar seach | Case 1: Uncertainty from the query

.,,, n

seach | Case 2: Uncertainty from the user

Advanced searc

EC@;‘%\

“Swine Flu" Pathology Swine Flu Symptoms

by BS Beetles i ) A Review common swine flu symptoms, which can include high fever, cough, runny
Jul 24, 2009 ... “Swine Flu” Pathology. Figure. CREDIT- MAINES ET AL. The nose, cough, and body aches, and how to tell the difference between swine flu ...
clinical spectrum of disease caused by the swine-origin 2009 A(H1N1) influenza ... pediatrics_about.com/od/swineflu/a/409_symptoms_htm - Cached - Similar

www.sciencemag.org/content/325/5939/367.2 full —

Hanghang Tong, Jingrui He, Zhen Wen, Ravi Konuru, Ching-Yung Lin:

Diversified ranking on large graphs: an optimization viewpoint. KDD 2011: 1028-1036



A4: Why Diversity? (cont.)

 A2: Address uncertainty & ambiguity of an
information need

— C1: Product search = want different reviews

— (C2: Political issue debate = desire different opinions

— C3: Legal search = find ALL relevant cases

— C4: Team assembling = find a set of relevant & diversified experts

 A3: Become a better and safer employee

— Better: A 1% increase in diversity = an additional 5886 of monthly
revenue

— Safer: A 1% increase in diversity = an increase of 11.8% in job
retention

Hanghang Tong, Jingrui He, Zhen Wen, Ravi Konuru, Ching-Yung Lin:

Diversified ranking on large graphs: an optimization viewpoint. KDD 2011: 1028-1036



A4: Our Solutions (10 sec. introduction!)

* Problem 1 (Evaluate/measure a given top-k ranking list)

 Al: A weighted sum between relevance and similarity
: relevance
weight

* Problem 2 (Find a near optimal top-k ranking list)

diversity

* A2: A greedy algorithm (near-optimal, linear scalability)

oﬂ

A: Original Graph @ ©

-73 -

B: Personalized
Graph



A Special Case of Dragon = Generalized Netshild
' r=Br

* Fact 2: ris the corresponding right eigenvector of B

* Fact 1: The largest eigenvalue of B is 1

* Fact 3: The corresponding left eigenvector of B is 1
1 For w=2, g(S)~=drop in the largest eigenvalue of B
 Dragon (w=2) = Netshield on directed graphs

Intuition: find k nodes to disconnect the
personalized graph B as much as possible

Hanghang Tong, Jingrui He, Zhen Wen, Ravi Konuru, Ching-Yung Lin:

Diversified ranking on large graphs: an optimization viewpoint. KDD 2011: 1028-1036



A4d: Experimental Results

Quality
N
o
O |
&
S
=
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“5 06 —+— DRAGON
g o matar
—=— RRW_a
, T oss ——RRW_b Budget
DB ®% 20 30 @ @ K g 70 80 %0 10
An lllustrative Example Compare w/ alternative choices
Time. Time
d ¢- 100
i - w
=" - Lin-QP 3
g Heuristic2 2 8
= I'd o
= u £ 70
5 P ﬁ 60
ks -~ o i
QO 0 _ = 50
2 Ite-BIP 2 1x |3 s .
S ~* i g
= Heuristic1 DRAGON | 5
3 10"02 0,‘3 0‘4 0‘5 DIIS D‘7 D‘B 0‘9 \IT- 10I BUdget
Normalized #(S) ~ Opt. Quality ’ > ¥ of edges -
Quality-Time Balance Scalability

Hanghang Tong, Jingrui He, Zhen Wen, Ravi Konuru, Ching-Yung Lin:

Diversified ranking on large graphs: an optimization viewpoint. KDD 2011: 1028-1036



A5: Information Spreading in Context

e Micro-Behavior

* Aug 5. 09:30:12 ““date request” %Aug 5.09:53:00 “Fw: date 1‘equesr"‘

Q1: What does information spreading depend on?

e Macro-Behavior

[\ '\ Aug 5, 09:30:12 "data request"

Aug 5, 09:53:00 "I'w: data request"

Q2: How does the tree look Like
(depth, width, size), and why?

Aug 6, 14:21:53 "Fw: I'w: data request"

Data: 8000+ IBM employees emails, 2000+ Fw threads, information about
the individuals (performance, dept, job role), content of emails

Dashun Wang, Zhen Wen, Hanghang Tong, Ching-Yung Lin, Chaoming Song, Albert-LaszIé Barabasi: Information

spreading in context. WWW 2011: 735-744
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Dashun Wang, Zhen Wen, Hanghang Tong, Ching-Yung Lin, Chaoming Song, Albert-LaszIé Barabasi: Information

‘ Aug 5, 09:30:12 “date request” ‘Aug 5,09:53:00 “Fw: date request”‘

A5: Information Spread (whether or not) vs. Content

0

0.2 0.4 0.6 0.8
similarity expertise of B to content

0.2

0.18}
0.16}
0.14}
012}

01
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0.06

0.04]
0.02

[ |

0

0.2 0.4 0.6 0.8
similarity expertise of C to content

B

similarity between content and expertise

Information is more likely non-expert - expert

1

spreading in context. WWW 2011: 735-744



10° e 10" —8—— l —
M- O empirical g h‘ —&— empirical
N model i model
= -1
, % 107k -
10 °F gl 2
g \gu g B
© Do Q -2 1
g/ o §10 E
10°F 9 g I
o 10_3;— E
_6 B
10 ] bl EE— 10_4 | | | |
10" 10" 107 10° 0 2 5 10 15 20
Width Depth

1) The trees are fat and shallow (instead of thin and deep as in Kleinberg's
chain-letter setting)
2) Can be explained by a simple branch model (w/ decaying branching factors)

Dashun Wang, Zhen Wen, Hanghang Tong, Ching-Yung Lin, Chaoming Song, Albert-LaszIé Barabasi: Information

spreading in context. WWW 2011: 735-744



A6: Vulnerability of Cyber-Physical Systems

 ATwo-layered CPS  Examples of Infrastructure
— Blue: communication networks Interdependencies

Fuels, Lubricants

uuuu

.....

Fuel Transport, T
Shipping Y

— Red: Power grid
1 H ‘ Fuel for Generators — '
— Dashed line: cross-layer inter-dependency v*a_

“Fueis, Tibricants 7 - I tation 4 O

-

i
Power for Pumping £ i~ A
o Stations, Storage i
~... Control Systems

ransport,
Shipping

-

SCADA,
.. Communications

v
Water f0
Cooling:
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Reduc“o,“, o

________

~~~~~~~
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..
~wl,
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........

Emi

* Q: which node(s) and/or link(s) dysfunctions will lead to a
catastrophic failure of the entire system?

Rinaldi, Steven M., James P. Peerenboom, and Terrence K. Kelly. "ldentifying, understanding, and analyzing critical infrastructure interdependencies."
Control Systems, IEEE 21.6 (2001): 11-25.

Nguyen, Duy T., Yilin Shen, and My T. Thai. "Detecting critical nodes in interdependent power networks for vulnerability assessment." Smart Grid, IEEE

Transactions on 4.1 (2013): 151-159.
* Vespignani, Alessandro. "Complex networks: The fragility of interdependency." Nature 464.7291 (2010): 984-985.




A7: Team Member Replacement

Problem Definition: Ad]. Matrix
Given: (1) A labelled social network G := {4, L,

(2) Ateam G(7)

(3) A team member P € T skill Indicator

Recommend: A “best” alternative ¢ ¢ 7 to replace
the person p’s role in the team G(7)

' 4 "
'Team o
\‘ > ..

® Q: who is a good candidate to

3
% " .
~. Leave
Sa=-

« Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Yu-Ru Lin, Norbou Buchler:Replacing the Irreplaceable: Fast Algorithms for Team Member
Recommendation. WWW 2015: 636-646



A7: Team Member Replacement

Objective 1: A good candidate should have a similar skill
set

Skill Matching

To leave Candidate 1

« Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Yu-Ru Lin, Norbou Buchler:Replacing the Irreplaceable: Fast Algorithms for Team Member

Recommendation. WWW 2015: 636-646



A7: Team Member Replacement

Objective 2: A good candidate should have a similar
network structure

Structure Matching

/‘ .
G NS
/ /N :

t )

To leave \Candidate 1

Skill Set: 2 e ® 2 ® ol wuten

« Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Yu-Ru Lin, Norbou Buchler:Replacing the Irreplaceable: Fast Algorithms for Team Member
Recommendation. WWW 2015: 636-646



A7: Team Member Replacement

The two objectives should be fulfilled
simultaneously!

Skill Set: @& e e 2 ? oo e

« Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Yu-Ru Lin, Norbou Buchler:Replacing the Irreplaceable: Fast Algorithms for Team Member
Recommendation. WWW 2015: 636-646



A8: Competitive Virus on Composite Networks

e Q: Which virus will win?

— ‘virus’: smartphone
malware, memes, ideas

 A:ifA>A, V1 will win.

— A, and A,: leading eigen-
values of system matrices.

* Results
An example of composite network: a single
set of nodes with two distinct sets of links £
5 82 g
0S80@e0
§ 1 . i
B Ba z AT Wy—
Virus Model: S 1,1, S ) IR v R

» Xuetao Wei, Nicholas Valler, B. Aditya Prakash, lulian Neamtiu, Michalis Faloutsos, Christos Faloutsos: Competing Memes Propagation on Networks: A
Network Science Perspective. IEEE Journal on Selected Areas in Communications 31(6): 1049-1060 (2013)




A9: Gateway Finder

* Problem Definition: Given a source (s) * Solutions: Find the set
or a source group; and a target (t) or a whose removal causes

target group, maximal decrease of the
— Q1 (Metric): how to measure the gateway-  proximity from source to
ness for a subset of nodes (1)? target (e.g., block most

— Q2 (Algorithm): how to find a subset of k paths).
nodes with highest gateway-ness score?




N1:
N2:
N3:
N4:
N5:
NG6:
N7/:
N38:

Part IV: Future Trends

Learn k in GCO Problem

Sense-Making of GCO: How/Why?

GCO Tracking & Attribution

GCO on Multi-layered Networks

Min-Max GCO Problem

Super-Robust Network Problem

Optimal Graph Construction Problem

GCO Scalability: Challenges & Opportunities

- 86 -
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Graphs mmmmmmmp Patterns

N1: Learn kin GCO k/

Graph Connectivity Optimization (GCO) - This Tutorial

Given:
(1) an initial graph | Find:

(2) a g.raph operation # an ‘optimal’ graph
(e.g., deleting k nodes,
adding k new links)

(3) a mining task

e Q: what is the minimum &k, to reduce the epidemic
threshold below 1, given the strength of the virus and
connectivity of the population?

- 87 - DGLA Arizona State University




Graph Connectivity Optimization (GCO) - This Tutorial

N2: Sense-Making of GCO: S il raph

(2) a graph operation - an ‘optimal’ graph

What/WhO 9 HOW/Why? (e.g., deleting k nodes,

adding k new links)
(3) a mining task

e Current: A Typical GCO Instance
— Given: a social network,

— Find: who or which links are the most important, in bridging
different communities?

* Next: From Who/Who to How/Why
— Q1: Given an critical power-line in power-grid, explain why it is
important (in maintaining the graph connectivity)

— Q2: Given an influential author in scholarly network, find how
s/he influence other researchers and/or fields?

ay “o\ , %ﬁ%ﬁéﬁ :“l -;l”
I o=\ [, [|[FIEOESR S
R S N
Retweeting Graph . " \* - 7*.° e N
» Chlnese Weibo ..(_a; @@ ,‘;:-  Reversed C|tat|on..:§§;:§§= g,
= S Graph I”;'!',!“ ST
- 88 - = A



N2: A Flow-base

.‘/-. <-\'.
| Stochastic High-Level Petri Nets and |
Applications.

IEEE Tran:. Computers 1988
Fa

e

| Chuang Lin Dan C. Marinescu

Lin [IEEE Trans. Computers 1988]

S
[Model-Based Performance Prediction in
Software Development: A Survey.

IEEE Tran:. Software Eng. 2004

ol

Simonetta Bal:amo,Antinisca Di
.i\hrcof:wh InverardiMarta Simeoni

4

/e B\

(On Non-Functional Requirements in \

Software Engineering.

Conceptual Modeling: Foundation: and

Applications 2009 19
ﬁ workloads
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\Norman David Parker

y N 15/

Service-Oriented Computing: State of the Art and
Research Challenges.

IEEE Computer 2007

9 £
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Non-intrusive monitoring and service
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[Labeled LDA: A supervised topic model for credit
attribution in multi-labeled corpora.

EMNLP 2000

Daniel Ramage David Hall Ramesh
Nallapati,Christopher D. Manning
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/Al N

A survey of mobile phone ensing.

IEEE Communications Magazine 2010

Nicholas D. Lane Emiliano Miluzzo,Hong Lu,
Daniel Peebles et.al

. : /

) web
61 Semantic
ontology

The influence graph of “Stochastic High-Level Petri Net and Applications”

» Lei Shi, Hanghang Tong, Jie Tang, Chuang Lin: Flow-Based Influence Graph Visual Summarization.

ICDM 2014: 983-988




Graph Connectivity Optimization (GCO) - This Tutorial

N3: GCO Tracking & T it raph

(2) a graph operation| mmp [~ ‘optimal graph

Att r| b § t| on 2‘3‘3{.’19 2erieetiwnﬁnk:) nodes

(3) a mining task

* Observations
— #1: Graphs are changing over time

— #2: Many graph connectivity measures can be expressed as an
eigen-function of the adjacency matrix

e Solutions: Tracking eigen-function ¢ Results

Ap e New Eigen-Pairs 0.7
T ANE Old Eigen-Pairs
. .
/ W, 06} Estimated Errors
L
_______ '\Au] ~
L= 05¢
“ u "
Fixed Eigen-Space e .
= 04l
1 d
A° AA S o3}
w
02t _r:.-" —— Trip-Basic |
= ity Trip
01} Option1
—&— Option2
%" 10 20 @ 40 5 60 70 80 %0 100

XKoo Expensive :
Time Stamps

P

At (U « C. Chen and H. Tong: “Fast Eigen-Functions Tracking on

Dynamic Graphs”. SDM 2015

Uo° Ut




N4: GCO on Multi-layered
Networks

DA,
¥ D,
’ ,: : - v\ .\‘:_1:.‘1, )
0,, / |controlLayer |\ [ -
Ly \
‘7 A 2 As
*/-_\' o\ SN A
S NGNS e
\H \ | s A
Commumcathn Layer (satollih) Commumcatwn Layer (land)
D;2‘4)\ y o i
*A4 (Dependency between

Layer 3 and Layer 4)

Physical Layer

A four-layered network

Graph Connectivity Optimization (GCO) - This Tutorial

Given:

(1) an initial graph . Find:
(2) a graph operation| mmp [~ ‘optimal graph

(e.g., deleting k nodes,
adding k new links)
(3) a mining task

\ 0
1 =) A,

/ \(Layer 1 Topology)

*2
\ / = D(3.4)

(Dependency between
Layer 3 and Layer 4)

layer-layer

* A Multi-layered Network Model (Mulan) dependency network
— A Quintuple: ' =< G, A, D, 0, p >
Q: How to find an optimal node set in the control layer,
to minimize the connectivity of the target layer(s)?

» C. Chen, J. He, N. Bliss and H. Tong: “On the Connectivity of Multi-layered Networks: Models, Measures

and Optimal Control” ICDM 2015.



Graph Connectivity Optimization (GCO) - This Tutorial

N5: Min-Max GCO Problem  [®m e

(2) a graph operation| mmp |* ‘optimal graph

(A 4 ge I > & D €mons ) (azgi'ﬁg ﬁitiwnﬁnk:) nodes.

(3) a mining task

 Given: two inter-connected networks (or two inter-
connected components within the same network);

* Find: the optimal graph operation, that
— minimizes the connectivity of the (adversarial) network, and

— maximizes the connectivity of the other network (the one we
want to protect).

-92 - DQLA K a State University



N6: Super-Robust Network

* Observations (Nature 2000):
— Scale-free Networks (e.g., power-law): resilient to random failure, but

vulnerable to targeted attack
— Exponential Ne

attacks. ™
10
8

6

4

a

E SF
A o Failure

¢ O Attack

o o O

BAO A A8 A0 Ag
e}

o0 ©

o
aQ A0 A

o OO0 o o o o o

X
o AG DO A0 4O A0 A0 AO A

o o o o o g

0.00

* Ql1: How to design a robust network that is resilient to both failure
and attacks?

« Q2: If we know the type of attack (e.g., HDA, or even based on
GCO algorithms), How to tailor the GCO-defending algorithms
(e.g., knowing your enemies)?

|
0.02

L
0.04

Graph Connectivity Optimization (GCO) - This Tutorial

Given:

(1) an initial graph

(2) a graph operation
(e.g., deleting k nodes,
adding k new links)

(3) a mining task

=)

Find:
an ‘optimal’ graph

tworks (e.g., ER, Small-World model): resilient to targeted

X: fraction of removed nodes
Y: diameter of the residual network
E: ER model; SF: scale-free

Blue: (random) failure
Red: (intentional) attack

Albert, Réka, Hawoong Jeong, and Albert-Laszl6 Barabasi. "Error and attack tolerance of complex networks." nature 406.6794 (2000):

378-382.

Istvan A. Kovacs & Albert-Laszlo Barabasi: Network science: Destruction perfected. Nature 524, 38-39, 2015




Given:

. . ‘ an initial gra
N7: Optimal Graph Construction.” @ amn aron

(3) a mining task

-

* Q: What if the initial graph does not exist?

Q Graph Connectivity Optimization (GCO) - This Tutorial
]

Find:
an ‘optimal’ graph

* Robust Network Construction again intentional attacks (e.g., HDA)
— Given: (1) the number of nodes n of the graph, and (2) its desired degree

vector d (i.e., node capacity);

— Output: a graph A with (1) n nodes, (2) the maximal robustness, (3) deg(A) = d

 An Effective Heuristic

— H2: Large loop coverage

7

Original

o _ 10 : —
— H1: Avoid disassortative () W
mix by degree SR A\
l\ \ % y{y; -
[J -

R
|
2
\
A

GC-Level (Proposed) ]

0.1

02 03

Graph Robustness (Rob-GCC)

Hui Wang, Wanyun Cui, Yanghua Xiao, Hanghang Tong: Robust network construction against intentional attacks. BigComp 2015: 279-286




Graph Connectivity Optimization (GCO) - This Tutorial

N8: GCO Scalability: e il grph

(2) a graph operation| mEp
(e.g., deleting k nodes,

Challenges & Opportunities vadig knew s

(3) a mining task

* Challenges: How to Scale-up & Speed-up
— E1: O(m) or better on a single machine

Find:
an ‘optimal’ graph

— E2: Parallelism (implementation, decouple, analysis)

* Opportunities:
— Solving GCO problems trivially by scale?

— Conjecture: when the initial graph is big enough, (1) adding
any new links will make little improvement, and (2) the graph
becomes impossible to demolish with any limited budget.

— Is this true? If so, where is the tipping point?

DATA

- 95 - Lab Arizona State University
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