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Abstract—Visually mining a large influence graph is appeal-
ing yet challenging. Existing summarization methods enhance
the visualization with blocked views, but have adverse effect on
the latent influence structure. How can we visually summarize
a large graph to maximize influence flows? In particular, how
can we illustrate the impact of an individual node through
the summarization? Can we maintain the appealing graph
metaphor while preserving both the overall influence pattern
and fine readability?

To answer these questions, we first formally define the
influence graph summarization problem. Second, we propose
an end-to-end framework to solve the new problem. Last, we
report our experiment results. Evidences demonstrate that our
framework can effectively approximate the proposed influence
graph summarization objective while outperforming previous
methods in a typical scenario of visually mining academic
citation networks.
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I. INTRODUCTION

Graphs are prevalent and have become a prevalent plat-

form for the masses to interact and disseminate a variety

of information (e.g., influence, memes, opinions, rumors,

etc.). How to make sense of an individual’s influence in the
context of such graphs? This, which is referred as Influence

Graph Summarization (IGS) problem, is the central problem

we aim to address in this paper. For example, how does a

highly-cited paper impact the research community to raise

several topic threads; and consequentially, how do these

topics interact with each other and lead to a new multi-

disciplinary research direction?

Although closely related, IGS problem bears some subtle

difference from the existing work. First (influence maxi-
mization), many elegant algorithms have been proposed for

the so-called influence maximization problem [1]. While

effective in identifying who are most influential in the graph,

the question of what makes them influential largely remains

open. Second (graph summarization), many interesting work

has been done in the context of graph clustering and

compression. These works typically look for homogeneous

regions in graphs by optimizing a pre-defined loss function

(e.g., minimizing the inter-cluster connection, maximizing

the intra-cluster density, etc). Despite their own success,

most, if not all, of the existing work on graph summarization

tends to ignore the specific characteristics of influence

graphs and how the end user would visually perceive and

consume the summarization results.

To be specific, we outline two design objectives that

differentiate our IGS problem from existing works.

• D1. Flow Rate Maximization. Quite different from ex-

tracting dense clusters on graph, the goal of IGS is to

highlight the flow of influence not only within but also

across clusters. By maximizing the overall flow rate,

IGS-based summarization outlines the strongest interac-

tion among groups of nodes on a graph. For example,

Figure 1 depicts the influence of the famous power-

law paper presented at SIGCOMM’99. The evolution

of research topics is revealed, rather than the hot topics

themselves.

• D2. Localized Visualization. While a large graph can

span millions of nodes and prohibit any readable visual

summarization, in IGS objective, we switch to summa-

rize the influence of a single node on the graph (called

the source node). This localized visualization problem

is at least as important as the overall summarization

problem. Consider a user navigating the citation graph of

computer science papers, after an overview of the entire

field, likely she will drill down to a few interested papers

and examine their influence separately.

In this paper, we propose a unified framework to generate

flow-based, localized visual summarization over large-scale

influence graphs. The main contributions of the paper can

be summarized as:

• Problem Definition, to fulfill the design objectives listed

above for flow-based visual summarization of large in-

fluence graphs (Section II);

• A Unified Framework and Implementation Details, to

solve the IGS problem (Section III and Section IV);

• Performance Evaluations, to demonstrate the effective-

ness of the proposed framework (Section V).

II. PROBLEM DEFINITION

Table I lists the notations used throughout the paper.

The raw inputs are the influence graph I and the source

node f either selected by the user or detected by any
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Figure 1. Influence graph summarization on [Faloutsos SIGCOMM’1999] (#Cluster = 20). Node label gives the cluster size and summary on paper
title+abstract normalized by keyword frequency. Link thickness indicates the normalized flow rate.

Table I
NOTATIONS.

SYMBOL DESCRIPTION

I influence graph as input
f source node selected by user or algorithm
G maximal influence graph of f in I
vi, N(i), n nodes, neighbor set and # of nodes in G
A, aij adjacency matrix of G and its entries

MG similarity matrix of G
S graph summarization of G
πc, |πc|, k clusters, cluster size and # of clusters in S
ξs, r(ξs), l flows, flow rate and # of flows in S
πc(s), πd(s) the source and target cluster of flow ξs

existing influence maximization algorithm. Without loss of

generality, it is enough to consider a maximal influence

graph G of f which is an induced subgraph of I containing

all the nodes reachable from f in I (including f ). Though

it is easy to extend the definition to a maximal origin graph

by reversing all the links in I or use the union of the two

definitions, for relevancy to the IGS problem we stick to

the maximal influence graph definition in this paper. Let G
have n nodes, denoted as {vi}ni=1. G is represented by the

adjacency matrix A = {aij}ni,j=1 in which aij denotes the

link weight. aij > 0 if there is a link from vi to vj .

Definition 1: The graph summarization of G, denoted

as S, is a super node-link graph of G. The node set of

S contains k disjoint and exhaustive node clusters of G,

denoted as {πc}kc=1 where |πc| indicates the number of

nodes in cluster πc. The link set of S contains l flows

between the nodes in S (i.e., clusters in G), denoted as

{ξs}ls=1. Each flow ξs represents the collection of all the

links in G from nodes in cluster πc(s) to nodes in cluster

πd(s). The flow rate of ξs is defined by

r(ξs) =

∑
vi∈πc(s),vj∈πd(s)

aij

|πc(s)||πd(s)|
Note that S can be a partial summarization of G, with fewer

flows (l < k2) than a full summarization (l = k2). This
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Figure 2. Difference between IGS problem and traditional graph clustering
problem. Each dash box in the original graph G becomes a square node
in the graph summarization S. (a) Traditional graph clustering leading to
higher intra-cluster flow rate; (b) Influence graph summarization exposing
denser overall flows. In S, the flow rate is labeled above each link and is
mapped to the link thickness visually. We assume a uniform link weight of
1 in the original graph G.

is desirable for influence graph visualization where huge

number of flows and edge crossings can cause unpleasant

visual clutter.

Problem 1: The general IGS problem is defined as

finding a graph summarization S with k clusters and l top

flows of the maximal influence graph G to optimize the

objective function:

max

l∑
s=1

r(ξs)
√
|πc(s)||πd(s)| (1)

The general IGS problem defined in (1), although seem-

ingly similar to, is different from the traditional graph

clustering problems. Let us explain their difference using

the classic ratio association graph clustering problem, whose

objective function is shown below.

max
k∑

c=1

∑
i,j∈πc

aij
|πc| =

k∑
c=1

r(ξc)|πc|

where ξc denotes the intra-cluster flow from πc to itself.
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The IGS objective function is designed to maximize

the sum of l selected flows between or within clusters,

corresponding to l arbitrary blocks in the adjacency matrix.

On the other hand, the ratio association objective maximizes

the sum of intra-cluster flows at all the k diagonal matrix

blocks. In other words, IGS finds dense flows through

summarization which fits well the goal to highlight flows

of influence across the graph. This is quite different from

the traditional graph clustering objective that finds dense

node clusters. An example is given in Figure 2 for visual

comparison.

III. FRAMEWORK

A. End-to-End Pipeline

We propose a unified framework to solve the IGS prob-

lem. The framework features an end-to-end pipeline, as

shown in Figure 3, which decomposes the IGS problem

into several building blocks. Initially, the maximal influence

graph G is computed from the input graph I by a breadth-

first or depth-first search starting from the source node

f . Over the maximal influence graph G, three processing

components work in parallel to generate three matrices on

the graph: the topology similarity matrix, and the optional

attribute and time matrices. The core of our framework

is the decomposition of the topology similarity matrix to

generate k node clusters for the summarization. We carefully

design the topology similarity matrix to ensure that the graph

summarization approximates the flow rate maximization

objective. The requirement of the l flows in the summa-

rization is handled by link pruning using either ranking-

based filtering or the maximum spanning tree algorithm. The

proposed pipeline is flexible and admits many existing graph

mining algorithms for each of its building blocks. On the

other hand, by itself, none of these existing algorithms is

sufficient to solve the IGS problem.

B. Node Summarization

Node summarization is the key building block of our

proposed pipeline. First we compute the topology similarity

matrix by the common neighbor heuristic:

MG =
AAT +ATA

2
(2)

where A is the adjacency matrix of the maximal influence

graph G.

We then propose a matrix decomposition based solution

to generate k node clusters from the similarity matrix MG.

The decomposition employs a Symmetric version of the

Nonnegative Matrix Factorization (SymNMF [2]) which

optimizes:

min
H≥0

||MG −HHT ||2F (3)

where ||·||F denotes the Frobenius norm of the matrix. H =
{hij} is a n by k matrix indicating the cluster membership

1. Pick source node f
2. Rooted search on I
from f

1. Specify k,l (# of clusters/flows)
2. Compute node summarization by 
matrix decomposition
3. Post-process (link pruning, etc.)

Influence
Graph I

f
�1 �2 �3

Graph 
Summariza

tion S

f

Maximal 
Influence 
Graph G

f

1. Compute topology 
similarity matrix MG

(2. Attribute matrix MD)
(3. Time matrix MT)

f

Topology 
Similarity 
Matrix MG

Figure 3. The framework to solve the IGS problem.

assignment of nodes in G: vi will be clustered into πc if hic

is the largest entry in the ith row of H .

IV. IMPLEMENTATION DETAILS

In this section, we provide some additional implementa-

tion details. As shown in Figure 3, our framework involves

four kinds of algorithm-driven building blocks. The rooted

graph search follows the standard BFS/DFS implementation.

Below we describe details for similarity matrix computation,

node summarization and the link pruning for post-processing

of the summarization.

Similarity Matrix Computation. In Section III, we pro-

pose to use the heuristic of common neighbors to construct

the similarity matrix (CommonNeighbor) to approximate

the objective function of the IGS problem. This algorithm

runs fast even for very large graphs due to a complexity

of O(md2) where m is the number of links in G and d
is the average node degree. We have implemented three

versions of the algorithm and it is shown that bidirectional

CommonNeighbor is generally better than one-directional

forward or backward CommonNeighbor in Section V.

Node Summarization with SymNMF. The node summa-

rization is done by applying SymNMF on similarity matrix

MG, and using the factorized matrix H for cluster mem-

bership assignment. In our implementation, we apply the

iterative SymNMF solver with the multiplicative updating

rule in [2] which guarantees convergence. In this iterative

algorithm, the initialization of H is critical to the final result.

We introduce nonnegative eigenvalue decomposition similar

to the method in [3] to compute a good initial factorization.

Link Pruning. The graph summarization by SymNMF

needs further post-processing to select l top flows for the

final summarization S. Here we extract the top flows ac-

cording to the rank of the normalized flow rate. The other

flows are then filtered out. Notice that to recover critical

links, we introduce a constraint to keep a connected graph

in the summarization. It is achieved by adding back the most

dense flow going to each node cluster. An alternative choice

is to use the maximum spanning tree (MST) algorithm [4].

V. EVALUATION

In this section, we evaluate the proposed IGS framework

and the CommonNeighbor algorithms by comparing with

alternative graph summarization methods. Nine approaches
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(a) k = 10, l = 10

(b) k = 10, l = 20

(c) k = 20, l = 20

Figure 4. The performance in maximizing the IGS objective on five sample
graphs. The flow rate is summed from the top l flows between k clusters.

are considered: three using CommonNeighbor algorithms

to compute the similarity matrix for SymNMF (i.e. for-

ward+backward, forward, and backward settings), one using

SimRank algorithm [5] to compute the similarity matrix

for SymNMF, the classical graph clustering algorithm with

Ratio Association and Normalized Cut objectives [6], ag-

glomerative Modularity-based graph clustering [7], Metis K-

way graph partition [8] and the Minimal Description Length

(MDL) based graph summarization [9]. Note that modularity

clustering is executed agglomeratively until all clusters stop

merging at the top level or the number of clusters reaches k.

The MDL algorithm can not specify the number of clusters,

in fact, it generates 4,937 clusters on one medium-sized

influence graph. To ensure fair comparison (a larger number

of clusters will lead to a much higher overall flow rate),

we exclude MDL from numeric comparisons, but present

its visual summarization results. The experiment data are

paper citation graphs collected from ArnetMiner [10]. The

influence graphs are obtained by reversing citation links.

A. Flow Rate Maximization

We first pick five source papers from the data set to

generate maximal influence graphs. These influence graphs

are summarized into k clusters, between which the top l flow

rates are summed according to the IGS objective. Figure

4(a)∼(c) present the comparisons among eight summariza-

tion methods on the numeric objective function.

The initial result in Figure 4(a) with a minimal graph

summarization (k = 10, l = 10) suggests that among

three CommonNeighbor algorithms, the bidirectional setting

almost always achieves the best performance in maximiz-

ing the IGS objective (at least > 100% gain), except on

the largest graph (#Node=33,494), the backward Common-

Neighbor obtains a tiny advantage (1%). Further, compar-

ing the bidirectional CommonNeighbor to traditional graph

summarization methods, CommonNeighbor achieves much

better performance than Ratio Association, Normalized Cut

and Metis (at least > 20%, in average > 100%). In some

cases, the performance of CommonNeighbor is matched by

SimRank (< 10% gain) or outperformed by Modularity.

This is because the Modularity algorithm generates more

clusters than the initial setting of k = 10. For example, the

sample graph with 33,494 nodes stops at 71 clusters in the

top modularity level.

When we double the number of flows (k = 10, l = 20)

in Figure 4(b), the sum of flow rates does not increase

much on all algorithms (in average < 15%) and the overall

comparative patterns stay unchanged. This shows that the

top k flows already capture most of the flow rates on

the graph summarization. We then increase the number

of clusters (k = 20, l = 20). The results in Figure 4(c)

reveal that the objection function increases much as the

number of clusters increases (at least > 30%, in average

> 90%, comparing Figure 4(c) with Figure 4(b)), except for

Modularity, which remains unchanged because their number

of clusters are already larger than k and kept stable. On the

comparative pattern, bidirectional CommonNeighbor regains

performance advantage over SimRank and Modularity under

a large number of clusters.

B. Visualization

We evaluate the effectiveness of summarization methods

also by comparing their visualization results: whether they

produce a clean influence graph summarization with little

visual clutter and whether the results are meaningful for

users with domain knowledge. We first pick the famous

frequent pattern mining paper by Prof. Jiawei Han et al.

as the source to generate the maximal influence graph. Then

we execute seven typical summarization methods and depict
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(a) CommonNeighbor (proposed) (b) SimRank (c) Ratio Association

(d) Normalized Cut (e) Modularity (f) Metis K-way (g) MDL

Figure 5. Influence graph summarization results on [Han SIGMOD’2000] by different methods (k = 10, l = 20). Node label gives the number of papers
in each cluster and their content summary by either title+abstract keywords in (a),(b) or the top 3 research fields in (c)∼(f). Link thickness indicates the
normalized flow rate. Some part of the graph is highlighted to show the number of citations as edge labels. Note that the modularity algorithm stops at 62
clusters and can not merge any further. MDL produces 4,937 clusters, leaving a half of the visual complexity from the input graph.

their results in Figure 5(a)∼(g). At the first glance, the

proposed bidirectional CommonNeighor method generates a

connected tree-like influence graph summarization without

edge crossing (Figure 5(a)). Compared to that, SimRank gets

a similar visual form (Figure 5(b)) due to the comparable

objective function result, but the generated graph is not

connected. The Metis result is also clean (Figure 5(f)), but

all the clusters have a similar number of nodes, making the

summarized graph impractical for usage. Ratio Association

and Normalized Cut look inferior due to the poor graph

connectivity (Figure 5(c)) and the flat influence hierarchy

(Figure 5(d)). Modularity and MDL are the worst because

of the visual clutter generated from the large number of

clusters remained in the summarization (Figure 5(e)(g)).

Taking a closer look at the visual summarizations, we

find that by CommonNeighbor, most flows represent at

least 300 citation links. While by SimRank, the critical

flows linking the source node are fragmented, two of which

only include 52 and 83 citations. The same deficiency is

found in the result by Metis, where two highlighted flows

only have 11 and 12 citations. We also invite a senior

researcher from the database and data mining community

to evaluate the summarization result. With our interactive

tool, she can switch between the title+abstract summary

and the research field summary. She can also access paper

details in each node cluster with a sorted list by citation

count. She mainly compares the visual summarization by

CommonNeighbor and SimRank. In this case, she prefers

the result by CommonNeighbor in Figure 5(a) because the

influence evolutions make more sense: the initial paper

quickly raises much attention on pattern mining research

such as itemset and association rule mining, then the thread

splits into four streams on general data management research

(such as web and uncertainty skyline analysis), trajectory

analysis, subgraph analysis and application in software engi-

neering (e.g. bug analysis). The thread of web data analysis

gradually moves to web retrieval and finally leads to tag

analysis and anomaly behavior detection. Compared with

CommonNeighbor, SimRank creates some false links, e.g.

the direct flow from the frequent pattern mining paper to

uncertainty data analysis.

Furthermore, we ask another invited researcher to study

the influence of the well-known Internet power-law paper

in SIGCOMM’1999. The maximal influence graph is sum-

marized by the bidirectional CommonNeighbor algorithm

into Figure 1 (in the second page). From the visual sum-

marization, she learns that the SIGCOMM paper directly

influences the research on Internet topology and simulation.

Next, over the Internet topology topics, the P2P research

becomes popular and after that the web-related research and

XML. The most recent hot topic in this thread appears to

be sensor network which corresponds well to his domain

knowledge.

VI. RELATED WORK

First, graph summarization, constructing a smaller ab-

straction to represent the large graph has been a traditional

research topic, e.g. using graph clustering algorithms. These

algorithms usually optimize certain association or cut mea-

sure during the k-way graph partition. Several measures
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have been proposed, e.g. ratio association, ratio cut [11]

and normalized cut [6]. The similar problem is also studied

in the context of community detection by interdisciplinary

researchers [12]. However, most of the clustering and com-

munity detection methods on graph target at maximizing

intra-cluster connections while minimizing inter-cluster con-

nections. This is fairly different from the IGS problem

studied here. On the other hand, there are also plenty of

works in compressing large graphs for efficient storage

and representation. In [9], MDL-based compression was

proposed to present the graph with an aggregated structure

and an error correction list. On influence graphs which are

sparse, it performs similarly to a structural equivalence based

grouping [13], leaving huge visual clutters unsettled. Mean-

while, Shahaf et al. [14][15] studied the similar problem of

summarizing large amount of information into user-friendly

visual maps. On a quite different focus, our method is built

on the graph with explicit linkage data while the textual

content of each node can be absent or incomplete.

Second, considerable work has been conducted for study-

ing the effects of social influence. For example, Bakshy et

al. [16] conducted randomized controlled trials to identify

the effect of social influence on consumer responses to

advertising. Tang et al. [17] presented a Topical Affinity

Propagation (TAP) approach to quantify the topic-level so-

cial influence in large networks. Kempe et al. [1] proposed

to use a submodular function to formalize the influence max-

imization problem and develop a greedy algorithm to solve

the problem with provable approximation guarantee. Most

of these works focus on the existence of social influence or

the nature of the information diffusion process and do not

consider the summarization problem. Recently, Mehmood et

al. proposed CSI [18], a model that generalizes the classical

Independent Cascade model to the community level. CSI can

produce similar visual forms to our result. However, the CSI

model is designed for the social influence scenario, while

our method is more focused on the visual summarization of

large influence graphs in the objective of maximizing flows.

We do not leverage the information propagation model and

the associated log data in such scenarios.

VII. CONCLUSIONS

In this paper, we propose the influence graph summa-

rization problem and present a unified framework to solve

it. The framework achieves our design objectives, including

(1) flow rate maximization that highlights the evolution of

influence; (2) localized visualization from the source node.

The framework is comprehensive and flexible. We provide

both the SymNMF based solution and implementation de-

tails. Through evaluations with real-world academic citation

graphs, we demonstrate that our framework constantly out-

performs classical methods, such as graph clustering and

compression algorithms, in both quantitative performance

and qualitative visual effects.
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