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ABSTRACT

Network embedding has become the cornerstone of a variety of min-
ing tasks, such as classification, link prediction, clustering, anomaly
detection and many more, thanks to its superior ability to encode
the intrinsic network characteristics in a compact low-dimensional
space. Most of the existing methods focus on a single network
and/or a single resolution, which generate embeddings of different
network objects (node/subgraph/network) from different networks
separately. A fundamental limitation with such methods is that the
intrinsic relationship across different networks (e.g., two networks
share same or similar subgraphs) and that across different resolu-
tions (e.g., the node-subgraph membership) are ignored, resulting
in disparate embeddings. Consequentially, it leads to sub-optimal
performance or even becomes inapplicable for some downstream
mining tasks (e.g., role classification, network alignment. etc.).

In this paper, we propose a unified framework (MRMINE) to
learn the representations of objects from multiple networks at three
complementary resolutions (i.e., network, subgraph and node) si-
multaneously. The key idea is to construct the cross-resolution
cross-network context for each object. The proposed method bears
two distinctive features. First, it enables and/or boosts various
multi-network downstream mining tasks by having embeddings
at different resolutions from different networks in the same em-
bedding space. Second, Our method is efficient and scalable, with
a O(nlog(n)) time complexity for the base algorithm and a linear
time complexity w.r.t. the number of nodes and edges of input
networks for the accelerated version. Extensive experiments on
real-world data show that our methods (1) are able to enable and
enhance a variety of multi-network mining tasks, and (2) scale up
to million-node networks.
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1 INTRODUCTION

Network mining is the cornerstone of many real-world applications,
and has been receiving much research attention in recent years. It
offers a powerful way to encode the underlying network charac-
teristics (e.g., topology, attribute) into a compact low-dimensional
space. As such, it has benefited a variety of downstream data mining
tasks (e.g., node/network classification, link prediction, and clus-
tering), often with a significantly boosted empirical performance.
Despite much progress has been made (see Section 5 for a review),
most of the existing work has not adequately, if at all, addressed
two fundamental limitations, which we elaborate below.

First, Most of the existing work, with only a few exceptions
(see Section 5), focuses on a single network. For multiple input net-
works, these methods will learn embeddings of different networks
separately, and thus might result in disparate embedding space.
To see this, let us take node embedding as an example. A domi-
nant branch of node embedding (e.g., deepwalk and many of its
follow-ups [5, 16, 18, 21]) relies on identifying appropriate node
proximity/context based on truncated/short random walks. The
identified node context will be then preserved in the embedding
space, often through a language model (e.g., Continuous Bag of
Words (CBOW) and SkipGram). However, any node pair across
different networks are disconnected without auxiliary informa-
tion (e.g., anchor links). In other words, nodes in one network will
never be the context of nodes from another network and vice versa.
Therefore, the node embeddings of different networks will be in
different or disconnected space. This would render the inapplicabil-
ity of some downstream mining tasks (e.g., cross-layer dependence
inference in multi-layered network systems [11] ) or add extra
complexity for other mining tasks. For example, with the node
embeddings from such methods as inputs, we would have to train
an additional classifier for network alignment task, constrained by
the availability of extra anchor links.

Second, most, if not all, of the existing work is designed to learn
embeddings at single resolution. For example, the vast majority of
network embedding focuses on node embedding (e.g., node2vec [5],
LINE [21], deepwalk [16] and many more); at the coarser resolution,
subgraph2vec [13] and deep graph kernel [25] learn the embeddings
of subgraphs; at the coarsest resolution, graph2vec [14] focuses
on learning vector representations for the entire networks. To the
best of our knowledge, almost none of the existing methods sup-
port multi-resolution network embedding, although objects (e.g.,
nodes, subgraphs, and networks) across different resolutions are


https://doi.org/10.1145/3357384.3357944
https://doi.org/10.1145/3357384.3357944
https://doi.org/10.1145/3357384.3357944

Three Input Networks

mutag 130 Networks
®
@ ©—E O Subgraphs
(2) ®
o e Nodes

subgraph 31

_———

(a)
Figure 1: an illustrative example of multi-resolution multi-network embedding. (a) shows three small molecular graphs from
bioinformatics dataset. The two lower graphs belong to the same category of enzyme. (b1) shows the Cross-Resolution Cross-
Network (CRCN) relation network constructed by our method. Some subgraphs/nodes are omitted for brevity (see section 3
for detail). (b2) shows two similar subgraphs (WL subtrees here) extracted from enzyme 33 and enzyme 54, numbered in 31
and 34. (c) shows the learned 2-d representation for all network objects. Some embeddings are omitted to avoid overlap.

intrinsically correlated with each other. For example, networks
with similar subgraph distributions tend to be similar to each other
[25]; [18] indicates that, nodes inside similar subgraphs are likely
to belong to the same category. Ignoring such cross-resolution cor-
relation during the embedding learning process is likely to lead to
sub-optimal results. On the contrary, if we could have objects at
different resolutions in the same embedding space, it might greatly
benefit certain downstream applications. For example, for network
science of teams [12], by embedding both team members (nodes
of the underlying person network) and teams (subgraphs) in the
same space, it would immediately enable effective team member
recommendation by calculating the similarity between a candidate
team member and a given target team, say based on the cosine
similarity between the member embedding and team embedding.

In order to address the above limitations, we propose a unified
method (MRMINE) to learn the multi-resolution multi-network rep-
resentation simultaneously in a mutually beneficial way. The key
idea is to construct the cross-resolution cross-network context for
each object of each network at three complementary resolutions,
including node, subgraph and network. The constructed corpus of
such network context can be then fed into a variety of language
models, such as CBOW, SkipGram, etc., to generate the embeddings
for different network objects (nodes, subgraphs, networks) from dif-
ferent networks in the same space. The proposed method is highly
efficient and scalable, with a time complexity of O(Hnlog(n)) (where
n is the number of nodes of input networks and H is a constant
much smaller than n) for the basic version. We further propose an
accelerated version with a linear time complexity w.r.t. the number
of nodes and edges of input networks.

Figure 1 presents an illustrative example of the simplified proce-
dure of multi-resolution and multi-network embedding. Figure 1 (a)
shows three input networks selected from bioinformatics dataset.
(b1) represents the Cross-Resolution Cross-Network (CRCN) re-
lation network in which we connect vertices of all three types of
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objects (i.e. nodes, subgraphs, and networks, represented as cir-
cles, squares, and hexagons respectively) in the same network,
according to the node-subgraph, subgraph-network membership
(vertical black solid links) and subgraph similarities (horizontal red
dashed links). For example, enzyme 33 contains a subgraph (we
use Weisfeiler-Lehman (WL) subtree [19] in this example; see more
details in section 3.1) numbered in 31, which contains node 16 and
17. So the blue hexagon is connected to the gray square 31, and the
gray square 31 is connected to the blue circle 16 and 17. Subgraph
31 and 34 are structurally similar with only one node difference (Fig.
(b2)), so gray square 31 and 34 are connected. Context of objects
from different resolutions and networks are then extracted from
the CRCN relation network to learn the embeddings in (c). As we
can observe from (c), the green network is close to the blue net-
work (two enzymes of the same category) while both are far apart
from the orange network (a mutag instance). Node 10 and 11 are
close because they are connected by the same square node in (b1),
which means they are rooted at the same WL subtree. Subgraph
31 and 34 are close in the embedding space although they exist
in different networks. Also from different networks, node 16 and
node 21 are close because they are structurally similar (connected
to similar subgraph 31 and 34 respectively). Our method embeds
multi-resolution multi-network objects into the same space, and
it naturally enables downstream multi-network mining tasks. The
main contributions of the paper are:

e Problems. To the best of our knowledge, we are the first
to study the problem of learning multi-resolution multi-
network embeddings.

e Algorithms. We propose effective and efficient algorithms
for learning the embeddings of multi-resolution and multi-
network objects simultaneously.

e Empirical Evaluations. We perform extensive experimen-
tal evaluations on a diverse set of real networks, which
demonstrate that our methods (1) enable and enhance a



variety of graph mining tasks, such as collective network
alignment, and (2) scale up to million-node graphs.

The rest of the paper is organized as follows. Section 2 formulates
the problem of multi-resolution multi-network embedding. Section
3 presents our proposed base and improved method. Section 4
presents the experimental results. Section 5 provides a brief review
of recent related work. The paper is concluded in Section 6.

2 PROBLEM DEFINITION

In this section we formally define the problem of multi-resolution
multi-network embedding. The symbols and notations used in this
paper are summarized in Table 1. Let G = {G1, G, ..., Gy } represent
a set of k input networks, and S = {S1, Sz, ...5;} represents the
subgraph set which contains all the subgraphs extracted from each
graph in G of a particular type. For example, S could be a set of
all Breath First Search (BFS) subtrees or Weisfeiler-Lehman (WL)
subtrees with height less than 3 exacted from all networks in G.
In this paper, we use WL subtrees for all the algorithms. With
these notations, the problem of multi-resolution multi-network
embedding can be defined as follows.

PROBLEM 1. MULTI-RESOLUTION MULTI-NETWORK EMBEDDING
Given: (a) the inputs for constructing Cross-Resolution Cross-Network
(CRCN) relation network: (a1) a set of networks G, (a2) the dimension
of embedding vectors p; (a3) the maximum height of WL subtrees H;
and (b) the parameter set for corpus generation and SkipGram model
(e.g. SkipGram window size w, random walk length [, etc.).
Output: the embedding matrices Fg, Fs, and Fy for (1) all input
networks in G, (2) all extracted subgraphs in S, and (3) all nodes in
G, respectively, with all embeddings in the same space.

We adopt the following terminologies and notations for sim-
plicity of algorithm description. First, We use vertex and vertices
to indicate the nodes in the CRCN relation network, and nodes to
only indicate nodes in the original network set. Second, we use
function py, ps, pg for the mappings from original network object
to the vertices in the CRCN relation network, and gy, gs, g4 for
the mapping from vertices in the relation network back to original
network objects. For example, ps(L7,) = v maps the subgraph with
label LY, (meaning WL subtree rooted at node n € G; every unique
WL subtree can be represented by a distinct label) to vertex v in the
CRCN relation network, and gs(v) = I maps the vertex v from the
CRCN relation network back to a subgraph label I. Similarly, pn, qn
are used for node level mapping and py, q4 are used for network
level mapping.

To illustrate the intuition of Problem 1, let us make an analogy
between multi-resolution multi-network embedding and text em-
bedding. The objects of multiple networks, subgraphs, and nodes in
our problem setting can be seen as documents, sentences, and words
in text embedding respectively. In this case, the problem studied
by [10] embeds sentences/paragraphs with words in a document,
which resembles our multi-resolution problem setting.

3 PROPOSED ALGORITHMS

In this section, we introduce our proposed method. We start with
the preliminaries followed by challenges and key ideas. We then

Table 1: Major Notations and Definition

Symbols Definition
G ={G1,Gy, ...,Gy} | aset of k graphs
R, ER cross-resolution cross-network relation network and edge set
ER, a set of edges within subgraph vertices
Eg, a set of edges between subgraph vertices and network vertices
&R, a set of edges between subgraph vertices and node vertices
L= {Lg‘l, LZ’; a set of multi-set labels for all WL subtrees in the graph set G
Fg,Fs, Fn embedding matrices for networks, subgraphs, and nodes
H the maximum height of WL subtrees
L"/Lg, the WL subtree label of node n/specifically n € G
(LE)i the WL label of node n € G at i-th WL iteration
0s;. Os; the sorted degree sequence of subtree S;, S;
P the dimension of embedding vectors
d(n) the embedding of vertex n
PnsPssPg mapping functions from original objects to CRCN network
qn>9s- g mapping functions from CRCN network to original objects

present the detailed demonstration of our basic algorithm and the
accelerated algorithm.

3.1 Preliminaries

Weisfeiler-Lehman (WL) subtree. WL subtree [19] is a subgraph
with tree structure rooted at a designated node in a network. The
height of the WL subtree is the maximum distance between the root
node and any other nodes. Unlike the BFS subtree, the WL subtree
treats the repetition of nodes in the node search of tree construction
as distinct nodes. For example, in the upper right WL subtree in
Figure 2, node 0 appears in both level 0 and level 2, because node
0 is the neighbor of node 1, 3 and 4 in level 1, and in level 2 it is
regarded as a distinct node.

WL label transformation. Originated from the Weisfeiler-Lehman
graph isomorphism test, the WL label transformation iteration [19]
is an algorithm used for relabeling node labels. The time complexity
is O(hm), where h is the iteration number/height of WL subtrees,
and m is the number of edges. The multi-set labels generated by
the i-th WL iteration can be regarded as the identity of unique
WL subtrees with height of i [13]. In each iteration of WL label
transformation, a new set of labels is produced for all nodes in a
network. Since each unique label corresponds to a particular WL
subtree, we use the labels (e.g. L) as IDs for subtrees in this paper.
Therefore, it can be used for efficiently generating subgraphs on
each node, and building the vocabulary of subgraphs.

3.2 Challenges and Key Ideas

In order to learn the multi-resolution multi-network embedding on
the same space, there are several challenges as follows. First, how to
build cross-resolution cross-network context, so that objects at dif-
ferent resolutions from different networks could be in each other’s
context, which would in turn allow to find their embeddings in the
same space? Our first key idea is to introduce Cross-Resolution
Cross-Network (CRCN) relation network with vertices represent-
ing multi-resolution multi-network objects, and edges representing
cross-resolution cross-network relations between objects. For exam-
ple, in Figure 1 (b1), the CRCN relation network aims to capture the
structural relationship among nodes, subgraphs, and three molecu-
lar networks. Second, how to construct the links of CRCN relation
network? Our second key idea is to use WL subtrees for the sub-
graph resolution. It bears three advantages as follows. (1) the WL



label transformation algorithm can be used to efficiently gener-
ate WL subtrees as subgraphs [19]; (2) the WL subtrees can act
as bridges to build links between network/subgraph/node vertices
(i.e. cross-resolution links); (3) the 'borderless’ WL subtrees in con-
junction with the similarity defined over subgraphs help to build
cross-network links. Third, how to reduce the computation cost to
build CRCN relation network (e.g. the number of subgraphs could be
large, and it could be time-consuming to build subgraph-subgraph
similarity links, etc.)? Our third idea is to explore a hierarchical
structure of WL subtrees for the subgraph resolution in the CRCN
relation network construction, for the sake of avoiding explicit
cross-network links (e.g. red dashed links in Fig. 1 (b1)), but mean-
while still preserving the cross-network subgraph similarities (see
section 3.4 for detail).
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Figure 2: an illustrative example of WL subtree. The right
trees are 2-level WL trees rooted at node 0 and 6, respectively.
Best viewed in color.

Level 2

3.3 Basic MRMINE Method

First, we adopt H iterations of WL node label transformation to
generate unique WL subtrees of up to height H [13, 19]. Specifically,
in order to construct the cross-network links between subgraphs,
we propose to use a function f(S;, S;) to calculate the similarity
between subgraph S; and S;. Similar to the selection of subtrees,
the selection of function f is also not limited. The most intuitive
method of calculating similarities between two graphs is using
graph kernels. In this case, f(S;,S;) = K(S;,S;), in which K can
be any graph kernels such as random walk graph kernel [23], WL
subtree kernel [19], etc. Although in common case, calculating
graph kernel is costly (O(n®) in which n is the number of nodes [23])
without approximation, subgraphs are smaller-scaled (compared
to networks) and can be calculated relatively efficient. We provide
two more efficient f functions below.

We observe that, for WL subtrees, the structural characteristic is
essentially preserved by the node degrees of each level. For example,
in Figure 2, the structural characteristic of 2-level subtree can be
simply represented by the degree sequence of node 0 concatenated
with the sorted degrees of its neighboring node 1, 3, and 4, which
gives level 1: 3, level 2: 2,2,3. Since node 3 is structurally equal to
node 0 (belonging to isomorphic WL subtree), they both produce the
same degree sequence. The degree sequence of WL subtree rooted
at node 1 (i.e. level 1: 2, level 2: 2,3) is distinct from that of the WL
subtree rooted at node 0 and 3. Therefore the subtree structures

are also quite different. We adopt Dynamic Time Wrapping (DTW)
[18] to measure the distance between two degree sequences at each
level, and connect subgraphs with structural scores lower than a
threshold. Formally, for sorted degree sequence Qs; and Qs; of
subtrees S; and S; with length Ig, and l5j:

F(Qs;0s,) = ) DTW(Q, . 0%) (1)
h

where Qgi, Qg’]_ are the sorted degree sequences of S; and S;
at level h, respectively. However, DTW might fail to distinguish
between high-level degree sequences of different length. For exam-
ple, the sorted degree sequence for 2-level subtree of node 0 in Gy
(which is 2, 2, 3) has zero DTW value compared with the same level
degree sequence of node 6 in Gy (which is 2, 3). To address this
issue, we propose to use a method similar to Spearman’s footrule
distance, which is commonly used in ranking list comparison.

F(Qs;:0s) = ), D108 (1) - 0% (0 2)
hot

where Q~§’ is the sorted degree sequence on level h after filling
zeros to the front of the original list, Qé‘_, to make Q;’ and le have
i i J
the same length (i.e. max(ls,, lsj))~ t=1,...,max(s;, lsj)~

Algorithm 1 CRCN Relation Network Builder

Input: Given input network set G = {Gi1, Gy, ...Gi }, maximum

subtree height H.
Output: The CRCN relation network R.
1: forG e G do
2: Conduct H WL relabeling iterations to generate multi-set
labels L.
3. end for
4: Set edge set of R: Eg = .
5: for each label LY, € L do
6: if (ps(LE), pn(n)) € Eg then
7: Add edge (ps(LE), pn(n)) to Eg.
8 end if
9: if (pg(G), ps(Ly;)) € Er then
10: Add edge (pg(G), ps(Lg,)) to Eg.
11: end if
12: end for

13: Return the CRCN relation network R

The proposed CRCN relation network building algorithms are
summarized in Algorithm 1 and Algorithm 2. Algorithm 1 builds the
CRCN relation network without cross-network edges. Algorithm 2
generates the cross-network edges between subgraph vertices.

Inline 2 of Algorithm 1, we conduct H WL relabeling iterations to
generate multi-set node labels for the IDs of WL subtrees (O(Hm)).
From line 5 to line 12 we add edges between node vertices and sub-
graph vertices, and edges between network vertices and subgraph
vertices (O(Hkn)). Note that no edges between node vertices are
added although edges exist between nodes in the original network.

After the CRCN relation network R is constructed, we conduct
truncated random walk [16] on each vertex of R to build the corpus
of multi-resolution multi-network objects, which is similar to build
corpus for nodes in a single network. The corpus can be further fit



Algorithm 2 Cross-Network Subgraph Context Builder

Input: Given a multi-resolution relation network R (with subtree
vertex list V and edge set Eg), threshold o, window size w.
Output: The multi-resolution relation network with added cross-

network links of subgraph vertices.
1: Sort V of subtree vertices by the summation of degree sequence.
2: for eachv € V do
3 for each subtree s in the window of size w of v do
4 if £(QF, 0") < o then
5 Add edge (ps(v), ps(s)) to Er
6 end if
7 end for
8: end for
9: Return R

into a language model such as SkipGram with negative sampling
or hierarchical softmax techniques. Here we use SkipGram with
negative sampling. The overall model is summarized in Algorithm 3.
Line 1 and 2 use Algorithm 1 and Algorithm 2 to construct the multi-

Algorithm 3 MRMINE

Input: Given a set of networks G = {Gy, Ga, ..., Gy }, the height of
WL subtrees H, the embedding dimension p, the window size
w1, wz for adding cross-network edges of subgraph vertices
and SkipGram model respectively, and the threshold o.

Output: The network embedding matrix Fg for G, the subgraph
embedding matrix Fs, and the node embedding matrix Fy.

1: Construct multi-resolution relation network R by Algorithm 1.

2: Update R by Algorithm 2.

3: Construct corpus W by applying truncated random walk on
each vertex in R.

4: for vertex u; in each random walks r € W do

5 J(®@) = —logPr(u;|®(u;)), uj € r[i — wa, i+ wa]

_ o]
6: =0 - 0[%
7: end for
8: Return embedding matrices Fy, Fs, Fg.

resolution multi-network relation network for each network object.
Line 3 builds corpus that preserves the structural information of the
relation network. Line 4 to line 7 are SkipGram model that learns
the embeddings of nodes, subgraphs, and networks simultaneously.

3.4 Complexity Analysis on MRMINE

In Algorithm 2, instead of comparing every pair of subgraphs for
adding cross-network links for subgraph vertices (with time com-
plexity O(H?n?)), line 1 generates a sorted list of subtrees with the
summation of their corresponding degree sequence for line 3 to
only compares the structural similarity of the target vertex with
other vertices within the window of size w in the list. Since sorting
the list V only cost O(nlogn), if the window size w is bounded by
O(nlogn), this method can lower the time complexity of Algorithm
2 from O(H?n?) to O(Hnlog(n)). Line 4 can use either Eq. (1) or (2).

In Algorithm 3, since the constructed CRCN relation network
has at most (Hk + k)n+k vertices (linear w.r.t. n), and all the steps in
MRMINE have linear complexity except using Algorithm 1 in line 2,

the overall time complexity of MRMINE is O(Hnlog(n)) (assuming
that n and m have the same order of magnitude).

3.5 Accelerated MRMINE+ Method

The base MrMine model introduces both cross-resolution and cross-
network links in the CRCN relation network to capture the network
objects’ relation both across different layers of resolutions and dif-
ferent networks. To further reduce the time complexity of MRMINE,
we propose the improved model MRMINE+. The most intuitive way
is to simply remove the cross-network edges between subgraph ver-
tices (Algorithm 2), which immediately reduces the time complexity
from O(Hnlogn) to O(Hm + Hkn). However, this method would not
only reduce the ability of preserving cross-network similarities of
the CRCN relation network, but also might lead to disconnected
CRCN relation network. Instead, we explore the hierarchical struc-
ture of WL subtrees, and propose a hierarchical CRCN (H-CRCN)
relation network. The idea is to preserve the structural character-
istics across networks from different subgraph granularities (e.g.
Fig. 3). The advantages are two-fold: (1) it largely reduces the time
complexity of CRCN relation network construction; and (2) still
preserves the cross-network context information without explicitly
generating cross-network links. The details are as follows.

Level 2: WL subtrees
of height 2

Level 1: WL subtrees
of height 1

Level 0: WL subtrees
\ ; ofheight 0

Figure 3: an example of H-CRCN relation network struc-
ture constructed from Figure 2. The reversed gray trees in
the dashed rectangle are the hierarchical relation network
of WL subtrees. (a) captures the relation of two networks
(hexagons) with this hierarchical subgraph tree; (b) captures
the relation of nodes (circles) with this hierarchical sub-
graph tree. Best viewed in color.

First, we construct a reversed hierarchical subgraph tree. The
root of the tree is 0-level WL tree (i.e. node), and the vertices in level
i represents the WL-subtrees of height i. Two vertices are connected
if the WL subtree corresponding to a vertex from the higher level
can be generated from a vertex’s WL subtree of lower level. For
example, in Figure 2, subtree 2 (level 2) can be generated by subtree
1 (level 1) by applying one more iteration of WL relabeling iteration,
so subgraph vertex 1 and 2 are connected in Figure 3 (gray square
1 and 2). Next, network vertices or node vertices are connected to
the last level of subgraph tree, based on the membership relation
between the networks/nodes and the last level of WL subtrees. For
example, in Figure 3 (b), node 0, 3, 5, 8 are connected to subtree
vertex 2 because all these nodes can generate WL subtree 2 at level
2. The complete model is summarized in Algorithm 4. We use Ep_
to indicate edge set within the reversed relation tree of WL subtree
vertices (e.g. edges within the dashed rectangle in Figure 3), &g, to



Algorithm 4 MRMINE+

Input: Given G = {Gi1, Gy, ..., Gt }, the height of subgraph tree in
H-CRCN relation network H, the embedding dimension p, the
window size wy for SkipGram model.

Output: The network embedding matrix Fg for G, the subgraph
embedding matrix Fs, and the node embedding matrix Fy,.

1: forG e G do

2: Generate multi-set subtree labels £ by H WL iterations.
3: end for

4 Set &g, = @, 8Rg =®,8g, =@

5: for (Ly,)i € Lg do

& i (LR, L)) ¢ Er, then

no A (L)) p(LE)i) o Er,.

8: end if

9: end for

10: for vertex v of level H in R do

[
N =

Add (v, pg(G)) to &R, if g4(v) € G.

Add (v, pn(n)) to Eg,,, if q4(v) € L".

: end for

: Construct subtree vertices’ corpus Ps with Eg_.

: Construct network vertices’ corpus Py with &g, U E Ry-
: Construct node vertices’ corpus P, with g, U Ep,,.
: for vertex u; in random walk r € Py U P, U Ps do
J(®) = —logPr(uj|®(u;)), uj € r[i — wa, i+ wz]
o=0-adl

. end for

: Return embedding matrices Fy, Fs, Fg.

DD R e e e e e e
P = B T =N L BN %)

indicate edges between network vertices and the highest level of
WL subtree vertices (e.g. edges between hexagons and squares in
Figure 3 (a)), and Eg, to indicate edges between node vertices and
the highest level of WL subtree vertices (e.g. edges between circles
and squares in Figure 3 (b)).

With such a way of constructing H-CRCN relation network,
similarities of network objects are captured in different subgraph
granularities. For example, in Figure 3, node 0 and 5 are connected
by the yellow short path while node 4 and 7 are connected by the
red long path, which indicates that node 0 and 5 are closer (both
connected to a subgraph of finer granularity).

In Algorithm 4, the Eg_ is constructed from line 5 to line 9. & Ry
and Eg, are constructed from line 10 to line 13. Note that SRy and
&R, are generated independently by the edges of (subgraph vertex,
network vertex) and the edges of (subgraph vertex, network vertex)
respectively. From line 14 to 16, we apply truncated random walks
for building the corpus Ps, Py and P, with only Eg_, Er, U Epg,
and &g, U Ep,,, respectively. The SkipGram model is applied on
the union of Py, P, and Ps from line 17 to line 21.

3.6 Complexity Analysis on MRMINE+

H iterations of WL relabeling processes cost O(Hm). From line 5 to
line 9, with the absence of cross-network edges between subgraph
vertices, only subgraph vertices need to be traversed once, with
the complexity of O(Hkn). Since there are O(n) WL subtrees in
level H of R, the complexity of generating Eg,, and SRg are O(kn)
and O(n), respectively. There are at most (Hk + 1)n vertices in the

CRCN relation network. Overall, the time complexity of MRMINE+
is O(Hm+cn), where ¢ = [H(k+1)+1]lr (I is the length of truncated
random walks, and r is the number of walks sampled per vertex) is
a constant much smaller than m, n.

4 EXPERIMENTAL RESULTS

In this section, we present the experimental results with extensive
datasets and baseline methods, to evaluate the effectiveness of
handling multi-network mining tasks, and the scalability of the
proposed algorithms (MRMINE and MRMINE+).

4.1 Experimental Setup

Our proposed method is evaluated mainly on seven real-world
datasets, which are summarized in Table 2. The brief description of
each dataset and the experimental setup are presented as follows.

Table 2: Datasets Summary

Dataset Name Category # of Nodes | # of Edges
DBLP Co-authorship 1.013 3,022
Flickr User relationship 3911 4,152

LastFm User relationship 4,068 4,347
Douban User relationship 1,118 3,022
MySpace Social network 6,362 6,514
Aminer Academic network | 1,274,360 4,756,194
Bioinformatics | Size (# of graphs) Classes Avg. nodes
MUTAG 188 2 17.9
PTC 344 2 25.5
PROTEINS 1113 2 39.1
NCI1 4110 2 29.8
NCI109 4127 2 29.6

e DBLP: A co-authorship network with nodes representing
authors and links representing co-authorship. The original
dataset contains 42,252 nodes and 210,320 edges [17].

e Flickr: A network of friends on the image and video hosting
website Flickr with each node representing a user and each
edge reflecting friend relationship. It has 215,495 individual
users and 9,114,557 friend relationships [30].

o LastFm: Collected in 2013, this is the following network of
users on the music website LastFm. The network network
contains 136,420 users and 1,685,524 following links [30].

e Douban: Collected in 2010, this data reflects the users’ friend
relationship in the offline and online activities of Douban,
and contains 50k users and 5M edges. The offline and online
activity communities share some overlaps of users, which
makes it suitable for network alignment.

e MpySpace: A social network which has a strong music empha-
sis. The links between nodes reflect the connections of users.
It has 854,498 users and 6,489,736 relationship links.

e AMiner: An academic social network. Undirected edges rep-
resent co-authorship relationship [30]. The whole dataset
contains 1,274,360 nodes and 4,756,194 edges.

e Bioinformatics: The bioinformatics dataset, including MU-
TAG, PTC, PROTEINS, etc. are small-scaled networks of
chemical compound, proteins or enzymes, and are often
used as benchmark datasets for graph classification.

Using the above datasets, we design the following five experi-
mental scenarios for evaluating the effectiveness of our method.



S1. DBLP vs. Noisy DBLP Alignment. We extract a subnetwork
with 1,013 nodes from the original DBLP dataset, and randomly add
extra edges to the network to generate the second noisy network
while keeping the node set unchanged. Note that our setting is dif-
ferent from that in [28] for that our noisy edges make two networks
non-isomorphic while [28] only changes the edge weight.

$2. Douban-offline vs. Douban-online Alignment. We adopt a
method introduced in [31] to construct the offline network accord-
ing to users’ co-occurrence in social gatherings. We treat people as
contacts if they participate in the same offline events more than ten
times. The constructed offline network has 1,118 users. We use the
corresponding online social network for the same 1,118 users as
the second network, and add extra nodes as noises in the alignment
experiment.

$3. Cross-network Query Node Retrieval. As an complementary
experiment for network alignment, we conduct cross-network query
node retrieval, in which given a set of query nodes from one net-
work, we aim to retrieve similar nodes from another network. We
study the following network pairs and use their overlapping user set
as groundtruth. DBLP and noisy DBLP, Douban-offline and Douban-
online, Flickr and LastFm, MySpace and noisy MySpace with both
node and edge noises.

$4. Collective Network Alignment. To further demonstrate the
effectiveness of our method on multi-network mining, we adopt
a novel colletive network alignment. Rather than conducting tra-
ditional two-network alignment, we use three input networks to
collectively align nodes of three networks. To the best of our knowl-
edge, we are the first to align more than two networks collectively.
We use Douban-offline and Douban-online for this experimental
scenario. More details will be elaborated in the next sub-section.
$5. Network Level Classification. We use bioinformatics dataset
for graph level classification as shown in [13]. Since our method
can learn network, subgraph and node embeddings simultaneously,
we can either use network embeddings for classification directly
or use node and subgraph embeddings combinatorially as shown
in [25]. The results present the performance of the first one since
it has better performance out of the two options. After we learn
the embeddings, we use 80% of the bioinformatics networks for
training and 20% for testing with a linear SVM model.

In all the above scenarios, we do not use network node/edge
attributes as auxiliary information in the experiments.
Comparison methods. In total, we use nine comparison meth-
ods in our experiments. For (collective) network alignment and
query node retrieval experiments, we use three traditional net-
work alignment/matching methods (FINAL [28], IsoRank [20], and
UniAlign [9]), and three network embedding methods (deepwalk
[16], node2vec [5], and struc2vec [18]). For network classification ex-
periment, we use three baselines including both traditional Weisfeiler-
Lehman kernel method (WL kernel [19]) and two embedding-based
methods (Deep Graph Kernel [25], and subgraph2vec [13]).
Repeatability. All of the datasets are public. All experiments are
performed on a server with Intel(R) Xeon(R) CPU core with 2.00
GHz and 1.51 TB RAM. The operating system is Red Hat Enterprise
Linux Server release 6.9. The algorithms are programmed with
Python. The hyperparameters are set based on a grid search. We
intend to release the source code after the paper is published.

4.2 Effectiveness

Visualization. To evaluate the effectiveness of the proposed method,
we first use a widely used and small-scaled dataset, the Zachary’s
Karate Club [18] dataset for visualizing the embeddings in 2-d
space for intuitively presenting the difference between our method
and baseline embedding methods. We use two identical Karate
Club networks in which the second one is permutated from the
original network as shown in Figure 5. We apply three baseline
embedding methods, deepwalk, node2vec, and struc2vec as well as
MRMINE on this dataset. Since all baseline methods only support
single network embedding, we fit two networks as one single net-
work into these models. The results are shown in Figure 4. As
we can see, the embeddings of deepwalk clutter in four positions.
Nodes from two networks are mixed together, and can not be distin-
guished. node2vec roughly embeds the nodes into two clusters by
nodes’ membership, but the nodes within each cluster are mixed up.
Also nodes from differ-
ent networks are incom-
parable. struc2vec embeds
nodes based on structural
roles, but it can not explic-
itly differentiate all roles
as some nodes with differ-
ent colors are embedded to-
gether, while some nodes
with the same color are far
apart. Our method pairs
almost all nodes with the
same colors together, and
clusters structurally identi-
cal nodes (e.g. node 17, 19,
52, 54 with lime color). This
visualization result matches our intuition that our model can pre-
serve structural similarities of nodes across networks and shows
great potential in many mining tasks as we will present shortly.

Figure 5:
network

Original karate
and permutated
karate network. Colors are
set the same for identical
nodes across two networks.
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Figure 6: Network alignment result of our methods com-
pared with traditional alignment baseline methods and net-
work embedding baseline methods. Best viewed in color.

Network Alignment. Next we perform two network alignment ex-
periments (scenario S1, S2). For traditional network alignment base-
line methods (e.g. FINAL, IsoRank), we calculate the cross-network
similarity matrix and apply greedy match algorithm [28] to process
the similarity matrix for one-to-one node alignment. For embed-
ding methods, we first generate node embeddings, and calculate the

(b) Alignment result on Douban
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similarity matrix by the inner product of embedding vectors. The
greedy match algorithm is then applied on the similarity matrix.
The results are shown in Figure 6. As the percentage of edge/node
noises increases, the accuracies of all methods decrease.
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Figure 7: Node retrieval results on our methods with five
baseline methods. Accuracy vs. top-k retrieved nodes. Best
viewed in color.

On both datasets, our proposed methods MRMINE and MRMINE+
outperform all baselines. MRMINE slightly outperforming MRMINE+
indicates the usefulness of cross-network links in the CRCN rela-
tion network. Specifically, on DBLP dataset, our methods achieve

k
(b) Node retrieval accuracy on
and Douban-

close accuracy to FINAL when there is no edge noise, but FINAL
is sensitive to edge noises and decreases rapidly on small percent-
age of extra edges. struc2vec also achieves close performance to
MRMINE+. On Douban dataset, our methods outperforms baselines
at all node noise level by at most 19.71%.

Query Node Retrieval. We then conduct query node retrieval
experiments (i.e. scenario S3). We treat the nodes in one network as
queries and the nodes in the other network as targets. For traditional
methods (i.e. FINAL, IsoRank and UniAlign), we calculate the cross-
network similarity matrix and sort the nodes in the targets based on
their similarity values with query nodes. After sorting, top-k nodes
are retrieved from targets for each query node. If the matching
node exists in the top-k list, we consider it as one hit. The accuracy
is calculated as (# of hits)/(# of query nodes). We calculate the
accuracy of retrieval w.r.t. the k value and present the results in
Figure 7. For (a) and (d) in Figure 7, we randomly add 2% edge
noises and 3% node noises. We can observe that our proposed
method, MRMINE and MRMINE+, outperform all baselines including
both traditional network alignment/matching methods and network
embedding methods on all four datasets.

Collective Network Alignment. We further conduct a novel col-
lective network alignment experiment (scenario S4) to show the
advantage of our methods on enabling difficult multi-network min-
ing task. We collectively perform network alignment among all
nodes in three networks (G1: Douban-offline, Ga: Douban-online,
and G3: Douban-online with 3% edge and 5% node noises). Since
traditional network alignment/matching methods only calculate
similarity matrix between two networks, we need to calculate S1
for G1, Ga, S13 for Gy, G3, and Sy3 for G2, Gs. The three-way simi-
larity between Gi, G and G3 forms a 3-d similarity tensor S, with
S(i, j, k) = S12(i, j) + S13(i, k) + S23(j, k). We implement a 3-d greedy
match algorithm to produce a one-to-one-to-one alignment for
nodes in three networks. For our method, since we simultaneously
embed all nodes onto the same embedding space, we can directly
calculate the similarity tensor S and apply 3-d greedy match algo-
rithm. We use two metrics for this experiment. First, for each pair
of three-node alignment (including three nodes from Gi, G, and
G3), we consider it a successful alignment if all nodes are aligned
correctly (a strict metric, indicating the correct 3-way alignment).



Second, for each pair of three-node alignment, we consider it a
successful alignment if two of the three nodes are aligned correctly
(a relaxed metric, indicating at least 2-way correct alignment). The
results are presented in Figure 8 (a). As we can see, our proposed
methods MRMINE and MRMINE+ outperforms all baselines by both
metrics. The largest accuracy improvement by the strict metric is
14.33%, and the largest accuracy improvement by the relaxed metric
is 28.20%.
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Figure 8: Collective alignment results on Douban offline and
online dataset (a), and scalability study results on MRMINE
and MRMINE+ (b). Best viewed in color.

Network level classification Lastly, we test the performance of
the embeddings learned by our proposed methods on network clas-
sification. We use all five categories of datasets from bioinformatics
dataset, and the results are presented in Table 3. The bold num-
bers show the best performance. Note that different from [13, 25],
we do not use node or edge attributes in the embedding learning
process. From the results, our methods outperform all baselines
in four out of five categories of bioinformatics datasets, and per-
form very close to the best baseline in the proteins data, which
indicates the the proposed methods’ effectiveness of enhancing
network level classification tasks. We also observe that MRMINE+
performs consistently better than MRMINE in this classification ex-
periment, which denotes that the cross-network relation captured
by H-CRCN relation network is more effective than the basic CRCN
relation network in network classification task.

4.3 Scalability

We conduct scalability study of the proposed algorithms on the
largest dataset Aminer which contains over 1M nodes. We use two
subgraphs of Aminer as input networks, and conduct a series of
running time test with the number of nodes ranging from 1,000
to 1.2M (which is close to the size of the entire Aminer dataset).
Figure 8 (b) shows the results of the average running time on 5
runs. We can observe that the running time of both algorithms are
less than 120s when applied on 1.2M-node networks. Particularly
MRMINE+ scales linearly while MRMINE scales faster than (super-
linearly) MRMINE+ which is consistent with our analysis on the
time complexity. Thus, the proposed methods can be applied to
large networks.

Table 3: Comparison of Network classification Accuracy on
Bioinformatics Datasets (+ standard derivation)

MUTAG PTC PROTEINS | NCI1 NCI109
MRMINE+ 83.47 +£2.01 | 62.00 +£0.07 | 71.22 £0.62 | 68.50 = 0.03 | 65.57 + 0.02
MRMINE 82.19 £1.58 | 55.41+2.52 | 70.88 £0.38 | 66.90 £ 0.05 | 64.53 +0.01
WL Kernel 80.66 £ 3.07 | 59.94+2.79 | 64.45+£1.14 | 63.42+£0.22 | 62.94 + 0.42
Deep WL Kernel || 82.95+1.96 | 53.29 +1.53 | 69.49 +0.26 | 62.83 +0.25 | 62.47 +0.15
subgraph2vec 79.33 £0.07 | 42.29+0.09 | 73.04 £0.04 | 63.01 £0.01 | 49.20 £ 0.02

5 RELATED WORK

Massive studies haven been done recently on network embedding
field. Traditional network embedding methods such as deepwalk
[16], node2vec [5] and LINE [21] are some of the earliest works that
propose to embed graph nodes into low-dimensional vectors by lan-
guage model and using truncated random walks for node context
collection. Proposed more recently, the structural role based node
embedding methods such as struc2vec [18], SDNE [24], and Graph-
Wave [2] are more related to our proposed method. Specifically,
struc2vec explores the node structural proximity on single network
and re-construct the original network by node structural score to
use random walk based language model. SDNE applies the deep
autoencoder to capture the non-linear vertex structural character-
istics, while GraphWave unsupervisedly learns node embeddings
by leveraging heat wavelet diffusion patterns.

Recently, the network embedding work becomes more diversi-
fied and focuses more on complex scenarios. A very recent work,
DMNE [15] by J Ni et al. proposes to form many-to-many node
mappings by coordinating multiple neural networks with a co-
regularized loss function. But the method requires known links
across networks. NEST [26] proposed by C Yang et al. studies a
problem of hierarchical network embedding that combines motif
filtering and convolutional neural networks. Its multi-resolution
setting is close to our problem, yet only focuses on single network.
LinkNBed by R Trivedi et al. [22] learns entity and relationship
representations across multiple knowledge graphs. This work also
has the potential to be applied to network alignment under method
modification. LATTE by J Zhang et al. [27] proposes a task-oriented
network embedding framework which uses diffusive proximity
scores and learns the network representation vectors by extending
the autoencoder model. A closely related work on multi-layered
network embedding [11] by J Li et al. focuses on an inter-dependent
multi-layered network where layers has dependencies on each other.
For representation learning on different network resolutions, most
methods are node embedding methods including the above ones. In-
spired by the paragraph representation work [10] by Q Le, et al. and
deepwalk, graph2vec [14] and subgraph2vec [13] by A Narayanan
et al. provide graph-level and subgraph-level embedding methods,
respectively. The Deep Graph Kernel method [25] by P Yanardag
et al. also studies the subgraph embedding for the use in graph
kernel computation. Embedding methods that also use the idea of
Weisfeiler-Lehman subtree kernel/isomorphism test algorithm in-
clude GraphSAGE [6] by W Hamilton et al. and GCN [8] by Thomas
N. Kipf et al.. Other network embeddings methods in the literature
of recent years can be found in this survey [1].

The aforementioned works are all related to network embedding.
Meanwhile, many traditional network mining tasks have been de-
veloped innovative methods including the multi-network mining



tasks studied in this paper, such as attributed network alignment
task [3, 28, 29], attributed subgraph matching task [4], and graph
kernel [19]. Besides embedding methods, ROLX [7] by K Hender-
son et al. which uses matrix factorization method to capture vertex
structural characteristics also shows competitive performance in
many comparison tasks with network embedding methods.

6 CONCLUSION

In this paper, we study the multi-resolution multi-network em-
bedding problem and develop efficient and effective algorithms
(MRMINE and MRMINE+) to simultaneously learn the embeddings
of multi-resolution multi-network objects in the same space. Specif-
ically, we propose that the context of such objects can be captured
by the Cross-Resolution Cross-Network (CRCN) relation network.
We then propose a basic algorithm (MRMINE) to construct such net-
work, and an accelerated algorithm (MRMINE+) which explores a
more complex structure of the CRCN relation network (i.e. H-CRCN
relation network) for reducing the time complexity while preserv-
ing cross-network context. Numerous experiments on real-world
data show that (1) our methods lead up to 19.71%, 28.20%, and 5.08%
increase of accuracy in traditional network alignment, collective
network alignment, and network classification, respectively; (2)
our method can scale up to over 1IM-node networks. In the future,
we will (1) explore the approaches to expand our method for more
challenging multi-network mining tasks, such as subgraph match-
ing, and (2) generalize it to handle different categories of network
attributes.
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