Optimal Connectivity on Big Graphs: Measures, Algorithms and Applications

Hanghang Tong

hanghang.tong@asu.edu

http://tonghanghang.org

Observation: Graphs are everywhere!

Goal: <u>understand</u> and <u>utilize</u> graph data Challenges: real graphs are often BIG!

BIG Graphs #1: The Size of Graphs is Growing!

Q: How to Speed-up & Scale-up?

BIG Graphs #2: Data Complexity (Rich graphs, e.g., geo-coded, attributed)

Q: What is difference between North America and Asia?; How to find patterns? (e.g., anomalies, communities, etc)

BIG Graphs #3: High Volatility

The amount of the data that is created every one minute Q: How to respond in real-time or near-real time?

Graph Mining: An Overview

Q: Where does the graph come from?

A Typical Graph Mining Paradigm

Graph Connectivity Optimization (GCO) - This Tutorial

Given:

- (1) an initial graph
- (2) a graph operation
- (3) a mining task

Find: an 'optimal' graph

GCO: Why Do We Care?

Dissemination: Think of it as Wine Spill

- 1. Spill a drop of wine on cloth
- 2. Spread/disseminate to the neighborhood

GCO: Why Do We Care?

Dissemination: Wine Spill on a Graph

wine spill on cloth Dissemination on a graph Same Diffusion Eq. 🖊

Q: How to minimize infected population?

Q: How to minimize infected population?

- Q1: Understand tipping point
- Q2: Affecting algorithms

Why Do We Care? – Healthcare

US-Medicare Network

Q: How to allocate resource to minimize overall spreading?

SARS costs 700+ lives; \$40+ Bn; H1N1 costs Mexico \$2.3bn; Flu 2013: one of the worst in a decade, 105 children in US.

Why Do We Care? – Healthcare

Red: Infected Hospitals after 365 days

Why Do We Care? (More)

Rumor Propagation

Viral Marketing

Email Fwd in Organization

Malware Infection

Roadmap

- Motivations and Background
- Part I: GCO Measures
 - Part II: GCO Theories & Algorithms
 - Part III: GCO Applications
 - Part IV: Open Challenges & Future Trends

Part I: GCO Measures

- GCO Measure #1: Epidemic Threshold (λ)
- GCO Measure #2: Graph Robustness
- Other GCO Measures
- Comparison of GCO Measures
- Unification of GCO Measures

Arizona State University

SIS Model (e.g., Flu) (Susceptible-Infected-Susceptible)

• Each Node Has Two Statuses: 💫 Sick 🔼 Healthy

• β : Infection Rate (Prob ($\longrightarrow \longrightarrow \longrightarrow$ | @))

• δ : Recovery Rate (Prob ($\longrightarrow \longrightarrow \longrightarrow$ | \searrow))

$$t = 1$$

$$t = 2$$

$$t = 3$$

SIS Model (e.g., Flu)

$$p_{t+1} = H(p_t)$$

Theorem [Chakrabarti+ 2003, 2007]: If $\lambda \times (\beta/\delta) \le 1$; no epidemic for any initial conditions

 λ : largest eigenvalue of the graph (~ connectivity of the graph) β, δ : virus parameters (~strength of the virus)

Beyond Static Graphs: Alternating Behavior

B. Aditya Prakash, Hanghang Tong, Nicholas Valler, Michalis Faloutsos, Christos Faloutsos:Virus Propagation on Time-Varying Networks: Theory and Immunization Algorithms. ECML/PKDD (3) 2010: 99-114 Nicholas Valler, B. Aditya Prakash, Hanghang Tong, Michalis Faloutsos, Christos Faloutsos:Epidemic Spread in Mobile Ad Hoc

Networks: Determining the Tipping Point. Networking (1) 2011: 266-280

Beyond Static Graphs: Alternating Behavior

B. Aditya Prakash, Hanghang Tong, Nicholas Valler, Michalis Faloutsos, Christos Faloutsos:Virus Propagation on Time-Varying Networks: Theory and Immunization Algorithms. ECML/PKDD (3) 2010: 99-114 Nicholas Valler, B. Aditya Prakash, Hanghang Tong, Michalis Faloutsos, Christos Faloutsos:Epidemic Spread in Mobile Ad Hoc

Networks: Determining the Tipping Point. Networking (1) 2011: 266-280

Formal Model Description

[PKDD 2010, Networking 2011]

- SIS model
 - recovery rate δ
 - infection rate β

• Set of T arbitrary graphs $\{{f A}_1,{f A}_2,\ldots,{f A}_T\}$

weekend.....

Epidemic Threshold for Alternating Behavior

[PKDD 2010, Networking 2011]

Theorem [PKDD 2010, Networking 2011]:
No epidemic If \(\lambda(S \) \leq 1.

System matrix
$$S = \Pi_i S_i$$

 $S_i = (1-\delta)I + \beta A_i$

$$β$$
: Prob ($β$ → $β$)

Also generalize to other 25 virus propagation models

Why is \(\lambda\) So Important?

• $\lambda \rightarrow$ Path Capacity of a Graph:

$$(\vec{1}^*A^k\vec{1})^{1/k} \xrightarrow[k \to \infty]{} \lambda$$

(a)Chain(
$$\lambda_1 = 1.73$$
) (b)Star($\lambda_1 = 2$) (c)Clique($\lambda_1 = 4$)

Larger *→* better connected

Why is λ So Important?

Key 1: Model Dissemination as an NLDS:

- \mathcal{D}_t : Prob. vector: nodes being sick at t
- g: Non-linear function (graph + virus parameters)
- Key 2: Asymptotic Stability of NLDS:

 $p = p^* = 0$ is asymptotic stable if $|\lambda(J)| < 1$, where

$$J_{k,l} = [\nabla g(\mathbf{p}^*)]_{k,l} = \frac{\partial p_{k,t+1}}{\partial p_{l,t}}|_{\mathbf{p}_t = \mathbf{p}^*}$$

$$\frac{\partial \mathbf{p}_{2t+2}}{\partial \mathbf{p}_{2t+1}}|_{\mathbf{p}_{2t+1} = \mathbf{0}} = (1 - \delta)\mathbf{I} + \beta \mathbf{A}_1 = \mathbf{S}_1$$

$$\frac{\partial \mathbf{p}_{2t+1}}{\partial \mathbf{p}_{2t}}|_{\mathbf{p}_{2t} = \mathbf{0}} = (1 - \delta)\mathbf{I} + \beta \mathbf{A}_2 = \mathbf{S}_2$$

$$p_{i,2t+1} = 1 - \delta p_{i,2t} - (1 - p_{i,2t})\zeta_{2t}(i)$$

$$p_{i,2t+2} = 1 - \delta p_{i,2t+1} - (1 - p_{i,2t+1})\zeta_{2t+1}(i)$$

$$\mathcal{L}_{2t}(i) = \prod_{j \in \mathcal{NE}_2(i)} (p_{j,2t}(1-\beta) + (1-p_{j,2t})) \quad \zeta_{2t+1}(i) = \prod_{j \in \mathcal{NE}_1(i)} (p_{j,2t+1}(1-\beta) + (1-p_{j,2t+1}))$$

$$= \prod_{j \in \{1, r\}} (1-\beta \mathbf{A}_2(i,j)p_{j,2t})) \quad = \prod_{j \in \{1, r\}} (1-\beta \mathbf{A}_1(i,j)p_{j,2t+1}))$$

- Robustness is the ability of a network to continue performing well when it is subject to failures or attacks.
 - random failure (server down)
 - cascading failure (virus propagating)
 - targeted attack (carefully-chosen agents down)
- How to measure the robustness of a given network?
 - interpretable
 - (strictly) monotonic
 - captures redundancy

Beyond A: Graph/Network Robustness

- Study of robustness:
 - mathematics, physics, computer science, biology
- A long (!) and profoundly diverse list of measures:
 - vertex/edge connectivity
 - avg. shortest distance
 - max. shortest distance (diameter)
 - efficiency
 - vertex/edge betweenness
 - clustering coefficient
 - largest component fraction/avg. component size
 - total pairwise connectivity
 - average available flows

Beyond A: Graph/Network Robustness

- •
- algebraic connectivity
- effective resistance
- number of spanning trees
- ullet principal eigenvalue λ_1
- lacksquare spectral gap $\lambda_1 \lambda_2$
- natural connectivity

eigenvalues of the Laplacian **L**

eigenvalues of the adjacency **A**

- other (combinatorial) measures:
- toughness, scattering number, tenacity, integrity, fault diameter,
 isoperimetric number, min balanced cut, restricted connectivity, ...

Beyond A: Graph/Network Robustness

- •
- algebraic connectivity
- effective resistance
- number of spanning trees
- ullet principal eigenvalue λ_1
- lacksquare spectral gap $\lambda_1 \lambda_2$
- natural connectivity

eigenvalues of the Laplacian **L**

eigenvalues of the adjacency **A**

- other (combinatorial) measures:
- toughness, scattering number, tenacity, integrity, fault diameter,
 isoperimetric number, min balanced cut, restricted connectivity, ...

A "guide" for "good" robustness measures

- Strict monotonicity
 - improves strictly when edges are added
 - *related: differentiates graphs

- Redundancy
 - accounts for alternative/back-up paths
- Stability
 - does not change drastically by small changes
 - *related: meaningful for disconnected graphs
- Interpretability
 - its meaning is intuitively clear

A "guide" for "good" robustness measures

Measures	S. Monotone	Redundant	Stable	Interpretable
vertex / edge connectivity	X		X	
avg. shortest distance	X	X	X	
diameter	X	X	X	
efficiency		X		
vertex / edge betweenness		X	X	
clustering coefficient	X			
largest component fraction	X	S		
total pairwise connectivity	X	S		
avg. available flows			S	
algebraic connectivity	X		X	X
effective resistance		9		
number of spanning trees	X		X	
spectral radius / gap				X
natural connectivity	S	V		

Unification of Connectivity Measures

 Key Idea: graph connectivity as an aggregation over the subgraph connectivity:

$$C(\mathbf{A}) = \sum_{\pi \subset \mathbf{A}} f(\pi)$$

- A: adjacency matrix of the graph
- $-\pi$: a non-empty subgraph in A
- $-f(\pi)$: connectivity of the subgraph π
- C(A): connectivity of graph A

Unification of Connectivity Measures

• Key Idea:
$$C(\mathbf{A}) = \sum_{\pi \subset \mathbf{A}} f(\pi)$$

- **Examples** $f(\pi) = \begin{cases} \beta^{len(\pi)} & \text{if } \pi \text{ is a valid path of length } len(\pi) \\ 0 & \text{otherwise.} \end{cases}$ Path Capacity:

 - **Loop Capacity:** $f(\pi) = \begin{cases} 1/len(\pi)! & \text{if } \pi \text{ is a valid loop of length } len(\pi) \\ 0 & \text{otherwise.} \end{cases}$
 - Triangle Capacity:

$$f(\pi) = \begin{cases} 1 & \text{if } \pi \text{ is a triangle} \\ 0 & \text{otherwise.} \end{cases}$$

Roadmap

- Motivations and Background
- ✓ Part I: GCO Measures
- Part II: GCO Theories & Algorithms
 - Part III: GCO Applications
 - Part IV: Open Challenges & Future Trends

Minimizing Dissemination: Immunization

•Given: a graph A, virus prop model and budget k;

•Find: k 'best' nodes for immunization.

Minimizing Dissemination: Immunization

•Given: a graph A, virus prop model and budget k;

•Find: k 'best' nodes for immunization. 8 19

SARS costs 700+ lives; \$40+ Bn; H1N1 costs Mexico \$2.3bn

Optimal Method

• Select k nodes, whose absence creates the largest drop in λ

$$S = \arg\max_{|S|=k} \lambda - \lambda_S$$

Original Graph: *λ*

Without $\{2, 6\}$: λ_s

Optimal Method

 Select k nodes, whose absence creates the largest drop in λ

$$S = \arg\max_{|S|=k} \chi(\chi_S)$$

- $S = \arg\max_{|S|=k} \ \chi + \chi_S$ But, we need $O(\binom{n}{k} \cdot m)$ in time Largest eigenvalue w/o subset of nodes S
 - Example: 1,000 nodes, with 10,000 edges
 - It takes 0.01 seconds to compute λ
 - It takes 2,615 years to find best-5 nodes!

Theorem: Find Optimal k-node Immunization is NP-Hard

Optimal k-node immunization is NP-Hard

Basic Idea: Reduction from P1 (known NP-hard)

Given an undirected/unweighted graph *G*, and *k*

- P1 (k-independent set problem): is there k
 nodes, no two of which are adjacent?
- P2 (k-node immunization problem): is there k nodes, the deletions of which makes the leading eigenvalues ≤ 0

$$A = \begin{bmatrix} S_{kxk} & X_{(k)x(n-k)} \\ X_{(k)x(n-k)} & T_{(n-k)x(n-k)} \end{bmatrix}$$

• Proof #1: If YES to P1(G,k) \rightarrow YES to P2(G,n-k)

YES to P1
$$\longrightarrow S_{kxk} = 0$$
 $\xrightarrow{\text{Removing}}_{\text{Nodes in } T} \lambda(\widetilde{A}) = \lambda(\mathbf{0}) = 0 \longrightarrow \text{YES to P2}$

• Proof #2: If NO to P1(G,k) \rightarrow NO to P2(G,n-k)

Suppose YES to P2
$$\xrightarrow{\text{Removing}} \lambda(\widetilde{A}) = \lambda(\mathbf{0}) \leq 0 \xrightarrow{S(i,j) \geq 0}$$

 $\rightarrow S_{kxk} = 0 \iff$ Nodes in **S** being ind. set \implies contradict

Netshield to the Rescue

Theorem:

(1)
$$\lambda - \lambda_s \approx Sv(S) = \sum_{i \in S} 2\lambda u(i)^2 - \sum_{i,j \in S} A(i,j)u(i)u(j)$$

in-degree(i)

Netshield to the Rescue

Theorem:

(1) $\lambda - \lambda_s \approx Sv(S) = \sum_{i \in S} 2\lambda u(i)^2 \sum_{i,j \in S} A(i,j)u(i)u(j)$

- find a set of nodes S (e.g. k=4), which
 - (C1) each has high eigen-scores
 - (C2) diverse among themselves

Netshield to the Rescue

- (3) *Netshield* is near-opt (4) Netshield scales linearly

Theorem:

- (1) $\lambda \lambda_s \approx Sv(S) = \sum_{i \in S} 2\lambda u(i)^2 \sum_{i,j \in S} A(i,j)u(i)u(j)$
- (2) Sv(S) is sub-modular (+monotonically non-decreasing)

Corollary:

- (3) Netshield is near-optimal (wrt max Sv(S))
- (4) Netshield is $O(nk^2+m)$
 - Example: 1,000 nodes, with 10,000 edges
 - Netshield takes < 0.1 seconds to find best-5 nodes!
 - ... as opposed to 2,615 years

Why Netshield is Near-Optimal?

- $(1) \lambda \lambda_s \approx Sv(S)$
- (2) Sv(S) is submodular
- (3) Netshield is near-opt 🙌
- (4) Netshield scales linearly

Marginal benefit of deleting {5,6} Marginal benefit of deleting {5,6}

 $\Delta >= \delta$ Sub-Modular (i.e., Diminishing Returns)

Why Netshield is Near-Optimal?

(1) $\lambda - \lambda_s \approx \text{Sv}(S)$ (2) Sv(S) is submodular (3) Netshield is near-opt

(4) Netshield scales linearly

Theorem: k-step greedy alg. to maximize a sub-modular function guarantees (1-1/e) optimal [Nemhauster+ 78]

Why Sv(S) is sub-modular?

- $(1) \lambda \lambda_s \approx Sv(S)$
- (2) Sv(S) is submodular 👯
- (3) Netshield is near-opt
- (4) Netshield scales linearly

Already deleted

[•] H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: On the Vulnerability of Large Graphs. ICDM 2010: 1091-1096

C. Chen, H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: Node Immunization on Large Graphs: Theory and Algorithms. IEEE TKDE 2015

Why Sv(S) is sub-modular?

Marginal Benefit of deleting {5,6}

$$Sv(S_{green} \cup S_{blue}) - Sv(S_{green}) =$$

$$\sum_{i \in S_{blue}} 2\lambda u(i)^2 - \sum_{i,j \in S_{blue}} A(i,j)u(i)u(j)$$

$$(\sum_{i \in S_{blue}, j \in S_{green}} A(i,j)u(i)u(j) + \sum_{i \in S_{green}, j \in S_{blue}} A(i,j)u(i)u(j))$$

Already deleted

Pure benefit from {5,6}

Interaction between {5,6} and {1,2}

Only purple term depends on {1, 2}!

⁺ H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: On the Vulnerability of Large Graphs. ICDM 2010: 1091-1096

C. Chen, H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: Node Immunization on Large Graphs: Theory and Algorithms. IEEE TKDE 2015

Why Sv(S) is sub-modular?

Marginal Benefit = Blue -Purple

More Green ← More Purple ← Less Red

Marginal Benefit of Left >= Marginal Benefit of Right

Footnote: greens are nodes already deleted; blue {5,6} nodes are nodes to be deleted

Quality of Netshield

Comparison of Immunization

Speed of Netshield

NIPS co-authorship Network: 3K nodes, 15K edges

Scalability of Netshield

From Node Deletion to Edge Deletion

- •Given: a graph A, virus prop model and budget k;
- •Find: delete k 'best' edges from A to minimize λ

Our Solutions: 1st order matrix perturbation again!

$$\lambda - \lambda_s \approx Mv(S) = c \sum_{e \in S} u(i_e)v(j_e)$$

Left eigen-score of source

Right eigen-score of target

Minimizing Propagation: Evaluations

Data set: Oregon Autonomous System Graph (14K node, 61K edges)

Discussions: Node Deletion vs. Edge Deletion

Observations:

- Nodes on A = Edges on its line graph L(A)

•Questions?

- Edge Deletion on A = Node Deletion on L(A)?
- Which strategy is better (when both feasible)?

Discussions: Node Deletion vs. Edge Deletion

- •Q: Is Edge Deletion on A = Node Deletion on L(A)?
- •A: Yes!

Theorem: Line Graph Spectrum. Eigenvalue of $A \rightarrow$ Eigenvalue of L(A)

Discussions: Node Deletion vs. Edge Deletion

- •Q: Which strategy is better (when both feasible)?
- A: Edge Deletion > Node Deletion

Green: Node Deletion (e.g., shutdown a twitter account)

Red: Edge Deletion (e.g., un-friend two users)

Maximizing Dissemination: Edge Addition

- •Given: a graph A, virus prop model and budget k;
- •Find: add k 'best' new edges into A.
 - By 1st order perturbation, we have

$$\lambda_s - \lambda \approx Gv(S) = c \sum_{e \in S} u(i_e)v(j_e)$$

Left eigen-score Right eigen-score of source of target

• So, we are done \rightarrow need $O(n^2-m)$ complexity

Maximizing Dissemination: Edge Addition

$$\lambda_s - \lambda \approx Gv(S) = c \sum_{e \in S} u(i_e)v(j_e)$$

- Q: How to Find k new edges w/ highest Gv(S)?
- A: Modified Fagin's algorithm

Time Complexity: $O(m+nt+kt^2)$, t = max(k,d) : existing edge

Maximizing Dissemination: Evaluation

More on GCO Algorithms

M1: Higher Order Variants

- − `Better' Matrix Perturbation → Better Approximation of Eigengap?
- C. Chen, H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: Node Immunization on Large Graphs:
 Theory and Algorithms. IEEE TKDE 2015

M2: Beyond Full & Symmetric Immunity

- Immunizing a node weakens (but not deleting) the incoming (but not the out-going) links
- B. Aditya Prakash, Lada Adamic, Theodore Iwashnya, Hanghang Tong and Christos Faloutsos: Fractional Immunization on Networks. SDM 2013

More on GCO Algorithms (cont.)

M3: Immunization on Dynamic Graphs

- Optimize connectivity on Time-Varying Graphs (with alternating behavior)
- B. Aditya Prakash, Hanghang Tong, Nicholas Valler, Michalis Faloutsos, Christos Faloutsos: Virus Propagation on Time-Varying Networks: Theory and Immunization Algorithms. ECML/ PKDD (3) 2010: 99-114

M4: Manipulating Network Robustness

- Beyond λ : Optimizing an eigen-function of the underlying graph
- Hau Chan, Leman Akoglu, Hanghang Tong: Make It or Break It:
 Manipulating Robustness in Large Networks. SDM 2014:
 325-333

- 62 -

More on GCO Algorithms (cont.)

M5: Robust Network Construction

- How to building a `well-connected' network, that is robust to external intentional attack, with resource constraint?
- Hui Wang, Wanyun Cui, Yanghua Xiao, Hanghang Tong:Robust network construction against intentional attacks. BigComp 2015: 279-286

M6: Vaccine Distribution with Uncertainty

- Optimizing the connectivity of a 'noisy', uncertain graph.
- Yao Zhang and B. Aditya Prakash: Scalable Vaccine Distribution in Large Graphs given Uncertain Data. ICDM 2014
- Code available at: http://people.cs.vt.edu/badityap/CODE/ UDAV.zip

More on GCO Algorithms (cont.)

M7: Handling Small Eigen-Gap

- Optimal edge deletion strategy on a graph with small eigen-gap (e.g., social networks), where matrix-perturbation might collapse.
- L. Le, T. Eliassi-Rad and H. Tong: MET: A Fast Algorithm for Minimizing Propagation in Large Graphs with Small Eigen-Gaps.
 SDM 2015

M8: Source/Target-Specific Connectivity Optimization

- Identifying most important nodes in connecting two nodes, or two groups of nodes
- Hanghang Tong, Spiros Papadimitriou, Christos Faloutsos, Philip S. Yu, Tina Eliassi-Rad: Gateway finder in large graphs: problem definitions and fast solutions. Inf. Retr. 15(3-4): 391-411 (2012)

Roadmap

- Motivations and Background
- ✓ Part I: GCO Measures
- ✓ Part II: GCO Theories & Algorithms
- Part III: GCO Applications
 - Part IV: Open Challenges & Future Trends

Part III: Applications

- A1: Immunization
- A2: Optimal Resource Allocation
- A3: Optimal Network Demolition: Collective Influence
- A4: Diversified Ranking on Graphs
- A5: Information Spreading in Context
- A6: Vulnerability of Cyber-Physical Systems
- A7: Team Member Replacement
- A8: Competitive Virus on Composite Networks
- A9: Gateway finder

A1: Immunization

H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: On the Vulnerability of Large Graphs. ICDM 2010: 1091-1096 C. Chen, H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: Node Immunization on Large Graphs: Theory and Algorithms. IEEE TKDE 2015

A2: Optimal Recourse Allocation

US-Medicare Network

Q: How to allocate resource to minimize overall spreading?

SARS costs 700+ lives; \$40+ Bn; H1N1 costs Mexico \$2.3bn; Flu 2013: one of the worst in a decade, 105 children in US.

A2: Optimal Recourse Allocation

Red: Infected Hospitals after 365 days

A3: Optimal Network Demolition:

Collective Influence

(a): the original input network.

(b): removing six (white) nodes w/ highest individual influence scores → GCC of size12.

(c): removing four (white) nodes with highest collective influence → GCC of size 10.

István A. Kovács & Albert-László Barabási: Network science: Destruction perfected. Nature 524, 38-39, 2015

A4: Diversified Ranking on Large Graphs

- Q: Why Diversity?
- A1: Uncertainty & Ambiguity in an Information

Hanghang Tong, Jingrui He, Zhen Wen, Ravi Konuru, Ching-Yung Lin: Diversified ranking on large graphs: an optimization viewpoint. KDD 2011: 1028-1036

A4: Why Diversity? (cont.)

- A2: Address uncertainty & ambiguity of an information need
 - C1: Product search → want different reviews
 - C2: Political issue debate \rightarrow desire different opinions
 - C3: Legal search → find ALL relevant cases
 - C4: Team assembling → find a set of relevant & diversified experts
- A3: Become a better and safer employee
 - Better: A 1% increase in diversity → an additional \$886 of monthly revenue
 - Safer: A 1% increase in diversity → an increase of 11.8% in job retention

A4: Our Solutions (10 sec. introduction!)

- Problem 1 (Evaluate/measure a given top-k ranking list)
- A1: A weighted sum between relevance and similarity

- Problem 2 (Find a near optimal top-k ranking list)
- A2: A greedy algorithm (near-optimal, linear scalability)

A Special Case of Dragon = Generalized *Netshild*

$$r = B r$$

- Fact 1: The largest eigenvalue of B is 1
- Fact 2: r is the corresponding right eigenvector of B
- Fact 3: The corresponding left eigenvector of B is 1
 - For w=2, $g(S)\sim=$ drop in the largest eigenvalue of **B**
- Dragon (w=2) = Netshield on directed graphs

A4: Experimental Results

An Illustrative Example

Quality-Time Balance

Hanghang Tong, Jingrui He, Zhen Wen, Ravi Konuru, Ching-Yung Lin: Diversified ranking on large graphs: an optimization viewpoint. KDD 2011: 1028-1036

A5: Information Spreading in Context

Micro-Behavior

Q1: What does information spreading depend on?

Macro-Behavior

Q2: How does the tree look Like (depth, width, size), and why?

Data: 8000+ IBM employees emails, 2000+ Fw threads, information about the individuals (performance, dept, job role), content of emails

Dashun Wang, Zhen Wen, Hanghang Tong, Ching-Yung Lin, Chaoming Song, Albert-László Barabási: Information spreading in context. WWW 2011: 735-744

A5: Information Spread (whether or not) vs. Content

Information is more likely non-expert → expert

A5: The Structure of Information Spreading

- 1) The trees are *fat and shallow* (instead of *thin and deep* as in Kleinberg's chain-letter setting)
- 2) Can be explained by a simple branch model (w/ decaying branching factors)

A6: Vulnerability of Cyber-Physical Systems

- A Two-layered CPS
 - Blue: communication networks
 - Red: Power grid
 - Dashed line: cross-layer inter-dependency

Examples of Infrastructure Interdependencies

- Q: which node(s) and/or link(s) dysfunctions will lead to a catastrophic failure of the entire system?
- Rinaldi, Steven M., James P. Peerenboom, and Terrence K. Kelly. "Identifying, understanding, and analyzing critical infrastructure interdependencies."
 Control Systems, IEEE 21.6 (2001): 11-25.
- Nguyen, Duy T., Yilin Shen, and My T. Thai. "Detecting critical nodes in interdependent power networks for vulnerability assessment." Smart Grid, IEEE Transactions on 4.1 (2013): 151-159.
- Vespignani, Alessandro. "Complex networks: The fragility of interdependency." Nature 464.7291 (2010): 984-985.

Problem Definition:

Given: (1) A labelled social network $G:=\{1,L\}$

(2) A team $G(\mathcal{T})$

(3) A team member $p \in \mathcal{T}$

Skill Indicator

Adj. Matrix

Recommend: A "best" alternative $q \notin \mathcal{T}$ to replace the person p 's role in the team $G(\mathcal{T})$

Q: who is a good candidate to replace the person to leave

Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Yu-Ru Lin, Norbou Buchler:Replacing the Irreplaceable: Fast Algorithms for Team Member Recommendation. WWW 2015: 636-646

Objective 1: A good candidate should have a similar skill set

New team will have similar skill set as the old team to complete the task

Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Yu-Ru Lin, Norbou Buchler:Replacing the Irreplaceable: Fast Algorithms for Team Member Recommendation. WWW 2015: 636-646

Objective 2: A good candidate should have a similar network structure

New team will have similar network structure as the old team to collaborate effectively

Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Yu-Ru Lin, Norbou Buchler:Replacing the Irreplaceable: Fast Algorithms for Team Member Recommendation. WWW 2015: 636-646

The two objectives should be fulfilled simultaneously!

New team will have similar skill and communication configuration for each sub-task

Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Yu-Ru Lin, Norbou Buchler:Replacing the Irreplaceable: Fast Algorithms for Team Member Recommendation. WWW 2015: 636-646

A8: Competitive Virus on Composite Networks

An example of composite network: a single set of nodes with two distinct sets of links

Virus Model: $S I_1 I_2 S$

- Q: Which virus will win?
 - `virus': smartphone malware, memes, ideas
- A: if $\lambda_1 > \lambda_2$ V1 will win.
 - λ_1 and λ_2 : leading eigenvalues of system matrices.

Results

Xuetao Wei, Nicholas Valler, B. Aditya Prakash, Iulian Neamtiu, Michalis Faloutsos, Christos Faloutsos: Competing Memes Propagation on Networks: A Network Science Perspective. IEEE Journal on Selected Areas in Communications 31(6): 1049-1060 (2013)

A9: Gateway Finder

- Problem Definition: Given a source (s) •
 or a source group; and a target (t) or a
 target group,
 - Q1 (Metric): how to measure the gatewayness for a subset of nodes (I)?
 - Q2 (Algorithm): how to find a subset of k nodes with highest gateway-ness score?

Solutions: Find the set whose removal causes maximal decrease of the proximity from source to target (e.g., block most paths).

 Hanghang Tong, Spiros Papadimitriou, Christos Faloutsos, Philip S. Yu, Tina Eliassi-Rad: Gateway finder in large graphs: problem definitions and fast solutions. Inf. Retr. 15(3-4): 391-411 (2012)

Part IV: Future Trends

- N1: Learn k in GCO Problem
- N2: Sense-Making of GCO: How/Why?
- N3: GCO Tracking & Attribution
- N4: GCO on Multi-layered Networks
- N5: Min-Max GCO Problem
- N6: Super-Robust Network Problem
- N7: Optimal Graph Construction Problem
- N8: GCO Scalability: Challenges & Opportunities

N1: Learn k in GCO

Graph Connectivity Optimization (GCO) - This Tutorial

Given:

(1) an initial graph
(2) a graph operation
(e.g., deleting k nodes, adding k new links)
(3) a mining task

Find: an 'optimal' graph

• Q: what is the minimum k, to reduce the epidemic threshold below 1, given the strength of the virus and connectivity of the population?

N2: Sense-Making of GCO:

What/Who → How/Why?

Current: A Typical GCO Instance

- Given: a social network,
- Find: who or which links are the most important, in bridging different communities?

Next: From Who/Who to How/Why

- Q1: Given an critical power-line in power-grid, explain why it is important (in maintaining the graph connectivity)
- Q2: Given an influential author in scholarly network, find how s/he influence other researchers and/or fields?

Retweeting Graph in Chinese Weibo

Reversed Citation
Graph

Graph Connectivity Optimization (GCO) - This Tutorial

Given:

(1) an initial graph

(2) a graph operation (e.g., deleting **k** nodes,

adding **k** new links) (3) a mining task

Find:

an 'optimal' graph

N2: A Flow-based Summarization Solution

The influence graph of "Stochastic High-Level Petri Net and Applications"

 Lei Shi, Hanghang Tong, Jie Tang, Chuang Lin: Flow-Based Influence Graph Visual Summarization. ICDM 2014: 983-988

N3: GCO Tracking &

Attribution

Observations

- #1: Graphs are changing over time
- #2: Many graph connectivity measures can be expressed as an eigen-function of the adjacency matrix
- Solutions: Tracking eigen-function

Results

Given:

(1) an initial graph

adding **k** new links) (3) a mining task

(2) a graph operation

(e.g., deleting k nodes,

Graph Connectivity Optimization (GCO) - This Tutorial

Find:

an 'optimal' graph

• C. Chen and H. Tong: "Fast Eigen-Functions Tracking on Dynamic Graphs". SDM 2015

N4: GCO on Multi-layered Networks

A four-layered network

Graph Connectivity Optimization (GCO) - This Tutorial

Given:

- A Multi-layered Network Model (Mulan)
 - A Quintuple: $\Gamma = \langle \mathbf{G}, \mathcal{A}, \mathcal{D}, \theta, \varphi \rangle$
- Q: How to find an optimal node set in the *control layer*, to minimize the connectivity of the *target layer(s)*?
- C. Chen, J. He, N. Bliss and H. Tong: "On the Connectivity of Multi-layered Networks: Models, Measures and Optimal Control" ICDM 2015.

Graph Connectivity Optimization (GCO) - This Tutorial

adding **k** new links) (3) a mining task

- **Given:** two inter-connected networks (or two inter-connected components within the same network);
- Find: the optimal graph operation, that
 - minimizes the connectivity of the (adversarial) network, and

maximizes the connectivity of the other network (the one we

N6: Super-Robust Network

- Observations (Nature 2000):
 - Scale-free Networks (e.g., power-law): resilient to random failure, but vulnerable to targeted attack
 - Exponential Networks (e.g., ER, Small-World model): resilient to targeted attacks.

- X: fraction of removed nodes
- Y: diameter of the residual network

Graph Connectivity Optimization (GCO) - This Tutorial

Find:

an 'optimal' graph

- E: ER model; SF: scale-free
- Blue: (random) failure

Given:

(1) an initial graph

adding **k** new links) (3) a mining task

(2) a graph operation

(e.g., deleting k nodes,

- Red: (intentional) attack
- Q1: How to design a robust network that is resilient to both failure and attacks?
- **Q2:** If we know the type of attack (e.g., HDA, or even based on GCO algorithms), How to tailor the GCO-defending algorithms (e.g., knowing your enemies)?
- Albert, Réka, Hawoong Jeong, and Albert-László Barabási. "Error and attack tolerance of complex networks." nature 406.6794 (2000): 378-382.
- István A. Kovács & Albert-László Barabási: Network science: Destruction perfected. Nature 524, 38–39, 2015

Graph Connectivity Optimization (GCO) - This Tutorial

Given:

(1) an initial graph

(2) a graph operation

Find:

an 'optimal' graph

- Q: What if the initial graph does not exist?
- Robust Network Construction again intentional attacks (e.g., HDA)
 - Given: (1) the number of nodes n of the graph, and (2) its desired degree vector d (i.e., node capacity);
 - Output: a graph A with (1) n nodes, (2) the maximal robustness, (3) deg(A) = d
- An Effective Heuristic
 - H1: Avoid disassortative mix by degree
 - H2: Large loop coverage

(3) a mining task

Challenges & Opportunities

Graph Connectivity Optimization (GCO) - This Tutorial

Given:

(1) an initial graph
(2) a graph operation
(e.g., deleting k nodes, adding k new links)

Find:
an 'optimal' graph

(3) a mining task

Challenges: How to Scale-up & Speed-up

- E1: O(m) or better on a single machine
- E2: Parallelism (implementation, decouple, analysis)

Opportunities:

- Solving GCO problems trivially by scale?
- Conjecture: when the initial graph is big enough, (1) adding any new links will make little improvement, and (2) the graph becomes impossible to demolish with any limited budget.
- Is this true? If so, where is the tipping point?

Acknowledgement

Lada A. Adamic, Leman Akoglu, Albert-László Barabási, Norbou Buchler, Nadya Bliss, Nan Cao, Polo Chau, Tina Eliassi-Rad, Kate Erhlich, Christos Faloutsos, Michalis Faloutsos, Jingrui He, Theodore J. Iwashyna, Yu-Ru Lin, Qiaozhu Mei, B. Aditya Prakash, Lei Shi, Chaoming Song, Boleslaw K. Szymanski, Jie Tang, Dashun Wang, Yanghua Xiao, Lei Xie, Lei Ying

- Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos, Christos Faloutsos: Gelling, and melting, large graphs by edge manipulation. CIKM 2012: 245-254
- Hui Wang, Wanyun Cui, Yanghua Xiao, Hanghang Tong: Robust network construction against intentional attacks. BigComp 2015: 279-286
- Lei Shi, Hanghang Tong, Jie Tang, Chuang Lin: Flow-Based Influence Graph Visual Summarization. ICDM 2014: 983-988
- B. Aditya Prakash, Lada Adamic, Theodore Iwashnya, Hanghang Tong and Christos Faloutsos: Fractional Immunization on Networks. SDM 2013
- Hau Chan, Leman Akoglu, Hanghang Tong: Make It or Break It: Manipulating Robustness in Large Networks. SDM 2014: 325-333

- Hanghang Tong, Spiros Papadimitriou, Christos Faloutsos, Philip S. Yu, Tina Eliassi-Rad: Gateway finder in large graphs: problem definitions and fast solutions. Inf. Retr. 15(3-4): 391-411 (2012)
- Hanghang Tong, Jingrui He, Zhen Wen, Ravi Konuru, Ching-Yung Lin: Diversified ranking on large graphs: an optimization viewpoint. KDD 2011: 1028-1036
- Nicholas Valler, B. Aditya Prakash, Hanghang Tong, Michalis Faloutsos, Christos Faloutsos: Epidemic Spread in Mobile Ad Hoc Networks: Determining the Tipping Point. Networking (1) 2011: 266-280
- Dashun Wang, Zhen Wen, Hanghang Tong, Ching-Yung Lin, Chaoming Song, Albert-László Barabási: Information spreading in context. WWW 2011: 735-744
- Hanghang Tong, B. Aditya Prakash, Charalampos E. Tsourakakis, Tina Eliassi-Rad, Christos Faloutsos, Duen Horng Chau: On the Vulnerability of Large Graphs. ICDM 2010: 1091-1096

- 98 -

 Yao Zhang and B. Aditya Prakash: Scalable Vaccine Distribution in Large Graphs given Uncertain Data. ICDM 2014

Code available at: http://people.cs.vt.edu/badityap/CODE/UDAV.zip

- L. Le, T. Eliassi-Rad and H. Tong: MET: A Fast Algorithm for Minimizing Propagation in Large Graphs with Small Eigen-Gaps. SDM 2015
- István A. Kovács & Albert-László Barabási: Network science: Destruction perfected. Nature 524, 38–39, 2015
- Rinaldi, Steven M., James P. Peerenboom, and Terrence K. Kelly. "Identifying, understanding, and analyzing critical infrastructure interdependencies." Control Systems, IEEE 21.6 (2001): 11-25.
- Nguyen, Duy T., Yilin Shen, and My T. Thai. "Detecting critical nodes in interdependent power networks for vulnerability assessment." Smart Grid, IEEE Transactions on 4.1 (2013): 151-159.

- Xuetao Wei, Nicholas Valler, B. Aditya Prakash, Iulian Neamtiu, Michalis Faloutsos, Christos Faloutsos: Competing Memes Propagation on Networks: A Network Science Perspective. IEEE Journal on SAC 31(6): 1049-1060 (2013)
- Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Yu-Ru Lin, Norbou Buchler:Replacing the Irreplaceable: Fast Algorithms for Team Member Recommendation. WWW 2015: 636-646
- C. Chen, H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D. Chau: Node Immunization on Large Graphs: Theory and Algorithms. IEEE TKDE 2015
- B. Aditya Prakash, Hanghang Tong, Nicholas Valler, Michalis Faloutsos, Christos Faloutsos: Virus Propagation on Time-Varying Networks: Theory and Immunization Algorithms. ECML/PKDD (3) 2010: 99-114