
1

Graph Ranking Auditing:
Problem Definition and Fast Solutions

Meijia Wang, Jian Kang, Nan Cao, Yinglong Xia, Wei Fan, Hanghang Tong

Abstract—Ranking on graphs is a centerpiece in many high-impact application domains, such as information retrieval, recommender
systems, team management, neuroscience and many more. PageRank, along with many of its variants, is widely used across these
application domains thanks to its mathematical elegance and the superior performance. Although PageRank and its variants are
effective in ranking nodes on graphs, they often lack an efficient and effective way to audit the ranking results in terms of the input
graph structure, e.g., which node or edge in the graph contributes most to the top-1 ranked node; which subgraph plays a crucial role in
generating the overall ranking result? In this paper, we propose to audit graph ranking by finding the influential graph elements (e.g.,
edges, nodes, attributes, and subgraphs) regarding their impact on the ranking results. First, we formulate graph ranking auditing
problem as quantifying the influence of graph elements on the ranking results. Second, we show that our formulation can be applied to
a variety of graph structures. Third, we propose effective and efficient algorithms to find the top-k influential edges/nodes/subgraph.
Finally, we perform extensive empirical evaluations on real-world datasets to demonstrate that the proposed methods (AURORA)
provide intuitive auditing results with linear scalability.

Index Terms— Graph mining, PageRank, explainability
F

1 INTRODUCTION

The seminal work of PageRank algorithm [1] has inspired
many ranking algorithms on graphs in the past two decades
to serve different application purposes. To name a few,
Marco and Augusto [2] design ItemRank scoring algorithm
to rank products in recommender system; Jianshu et al. [3]
develop TwitterRank, tailored explicitly for identifying im-
portant users in a social network; Rohit et al. [4] propose
IsoRank for aligning protein-protein interaction network in
computational biology. Variants of PageRank algorithms can
also be found in other application domains, e.g., neuro-
science [5], sports team management [6] and many more.
The success of PageRank and its variants in social and
economic domains largely relies on their superior ability in
identifying important nodes in large-scale graphs.

The popularity of PageRank and its variants hinge on
their elegant idea and mathematical simplicity. The mech-
anism of these ranking algorithms can be viewed as an
iterative election process among nodes, where the nodes
assign their votes to and gain their votes from others
through the edges. Normalization is introduced to ensure
that the process will converge and the relative importance
of the nodes is determined in terms of the weights they gain
from their neighbors. Intuitively, PageRank and its vari-
ants closely resemble many phenomena in the real world:
celebrities following celebrities in social networks; similar
users buying similar items in recommender systems and
influential articles inspiring many more important articles

M. Wang is with Arizona State University, Tempe, AZ, USA. Email:
{mwang164}@asu.edu.
J. Kang, H. Tong are with University of Illinois at Urbana-Champaign,
Urbana, IL, USA. Email: {jiank2, htong}@illinois.edu.
N. Cao is with Tongji University, Shanghai, China. Email:
nan.cao@gmail.com.
Y. Xia is with Facebook AI, Menlo Park, CA, USA. Email: yxia@fb.com.
W. Fan is with Tencent Medical AI Lab, Palo Alto, CA, USA. Email:
wei.fan@gmail.com.

Fig. 1: Example of potential influential edges and node in
Network of Networks model.

in citation networks. Very often, the ranking algorithms
can be computed using power iteration method with linear
complexity and can further be improved by more efficient
algorithms [7], [8].

Successful as it is, interests are naturally drawn to ma-
nipulate the ranking results. Hence it is of key importance
to identify the vulnerabilities in graph structure against
malicious attacks, so as to improve the reliability of the
ranking results. To achieve this goal, we need to understand
why the algorithm outputs a certain ranking result. Instead
of knowing the general mathematical mechanism behind
these algorithms, it is highly desirable to find out explicitly
which element (e.g., edge, node, subgraph, etc.) in a graph
dataset makes the most significant contribution to the rank-
ing result. We envision that auditing graph ranking is highly
beneficial. It will help identify the vulnerabilities in the
graph (e.g., links among three clusters, the bridging node of
three clusters in Figure 1), which will further enable effective
defending strategies to avoid malicious manipulation of the
ranking results.

In this paper, we aim to audit the ranking by finding
the most influential graph elements (e.g., edges, nodes, sub-
graphs), which we formulate as Graph Ranking Auditing
Problem. To be specific, we address two key challenges

2

TABLE 1: Table of Symbols
Symbols Definitions

G = 〈A, . . .〉 the input network1

(i, j) edge from node i to node j
A adjacency matrix of the input graph
W transition matrix of the input graph

W(i, j) the element at ith row and jth column
W(i, :) ith row of matrix W
W(:, j) jth column of matrix W
W(i,j) the (i, j)th block in block matrix W
W′ transpose of the matrix W
W−1 inverse of the matrix W
Eij single-entry matrix with 1 on the (i, j)th element
e the teleportation vector of PageRank
r ranking vector of the input network

r(i) ranking score of the ith node
Tr(W) Trace of the matrix W
f (r) a loss function over ranking vector r
θ(G) mapping function from G to a modified matrix

diag(r) transform vector r into a diagonal matrix
n number of elements in the ranking vector
m number of edges in the input network
c damping factor in PageRank

as follows. First, to quantitatively understand the ranking
algorithms, we need an influence measure to assess how the
ranking results would change if we perturb a specific graph
element. Second, due to its combinatorial nature, effectively
solving the corresponding optimization problem on large
graphs is highly nontrivial.

The main contributions of the paper are summarized as
follows.
• Problem Definition. We formally define Graph

Ranking Auditing Problem and the influence of
graph elements as the rate of change in the ranking
results upon the perturbation/removal of the graph
elements. Then we demonstrate its applicability in
multiple ranking algorithms and network structures.

• Algorithms and Analysis. We propose a family of
fast approximation algorithms to solve the Graph
Ranking Auditing Problem, which can achieve a
(1− 1/e) approximation ratio with a linear complex-
ity.

• Empirical Evaluations. We perform extensive exper-
iments on diverse, real-world datasets. The experi-
mental results demonstrate that our proposed meth-
ods (a) provide reasonable and intuitive information
to help better understand ranking results, and (b)
scale linearly w.r.t. the graph size.

The rest of the paper is organized as follows. Section 2
formally defines the auditing problem. Section 3 propose
a way to measure the influence of graph elements and
presents its application on a set of network structures. Sec-
tion 4 introduces our proposed algorithms. Then we provide
experimental evaluations in Section 5. After reviewing re-
lated work in Section 6, we conclude the paper in Section 7.

2 PROBLEM DEFINITION

In this section, we first introduce a table of symbols that will
be used throughout the paper (Table 1). Then we formally
define the auditing problem.

We use italic uppercase letters G for networks/graphs,
calligraphy letters for sets (e.g., S), bold uppercase letters

1. In this paper, we use ‘graph’ and ‘network’ interchangably.

for matrices (e.g., W), bold lowercase letters (e.g., e) for
vectors, and lowercase letters for scalars (e.g., c). For matrix
indexing convenience, we use the rules similar to Matlab
that are shown as follows. We use W(i, j) to denote the
entry of matrix W at ith row and jth column. We use W(i, :
) and W(:, j) to denote the ith row and the jth column
of matrix W respectively. For a block matrix W, we use
W(i,j) to denote the (i, j)th block matrix of matrix W. We
use prime to denote the transpose of matrix (i.e., W′ is the
transpose of matrix W).

The essential idea of unifying the ranking algorithms
is to propose a general solution for identifying influential
graph elements which serve different objectives in different
algorithms. First, we start by introducing the PageRank
algorithm and later we will explain how its variants can be
unified in the same equation. Given a graph G with n nodes,
PageRank essentially solves the following linear system,

r = cWr + (1− c)e (1)
where e is the teleportation vector with length n and W
is the normalized adjacency matrix of the input graph. In
PageRank, e is chosen as the uniform distribution 1

n1; in
personalized PageRank, e is a biased vector which reflects
user’s preference (i.e., ‘personalization’) [9]; in random walk
with restart [10], all the probabilities are concentrated on
a single node. In normalized PageRank, the matrix W is
referred to as the row-normalized adjacency matrix of the
graph G . A popular alternative choice is the normalized
graph Laplacian matrix.

Here we relaxed the definition of W to a transition
matrix mapped from the graph G by a mapping function θ.
In fact, many existing ranking algorithms are equivalent to
PageRank and can be formulated as Eq. (1) by defining the
corresponding mapping functions. In Section 3, we provide
some examples of such ranking algorithms.

In order to guarantee the convergence of Eq. (1) with the
transition matrix W, Li et al. [11] gives a fixed-point solution
r = (1− c)(I− cW)−1e by choosing a factor c such that the
largest eigenvalue of W is less than 1/c. Consequently, the
solution to the linear system problem defined in Equation 1,
can be re-written as

r = (1− c)Qe (2)
where Q = (I− cW)−1.

Regarding explainable learning and mining techniques,
Pang et al. [12] propose a novel notation of influence func-
tions to quantify the impact of each training example on the
underlying learning system (e.g., a classifier). The key idea
is to trace the model’s prediction back to its training data,
where the model parameters were derived. In this way, it
learns how a perturbation of a single training data will affect
the resulting model parameters, and then identifies the
training examples that are most responsible for a model’s
predictions.

Based on the principle outlined in [12], we propose a new
method to explain the results of the ranking algorithms. To
be specific, we tackle the problem by finding a set of graph
elements (e.g., edges, nodes, a subgraph) such that, the
ranking result will have the greatest change upon the per-
turbation/removal of the set of graph elements. Formally,
we define Graph Ranking Auditing Problem as follows:

3

Problem 1. (Graph Ranking Auditing Problem).
Given: a graph with transition matrix W, a teleportation
vector e, a ranking vector r, a loss function f over its
ranking vector, and an integer budget k;
Find: a set of k influential graph elements (edges, nodes
and subgraph) that has the largest impact on the loss
function over its ranking vector f (r).

In order to formulate the auditing problem, two key
questions need to be answered: (Q1) how to quantitatively
measure the influence of an individual graph element w.r.t.
the loss function; and (Q2) how to collectively find a set of k
graph elements with the maximal influence. We first present
our proposed solution for Q1 in Section 3, and then propose
three different algorithms for Q2 in Sections 4.1, 4.2 and 4.3,
depending on the specific type of graph elements (i.e., edges
vs. nodes vs. subgraphs).

3 INFLUENCE QUANTIFICATION & EXAMPLES

In this section, we first formulate the auditing problem
and quantify the influence of graph elements w.r.t the loss
function. Then we present a general form of the influence
function for random walk based ranking algorithms. Finally,
we describe how different network structures can be studied
in our Graph Ranking Auditing framework.
Problem Formulation. For the ease of description, we first
define r = pg(W, e, c) as the resulting ranking vector
given by PageRank and its varients with transition matrix
W, teleportation vector e, and damping factor c as the
inputs. The intuition behind the proposed methods is to
find a set of crucial graph elements (e.g., edges, nodes,
subgraphs) whose perturbation/removal from the graph
would maximize the change in the loss function and in-
tuitively disturb the ranking result in a desired way. To
be specific, let r = pg(W, e, c) be the ranking vector of
the input graph G , and rS = pg(WS , e, c) be the new
ranking vector after removing the graph elements in set S
from graph G . We formulate the auditing problem as the
following optimization problem,

max
S

(f(r)− f(rS))2

s.t. |S| = k
(3)

where f(r) is some loss function over the ranking vector r.
The choices of possible loss functions are presented in Table
2 and discussed later in this section.
Definition of Influence. To measure how f(r) will change
if we perturb/remove a specific graph element, we define
its influence as the rate of change in f(r) upon its pertuba-
tion/removal.

Definition 1. (Graph Element Influence). For a finite simple
graph, the influence of an edge (i, j) is defined as the
derivative of the loss function f(r) with respect to the
edge, i.e., I(i, j) = df(r)

dW(i,j) .
The influence of a node is defined as the aggregation
of all inbound and outbound edges that connect to the

node., i.e., I(i) =
n∑

j=1,j 6=i
[I(i, j) + I(j, i)] +

n∑
j=1,j=i

I(i, j).

And the influence of a subgraph is defined as the aggre-
gation of all edges in the subgraph S, I(S) =

∑
i,j∈S

I(i, j).

TABLE 2: Choices of f(·) functions and their derivatives
Descriptions Functions Derivatives

Lp norm f(r) = ||r||p ∂f
∂r

=
r◦|r|p−2

||r||p−1
p

Soft maximum f(r) = ln(
n∑

i=1
exp(ri))

∂f
∂r

= [
exp(ri)

n∑
j=1

exp(rj)
]

Energy norm f(r) = r′Mr ∂f
∂r

= (M+M′)r

Weighted mean f(r) = w′r ∂f
∂r

= w

(M in Energy Norm is a Hermitian positive definite matrix.)

We can see that the influence for both nodes and sub-
graphs can be naturally computed based on the edge influ-
ence. Therefore, we will focus on how to measure the edge
influence. By the property of the derivative of matrices, we
first rewrite the influence df(r)

dW(i,j) as

df(r)

dW
=

{
∂f(r)
∂W + (∂f(r)∂W)′ − diag(∂f(r)∂W), if undirected
∂f(r)
∂W , if directed

(4)
Directly calculating df(r)

dW(i,j) is hard, and we resort to the
chain rule: ∂f(r)

∂W(i, j)
=
∂f(r)

∂r′
∂r

∂W(i, j)
(5)

Next, we present the details on how to solve each partial
derivative in Eq. (5) one by one.
Computing ∂f(r)

∂r′ . Here we discuss the choices of f(·) func-
tion. We list several commonly seen loss functions and their
corresponding derivatives in Table 2. Each loss function
measures a different aspect of the overall ranking results,
and we will conduct experiments on a few of them in
Section 5. In the table, Lp norm is the most commonly-used
vector norm that measures the overall sizes of the vector;
soft maximum is used to approximate the maximum value of
elements in the vector; energy norm is a measurement often
used in system and control theory to measure the internal
energy of vector; weighted mean can be tailored to answer
specific questions regarding the ranking results.
Computing ∂r

∂W(i,j) . Taking the derivative of Eq. (1) with
respect to W(i, j), we obtain

∂r

∂W(i, j)
= cW

∂r

∂W(i, j)
+ c

∂W

∂W(i, j)
r (6)

The equation is equivalent to Eq. (1) where the teleportation
vector is c

1−cEijr since ∂W
∂W(i,j) = Eij and the gradient

vector ∂r
∂W(i,j) is the solution to this linear system, i.e.,

∂r

∂W(i, j)
= cQeie

′
jr (7)

Combine everything together, we get the general solu-
tion for calculating the influence of an edge (i, j) as follows:

∂f(r)

∂W(i, j)
= c

[
∂f(r)

∂r′
Q

]
(i)r(j) (8)

To obtain the entire gradient matrix ∂f(r)
∂W , two major com-

putational challenges lie in (1) calculating Q with O(n3)
time complexity and O(n2) space complexity to save the
matrix of gradients and (2) given Q, calculating ∂f(r)

∂W(i,j)

takes O(n2) time complexity for one edge and O(mn2) for
all m edges. From Eq. (9), we can re-write it as the following
low-rank form

∂f(r)

∂W
= c

(
Q′
∂f(r)

∂r

)
r′ (9)

4

Fig. 2: Example of embedding Network of Networks into
plain network by CrossRank.

The first challenge can be resolved by considering the
vector Q′ ∂f(r)∂r as a solution to the linear system in Eq. (1)
with personalized teleportation vector ∂f(r)

∂r . With this in
mind, we do not need to calculate Q explicitly or to save the
entire matrix directly. Then the computational complexity
for the first matrix product in Eq. (9) is reduced to O(m)
time complexity and O(n) space complexity. To extract the
element of ∂f(r)∂W at the ith row and the jth column, we simply
calculate the product of the ith element in Q′ ∂f(r)∂r and the
jth element in r, then scale it by c, which takes O(1) time.

To demonstrate that a variety of network strucutres and
ranking algorithms can be studied in our proposed Graph
Ranking Auditing framework, here, we explore four promi-
nent examples: (1) plain network; (2) Network of Networks;
(3) attributed network and (4) normalized PageRank.

3.1 Example: Unnormalized PageRank
In a plain network, we denote the input graph G = 〈A〉
consisting of only the adjacency matrix A and the largest
eigenvalue of A as λ(A). It is straightforward to consider
the adjacency matrix A as the transition matrix W in Eq. (1)
and the mapping function θ is an identity function in this
scenario. Here we choose c = 0.5

λ(A) such that the linear
system in Eq. (1) converges to its fixed-point solution.

3.2 Example: Network of Networks
Network of Networks (NoN) data model is first introduced
in [13], in which the nodes in the main network (geo-
proximity network) can be further represented as domain-
specific networks (social networks). In the paper, a ranking
algorithm, CrossRank, is designed to rank all the nodes
within and across domain-specific networks such that the
nodes can be compared in a broader context. The algorithm
is further proved to be equivalent to PageRank.

First, we briefly introduce the structure of the model.
A Network of Networks is defined as the triplet Gnon =
〈A,M, φ〉, where A = {A1, . . . ,Ag} is a set of g adjacency
matrices of the corresponding domain-specific networks,
M is a g × g main network representing the relationship
among the domain-specific networks, and φ is a one-to-
one mapping function for mapping node in M to domain-
specific network. Each node in M, referred to as main nodes,
represents a domain-specific network through the mapping
function φ.

The objective of CrossRank is to find a ranking solution
that optimizes the following three problems at the same
time: (1) rank smoothly within domain-specific networks;
(2) rank accordingly, reflecting the query preference; (3) rank
consistently across networks. Jingchao et al. [13] derive a
fixed-point approach to compute the optimal ranking result
according to the above objectives, and they prove that it

is equivalent to the linear system in Eq. (1) with a map-
ping function θcr(·) embedding the main network and the
domain-specific networks together into a transition matrix.

To align the nodes across networks, CrossRank essen-
tially solves the following linear system

r =

(
b

1 + 2a
A +

2a

1 + 2a
Y

)
r +

1− b
1 + 2a

e (10)

where A is block diagonal matrix with domain specific
adjacency matrices A1, . . . ,Ag on its diagonal entries and
Y integrate the information of the main network together
with the common nodes across networks. Specifically, Y is
a block matrix whose (i, j)th block Y(i,j) is an ni×nj binary
indicator matrix with Y(i,j)(x, y) = M(i, j) if the xth node
in Ai is the yth node in Aj , i.e., common node. The choice
of the value of a, b is given by a = 1

4λ(Y)−2 and b = 1+2a
2λ(A) ,

where λ(·) is the leading eigenvalue of the corresponding
matrix. To show that CrossRank is equivalent to PageRank,
let W = b

b+2aA + 2a
b+2aY and c = b+2a

1+2a , then we have
Eq (10) identical to Eq 1.

3.3 Example: Attributed Network

Beyond simple graphs and complex network structures,
many real-world networks also have rich information em-
bedded in the node and edge attributes. For example, in a
social network, nodes may contain information regarding
users’ demographics and edges may come with interac-
tion information between users. Therefore, it arouses an
interesting question that how can we integrate the node
and edge attributes information in ranking nodes on large
graphs. Further on, we would like to explore what node
and edge attributes have the largest impact on the ranking
results in an attributed network. In this section, we focus on
the attributed network with categorical attributes for both
nodes and edges.

Inspired by MAGE [14], in which an edge-augmentation
method is proposed to support for categorical node and
edge attributes in pattern matching on graphs, we propose a
similar attribute-augmentation method to embed all nodes,
edges, node attributes and edge attributes in an attributed
network into a large plain network.

Given an attributed network with n nodes, m edges,
nS categorical node attributes and mT categorical edge
attributes, we denote the attributed network as a triplet
Gattri = 〈A,S,T〉, where A is an n × n adjacency matrix,
S is an n × nS node attribute matrix and T is an m ×mT

edge attribute matrix. To embed all elements (nodes, edges,
node attributes and edge attributes) into a plain network,
we first employ the edge-augmentation method based on
intuition from the linegraph transformaton [15] to transform
the adjacency matrix A into an (n+m)× (n+m) adjacency
matrix with both nodes and edge-nodes in the matrix,
denoted as E =

(
0 Eout

Ein 0

)
. Then we take matrix E, S and

T to form the embedded adjacency matrix in the following
form:

W =

0 Eout S 0

Ein 0 0 T
S′ 0 0 0
0 T′ 0 0

The embedding process is visualized in Fig. 3 with a toy
graph. The embedded matrix is the adjacency matrix of a

5

Fig. 3: Example of attribute-augmentation for embedding
attributed network into plain graph.
plain network and can thereby be audited by our proposed
method.

3.4 Example: Normalized PageRank
In order to perturb the elements in different networks,
we directly make changes on the transition matrix W by
knocking one entry out at a time. However, in some other
cases, perturbing an element in a graph may not align with
changing an entry in the transition matrix W.

The most typical case is normalized PageRank, where
row-normalized adjacency matrix is often used as the tran-
sition matrix W (i.e., W = D−1r A where D−1r is a diagonal
matrix with the out-degree/total weights of each row in A
on its diagonal entries). In this case, perturbing an edge (i, j)
in the graph not only affects the (i, j)th element in W but
also the entire ith row in it. Therefore, Eq. (7), (8) and (9)
no longer hold for this method. The gradient of the ranking
vector over an edge A(i, j) is given by

∂r

∂A(i, j)
= cQD−1r ei(−e′iD−1r Ar + e′jr) (11)

The gradient of the objective function f(r) with respect to
an edge is given by

∂f(r)

∂A(i, j)
= cupr(i) ·

[
r(j)−

(
D−1r Ar

)
(i)
]

(12)

where upr = D−1r Q′ ∂f(r)∂r . Accordingly, the matrix of gradi-
ents of all edges can be expressed as

∂f(r)

∂A
= c (uprr

′ + dpr1
′) (13)

and we denote dpr as dpr = −diag(Wr)upr . The vector upr
can be interpreted as how much the perturbation of an edge
would affect the objective function through the source node,
r stands for the impact through the target node and dpr is
the impact through the normalization term.

Another relevant case we would like to cover is the
normalized version of Network of Networks in Section 3.2.
In [13], the author takes the normalized Laplacian form of
W (i.e., W̃ = D

− 1
2

r WD
− 1

2
r). In this case, the matrix of

gradients is derived as
∂f(r)

∂W
= c(ucrv

′
cr + dcr1

′) (14)

where ucr = D
− 1

2
r Q′ ∂f(r)∂r , vcr = D

− 1
2

r r and

dcr =
[
diag(W̃r)D

− 1
2

r + diag(D−1r r)W̃′D
1
2
r

]
ucr . These

three vectors can be interpreted as the influence of the edges
through the source nodes, target nodes and the normaliza-
tion term respectively.

It is also worth exploring the influence of the elements
in the main network. The gradient matrix on M is given by

∂f(r)

∂M
=

2a

1 + 2a
U′crOVcr �M (15)

where Ucr = bdiag
(
Q′ ∂f(r)∂r

)
, Vcr = bdiag(r), the op-

eration bdiag(·) diagonalizes the given n × 1 block vector
with g blocks into a n × g block matrix and the operation
U′crOVcr�M divide matrix U′crOVcr element-wise by the
non-zero elements in M. With the gradient matrix and the
definition of graph element influence, we can thereby audit
the network structure on a higher level.

Although we can expect a different point of view in
graph ranking auditing by studying these normalized cases,
as we can see in the above equations, the influence expres-
sions of the graph elements vary by normalization methods.
It is hard to unify the influence function for every normal-
ized version of different ranking algorithms. Moreover, it
is noteworthy that with matrix normalization, a negative
term is introduced in its derivative. In such case, Theorem 1
(Diminishing Returns Property) in Section 4 no longer holds.
Consequently, we can not guarantee a nice approximation
ratio to the ground truth with our proposed algorithms in
Section 4 for normalized PageRank and its variants.

4 PROPOSED ALGORITHMS

In this section, we propose a family of algorithms, to solve
Graph Ranking Auditing Problem (Problem 1), together
with some analysis regarding the effectiveness as well as
efficiency of our proposed method.

4.1 Auditing by Edges: AURORA-E
Due to its combinatorial nature, straightforward methods
for solving the optimization problem in Eq. (3) are not
feasible. The key behind the proposed family of algorithms
is based on the diminishing returns property of Problem 1,
which is summarized in Theorem 1
Theorem 1 (Diminishing Returns Property of Problem 1).

Given a non-negative gradient matrix, for any set of
graph elements S , which could be either a set of edges,
nodes or subgraphs, in the given graph, its influence
measure I(S) defined in Definition 1 is (a) normal-
ized; (b) monotonically non-decreasing; (c) submodular,
where S ⊆ E .

Proof. First, we prove the diminishing returns property in
the edge case. Let S be a set of edges and I(S) =∑
(i,j)∈S

I(i, j). It is trivial that if there is no edge selected,

the influence is 0. Thus it is normalized. Let I,J ,K be
three sets of edges and I ⊆ J . We further define three
sets of edges S, T ,R as follows: S = I ∪ K, T = J ∪ K
and R = J \ I , then we have

I(J)− I(I) =
∑

(i,j)∈J

I(i, j)−
∑

(i,j)∈I

I(i, j)

=
∑

(i,j)∈J\I

I(i, j)

=
∑

(i,j)∈R

I(i, j) ≥ 0

6

which proves that I(S) is monotonically non-decreasing.
Then, we prove that it is submodular. Define P = T \ S .
We have that P = (J ∪ K) \ (I ∪ K) = R \ (R ∩ K) ⊆
R = J \ I . Then we have

I(T)− I(S) =
∑

(i,j)∈P

I(i, j) ≤ I(J)− I(I)

which proves the submodularity of the edge influence.
Next, we prove the diminishing returns property in
the node case. Let V be a set of nodes and I(V) =∑
(i,j)∈SV

I(i, j), where SV is the set of all inbound and

outbound edges that connect to the nodes in V . When
no node is selected, the sets V and SV are empty, thus
the influence is 0. Let M, N , O be three sets of nodes
andM⊆ N . Consequently, SM ⊆ SN and we have

I(N)− I(M) = I(SN)− I(SM) ≥ 0.

To prove it is submodular, letQ = (N ∪O)\ (M∪O) =
(N \M) \ [(N \M) ∪ O] ⊆ N \M. Then

I(N ∪O)− I(N ∪O) = I(Q) ≤ I(N)− I(M)

Thus the influence measure is monotonically non-
decreasing and submodular for any set of nodes.
Finally, we prove the case for subgraphs. If a set of nodes
is an empty set, then the influence of the set is 0 and
the influence measure is normalized. Let D, E , F be
three subgraphs and D ⊆ E . Denote SD, SE , SF as the
sets of edges of the corresponding subgraphs D, E , F
respectively and we have SD ⊆ SE . Hence, the influence
measure on subgraphs is non-decreasing as

I(E)− I(D) = I(SE)− I(SD) ≥ 0.

Let H = (E ∪ F) \ (D ∪ F) ⊆ E \ D. Then

I(E ∪ F)− I(D ∪ F) = I(H) ≤ I(E)− I(D).

Therefore, we prove that the influence measure on sub-
graphs is submodular.

The diminishing returns property naturally leads to a
greedy algorithm to obtain a near-optimal solution for solv-
ing Problem 1. We first present the algorithm for auditing by
edges in this section. The algorithms for auditing by nodes
and by subgraphs will be presented in Sections 4.2 and 4.3,
respectively.

With the diminishing returns property, we propose AU-
RORA-E (Algorithm 1) algorithm to find top-k influential
edges in a graph. The key idea of AURORA-E is to select
one edge and update the gradient matrix at each of the k
iterations.

The effectiveness and efficiency of the proposed AU-
RORA-E are summarized in Lemma 1 and Lemma 2, re-
spectively. We show that AURORA-E finds a (1− 1/e) near-
optimal solution with a linear complexity for ranking algo-
rithms whose gradient matrix on its edges is non-negative
as follows.
Lemma 1 (Approximation Ratio of AURORA-E). Let Sk =
{s1, s2, ..., sk} represents the set formed by AURORA-
E, O is the optimal solution of Problem 1, I(S) is the
influence defined in Definition 1.

I(Sk) ≥ (1− 1/e)I(O)

Proof. By diminishing returns property, ∀ i ≤ k, we have

Algorithm 1: AURORA-E

Input : The transition matrix W, integer budget k
Output: A set of k edges S with the highest influence

1 initialize S = ∅;
2 initialize c (e.g., c = 1/2 max eigenvalue(W));
3 calculate ranking r = pg(W, e, c);
4 calculate partial gradients ∂f(r)

∂W by Eq. (9);
5 calculate gradients df(r)

dW by Eq. (4);
6 while |S| 6= k do
7 find (i, j) = argmax

(i,j)

I(i, j) with Eq. (4);

8 add edge (i, j) to S ;
9 remove (i, j), and remove (j, i) if undirected;

10 re-calculate r, ∂f(r)∂W by Eq. (9), and df(r)
dA by Eq. (4);

11 return S ;

I(O) ≤ I(O ∪ Si)
= I(Si) +

∑
s∈O

∆(s|Si ∪ (O \ {s}))

≤ I(Si) +
∑
s∈O

∆(s|Si)

≤ I(Si) + k∆(smax|Sk)

where smax = argmaxs∈V\Si ∆(s|Si). Then we have

∆(smax|Sk) = I(Si+1)− I(Si) ≥
1

k
(I(O)− I(Si))

After rearranging the terms, we have

I(O)− I(Si+1) ≤ (1− 1

k
)(I(O)− I(Si))

I(O)− I(Si) ≤ (1− 1

k
)(I(O)− I(Si−1))

...

I(O)− I(S1) ≤ (1− 1

k
)(I(O)− I(S0))

Thus, recursively apply the inequality, we have

I(O)− I(Sk) ≤ (1− 1

k
)k(I(O)− f(S0))

= (1− 1

k
)kI(O) ≤ 1

e
I(O)

Thus we have (1− 1/e)I(O) ≤ I(Si+1).
It is noteworthy that the guarantee of the efficiency no
longer holds for gradient matrix with both positive and
negative values. For example, when we take the row nor-
malization or Laplacian normalization of the adjacency ma-
trix in the mapping function as mentioned in Section 3.4,
a negative term is introduced as the influence through the
normalization term, and the gradient matrix is therefore no
longer non-negative.
Lemma 2 (Time and Space Complexities of AURORA-E).

Algorithm 1 is O(mk) in time and O(m + n) in space,
where m and n are the numbers of edges and nodes in
the input graph; and k is the budget.

Proof. It takes O(m) time complexity to calculate r and
∂f(r)
∂W by applying power iterations. In the while-loop, we

find the edge with the greatest influence by traversing
all edges, which takes O(m) time. Time spent to re-
calculate r and ∂f(r)

∂W remains the same as O(m). Since

7

the body inside the loop will run k times, the overall
time complexity is O(mk). In Algorithm 1, it takes O(m)
space to save the sparse adjacency matrix W and O(n)
space to save the ranking vector r and column vector Q′r
in Eq. (9). Therefore it has O(m+n) space complexity.

4.2 Auditing by Nodes: AURORA-N

Algorithm 2: AURORA-N
Input : The transition matrix W, integer budget k
Output: A set of k nodes S with highest influence

1 initialize S = ∅;
2 initialize c (e.g., c = 1/2 max eigenvalue(W));
3 calculate ranking r = pg(W, e, c);
4 calculate partial gradients ∂f(r)

∂W by Eq. (9);
5 calculate gradients df(r)

dW by Eq. (4);
6 while |S| 6= k do
7 find vi = argmax

i
I(i);

8 add vi to S ;
9 remove all inbound and outbound edges of vi;

10 re-calculate r, ∂f(r)∂W by Eq. (9), and df(r)
dW by Eq. (4);

11 return S ;

By Theorem 1, the influence of nodes also enjoys the
diminishing returns property for non-negative gradient ma-
trix. Following this, we propose a greedy algorithm AU-
RORA-N (Algorithm 2) to find a set of top-k influential nodes
in a graph with (1 − 1/e) approximation ratio with linear
complexity. The efficiency of the proposed AURORA-N is
summarized in Lemma 3.
Lemma 3 (Time and Space Complexities of AURORA-N).

Algorithm 2 is O(mk) in time, and O(m + n) in space,
where m and n are the numbers of edges and nodes in
the input graph; and k is the budget.

Proof. It takes O(m) time complexity to calculate r and
∂f(r)
∂W by applying power iterations. In the while-loop,

we calculate the influence of nodes and find the node
with the greatest influence by traversing all edges, which
takes O(m) time. Time spent to re-calculate r and ∂f(r)

∂W
remains the same as O(m). Since the body inside loop
will run k times, the overall time complexity is O(mk).
In Algorithm 2, it takes O(m) space to save the sparse
adjacency matrix W and O(n) space to save the ranking
vector r and column vector Q′r in Eq. (9). Therefore it
has O(m+ n) space complexity.

4.3 Auditing by Subgraphs: AURORA-S

Here, we discuss how to select an influential subgraph with
k nodes and we focus on the vertex-induced subgraph. With
the diminishing returns property (Theorem 1) in mind, we
propose AURORA-S (Algorithm 3) to greedily identify the
influential subgraph with (1−1/e) approximation ratio with
a linear complexity. The efficiency of the proposed AURORA-
S is summarized in Lemma 4.

Lemma 4 (Time and Space Complexities of AURORA-S).
Algorithm 3 is O(mk) in time and O(m + n) in space,
where m and n are the numbers of edges and nodes in
the input graph; and k is the budget.

Algorithm 3: AURORA-S
Input : The transition matrix W, output size k
Output: A vertex-induced subgraph of k nodes S

with highest influence
1 initialize S = ∅;
2 initialize c (e.g., c = 1/2 max eigenvalue(W));
3 calculate ranking r = pg(W, e, c);
4 calculate partial gradients ∂f(r)

∂W by Eq. (9);
5 calculate gradients df(r)

dA by Eq. (4);
6 while |S| 6= k do
7 find (i, j) = argmax

(i,j)

I(i, j);

8 if |S|+ 2 ≤ k then
9 add vi and vj to S ;

10 else
11 find the endpoint v with higher gradient;
12 if v 6∈ S then
13 add v to S ;
14 else
15 add the other endpoint to S ;

16 remove all edges in S ;
17 re-calculate r, ∂f(r)∂W by Eq. (9), and df(r)

dW by Eq. (4);

18 return S ;

Proof. It takesO(m) time complexity to calculate r and ∂f(r)
∂W

by applying power iterations. In the while-loop, we find
the edge with the greatest influence by traversing all
edges, which takesO(m) time. Time spent to re-calculate
r and ∂f(r)

∂W remains the same as O(m). Since the body
inside loop will run k times, the overall time complexity
is O(mk). In Algorithm 3, it takes O(m) space to save
the sparse adjacency matrix W and O(n) space to save
the ranking vector r and column vector Q′r in Eq. (9).
Therefore it has O(m+ n) space complexity.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed AURORA algo-
rithms. All experiments are designed to answer the follow-
ing two questions:
• Effectiveness. How effective are the proposed AU-

RORA algorithms in identifying key graph elements
w.r.t. the ranking results?

• Efficiency. How efficient and scalable are the pro-
posed AURORA algorithms?

5.1 Setup
Datasets. We test our algorithms on a diverse set of real-
world network datasets. All datasets are publicly available.
The statistics of these datasets are listed in Table 3.
• SOCIAL NETWORKS. Here, nodes are users, and

edges indicate social relationships. Among them,
Karate [16] is a well-known network dataset of a
university karate club collected by Wayne Zachary
in 1977. Dolphins [17] is an undirected social net-
work of frequent associations between dolphins in a
community living off Doubtful Sound, New Zealand.
WikiVote [18] is generated by Wikipedia voting data
from the inception of Wikipedia till January 2008.

8

TABLE 3: Statistics of the datasets
Category Network Type Nodes Edges

SOCIAL

Karate U 34 78
Dolphins U 62 159
WikiVote D 7,115 103,689

Pokec D 1,632,803 30,622,564

COLLABORATION

GrQc U 5,242 14,496
DBLP U 42,252 420,640
NBA U 3,923 71,581

cit-DBLP D 12,591 49,743
cit-HepTh D 27,770 352,807
cit-HepPh D 34,546 421,578

PHYSICAL Airport D 1,128 18,736

NON DBLP-NoN U 259,822 622,532
PPI-NoN U 798,185 4,553,022

ATTRIBUTED
DBLP-attr D 1,065,882 3,158,894
CORA-attr D 9,570 60,074

OTHERS
Lesmis U 77 254

Amazon D 262,111 1,234,877

(In Type, U means undirected graph; D means directed graph.)

Pokec [19] is a popular online social network in
Slovakia.

• COLLABORATION NETWORKS. Here, nodes are indi-
viduals and two people are connected if they have
collaborated. We use the collaboration network in
the field of General Relativity and Quantum Cosmol-
ogy (GrQc) in Physics from arXiv preprint archive2.
DBLP3 is a co-authorship network from DBLP com-
puter science bibliography. And NBA [20] is a col-
laboration network of NBA players from 1946 to
2009. cit-DBLP [21] is the citation network of DBLP, a
database of scientific publications such as papers and
books. Each node in the network is a publication, and
each edge represents a citation of a publication by
another publication. cit-HepTh [22] is an ArXiv HEP-
TH (High Energy Physics - Theory) citation network.
The data covers papers from January 1993 to April
2003. If a paper i cites paper j, there is a directed
edge from i to j. cit-HepPh [22] is an ArXiv HEP-
PH (High Energy Physics - Phenomenology) citation
network. The data covers papers from January 1993
to April 2003. If a paper i cites paper j, there is a
directed edge from i to j.

• PHYSICAL INFRASTRUCTURE NETWORKS. This cate-
gory refers to the networks of physical infrastructure
entities. Nodes in them correspond to physical in-
frastructure, and edges are connections. Airport4 is
a dataset of airline traffic. Each node represents an
airport in the United States, an edge (i, j) represents
the airline from i to j while the edge weight stands
for the normalized number of passengers.

• NETWORK OF NETWORKS. Here, each node in the
main network can be further represented as a
domain-specific network. In DBLP-NoN dataset [23],
the main network consists of 121 conferences and
the edges represents the similarity across conferences
which are generated by [24]. The domain-specific
networks are the co-author networks with a total of
259,822 nodes. The within-layer edges are weighted
by the number of collaborative works between au-

2. https://arxiv.org/
3. http://dblp.uni-trier.de/
4. https://www.transtats.bts.gov/

thors in the area, and the cross-layer edges represent
the same author with publications in different ar-
eas. The tissue-specific protein interaction NoN (PPI-
NoN) is first introduced in [13], which consists of a
disease similarity network (the main network) with
170 diseases. In the main network, each node is a
tissue-specific molecular network corresponding to
the disease with a total of 9,998 proteins.

• ATTRIBUTED GRAPHS This category refers to at-
tributed graphs that are embedded in plain graphs.
The DBLP-attr, with a total of 1,065,882 embed-
ded nodes, consists of 162,932 author-nodes, 902,708
edge-nodes, 121 node-attribute-nodes and 121 edge-
attribute-nodes. The CORA-attr is based on the well-
known CORA dataset [25], with a total of 9,570
nodes. It consists of 2,708 nodes representing scien-
tific publications, 5,278 edge-nodes embedded from
the citation network and 1,433 node-attribute-nodes
transformed from a 0/1-valued word vector describ-
ing the corresponding publication.

• OTHERS. This category contains networks that do not
fit into the above categories. Lesmis [26] is a network
of co-appearances of characters in Victor Hugo’s
novel ”Les Miserables”. A node represents a character
and an edge connects a pair of characters if they
both appear in the same chapter of the book. Amazon
[27] is a co-purchasing network collected by crawling
Amazon website. It is based on the Customers Who
Bought This Item Also Bought feature.

Baseline Methods. We compare our proposed methods with
several baseline methods, which are summarized as follows.

• Random Selection (random). Randomly select k ele-
ments and calculate the change by removing them.

• Top-k Degrees (degree). We first define the degree of an
edge (u, v) as follows,

d(u, v) =

(d(u)× d(v))× max
i∈{u,v}

d(i), if undirected

(d(u)× d(v))× d(u), if directed
where d(u) represents the degree of node u.
To audit by graph elements, we select k elements
with the highest degrees. For edges, we select k
edges with the highest edge degrees defined above;
for nodes, we select k nodes with the highest node
degrees; for subgraphs, we form a vertex-induced
subgraph from k nodes with the highest degrees.

• PageRank. We first define the PageRank score of an
edge (u, v) as follows,

pg(u, v) =

(r(u)× r(v))× max
i∈{u,v}

r(i), if undirected

(r(u)× r(v))× r(u), if directed
where r(u) is the PageRank score of node u.
To audit by graph elements, we select k elements
with the highest PageRank scores. That is, for edges,
we select k edges with the highest PageRank scores
defined above; for nodes, we select k nodes with
highest PageRank scores; for subgraphs, we form
a vertex-induced subgraph from k nodes with the
highest PageRank scores.

• HITS. We first define HITS score of an edge (u, v)
and node u as follows,

9

HITS(u, v) = hub(u)×hub(v) + auth(u)× auth(v)
HITS(u) = hub(u) + auth(u)

where hub(u) and auth(u) represent the hub score
and authority score of node u, respectively.
To audit by graph elements, we select k elements
with the highest HITS scores. That is, for edges, we
select k edges with the highest HITS scores defined
above; for nodes, we select k nodes with the high-
est HITS scores; for subgraphs, we form a vertex-
induced subgraph from k nodes with the highest
HITS scores.

Metrics. Here, we choose the loss function to be squared
L2 norm. We quantify the performance of auditing by the
goodness score ∆f of the graph elements S found by the
corresponding algorithms. The goodness score we measure
is defined as

∆f =

∣∣∣∣∣f(r/
n∑
i=1

r)− f(rS/
n∑
i=1

rS)

∣∣∣∣∣ (16)

Repeatability and Machine Configuration. All datasets are
publicly available. We will release the code of our proposed
algorithms upon the publication of the paper. All experi-
ments are performed on a Windows 10 machine with 6 Intel
i7-8700 CPU cores at 3.2GHz and 32GB RAM. All codes are
written in Python 3.6.

5.2 Quantitative Comparison
We perform effectiveness experiments on our proposed
algorithms and compare them with the baseline methods.
We set k from 1 to 10 and find k influential edges and
nodes, respectively. For subgraph, e set k only from 2 to
10 to find an influential subgraph of size-k. This is because a
vertex-induced subgraph with only 1 node does not contain
any edge and therefore is meaningless for graph ranking
auditing. It is worth pointing out that searching a ground-
truth with k most influential elements is prohibitively ex-
pensive due to its combinatorial nature. For example, even
if we use the small Lesmis dataset, it will take over a day to
find ground-truth with k = 5. Therefore, we do not include
ground-truth with k influential elements on all datasets.
Auditing on Plain Network The results of quantitative
comparison on plain network across 9 different datasets
are shown from Figure 4 to Figure 6 and from Figure 9 to
Figure 10. From those figures, we have the following obser-
vation that our family of AURORA algorithms consistently
outperform other baseline methods on all datasets.
Auditing on Network of Networks The results of quantita-
tive comparison on Network of Networks with two datasets
are shown in Figure 7. From the figure, we observe that
AURORA-E performs better than other baseline methods,
but AURORA-N and AURORA-S are slightly outperformed
by PageRank and HITS on DBLP-non dataset respectively.
By further investigating in why AURORA-S is outperformed,
we notice that the HITS method selects all ten nodes from
the same domain-specific network to form the subgraph
while AURORA-S selects nodes from across several domain-
specific networks. Recall that in a Network of Networks
model, most of the connections/edges lie within domain-
specific networks and cross-network connections only occur
when the same entity appears in multiple domain-specific
networks. Therefore, the HITS method, by measuring the

authority and hub scores of nodes, happens to find a set of
nodes that are firmly connected. Here AURORA-S selects a
set of nodes that are influential if we remove all the edges
they have but do not work so well regarding the subgraph
they consisted of.
Auditing on Attributed Graphs The results of quantitative
comparison on attributed graphs are shown in Figure 8. We
observe that our algorithms produce the same results as
some of the baseline methods in finding influential edges
and nodes. We conclude that it is due to the extremely
unbalanced degree distribution on the embedded graphs.
In DBLP-attr dataset, 42% of the edges in the embedded
graph link to the 121 node-attribute-nodes and 121 edge-
attribute-nodes. In CORA-attr dataset, 82% of the edges
link to the 1433 node-attribute-nodes. We believe that the
PageRank method having a better result than AURORA-S
on the DBLP-attr dataset is also due to this reason. Though
our proposed embedding method causes the extreme degree
distribution in these cases, we find our algorithms work well
in finding influential subgraphs and produce meaningful
results as discussed in our case study on DBLP-attr dataset
in Sec. 5.3.1. We believe it is mainly because the high
degrees come with these attributes nodes correctly reflect
the popularity of the features among the original nodes
and edges. Since ranking the nodes, edges from the original
graph and the attribute-nodes all together may seem unfair
at some point, we can simply discriminate them by finding
the influential elements among each node type respectively.

By comparing the quantitative performance of our AU-
RORA algorithms across the three kinds of network struc-
tures, we have the conclusion that AURORA algorithms
consistently outperform our baseline methods on plain
network but are unstable on the NoN datasets and the
attributed graph datasets. We believe that the uncertainty
in performance is due to the different graph distributions
that are more likely to occur in the Network of Networks
and attributed graphs. In Network of Networks model,
the connectivity among nodes are dense within domain-
specific networks and are extremely sparse across domain
networks. As for attributed graphs, the embedded attribute-
nodes tend to have much higher degrees than other nodes.
Therefore, in order to improve the quantitative performance
of AURORA algorithms, further work is needed to study the
relation between the performance of our algorithms and the
graph structures.

5.3 Qualitative Comparison
In order to show that our proposed AURORA methods can
provide intuitive and reasonable explanations, we conduct
case studies on three real-world datasets, consisting of two
collaboration networks (i.e. DBLP dataset and NBA dataset)
and a physical infrastructure network (i.e. Airport dataset).

5.3.1 Case Studies on DBLP Datasets
A nature use case of AURORA algorithms is sense-making
in graph proximity. We construct three different types of
network structure from DBLP computer science bibliogra-
phy to test our algorithms. For a plain network, we directly
construct the graph based on co-authorship among authors
with unweighted edges. For Network of Networks, we use
the 121 conferences in DBLP as the main networks and the
number of collaborated works as weighted edges between

10

Fig. 4: Auditing results by edges on plain graphs with unnormalized PageRank. Budget k = 10. Higher is better. Best
viewed in color.

Fig. 5: Auditing results by nodes on plain graphs with unnormalized PageRank. Budget k = 10. Higher is better. Best
viewed in color.

Fig. 6: Auditing results by subgraphs on plain graphs with unnormalized PageRank. Budget k = 10. Higher is better. Best
viewed in color.

Fig. 7: Auditing results on Network of Networks. Budget k = 10. Higher is better. Best viewed in color.
TABLE 4: Case Study Result on DBLP Datasets

DBLP DBLP-NoN DBLP-attr

PageRank AURORA-N PageRank AURORA-N PageRank* AURORA-N*
Rakesh Agrawal Rakesh Agrawal VLDB: Spiros Papadimitriou VLDB: Spiros Papadimitriou KDD VLDB
Michael J. Carey Michael J. Carey VLDB: H. V. Jagadish VLDB: H. V. Jagadish VLDB KDD

H. V. Jagadish H. V. Jagadish VLDB: Timos K. Sellis VLDB: Timos K. Sellis ICDE ICDE
Joseph M. Hellerstein Joseph M. Hellerstein KDD: Jure Leskovec VLDB: Flip Korn SIGMOD SIGMOD

Yannis E. Ioannidis Gerhard Weikum ICDE: Spiros Papadimitriou VLDB: Agma J. M. Traina SDM SDM
Gerhard Weikum Jure Leskovec VLDB: Flip Korn VLDB: Jimeng Sun ICDM ICDM

(In DBLP-attr, all the results are the node-attributes in the network)

authors in each domain-specific networks. We then con-
struct the attributed graph with the number of publications
in each conference as the node attributes of authors and the
number of collaborated works as the edge attributes among
users.

We perform AURORA-N and PageRank with k = 6 on all
three DBLP datasets. Here we use a personalized teleporta-
tion vector with the query node Christos Faloutsos.
In this case, the top-ranked scholars in the resulting rank-
ing vector r form the proximity (i.e., ‘neighborhood’) of
the query node (i.e., who are most relevant to Christos
Faloutsos). Consequently, the nodes selected by an au-
diting algorithm are influential in making/maintaining the
neighborhood of the query node. The results are summa-

rized in Table 4.
Comparing the results of AURORA-N with PageRank on

the plain network, 5 of them are the same while AURORA-
N selects Jure Leskovec instead of Yannis Ioannidis.
This result is consistent with the intuition, since Jure
Leskovec, as a former student of Christos Faloutsos
with lots of joint publications, plays a more prominent role
in the neighborhood of Christos Faloutsos by sharing
more common collaborators.

As for the query results on DBLP-non, two methods
give the same set of collaborators in the first three places
and differ in the last threes. AURORA-N recommends all
six collaborators in VLDB network, which is persuasive
as the query node Christos Faloutsos built a strong

11

Fig. 8: Auditing results on attributed graphs. Budget k = 10. Higher is better. Best viewed in color.

(a) Auditing by Edges (b) Auditing by Nodes (c) Auditing by Subgraphs

Fig. 9: Effect of k on auditing results (cit-HepPh Dataset). Higher is better. Best viewed in color.

(a) Auditing by Edges (b) Auditing by Nodes (c) Auditing by Subgraphs

Fig. 10: Effect of k on auditing results (cit-HepTh Dataset). Higher is better. Best viewed in color.

connection network and published a great amount of papers
in VLDB in his early career. Our method ranks Flip Korn,
Agma J.M. Traina and Jimeng Sun in the fourth to
sixth places based on their many collaborations with the
query node in VLDB network as well as in many other
conferences and journals. The results of the baseline method
also make sense considering the number of collaborations
bettween the recommended nodes and the query node.

In the attributed graph, AURORA-N and PageRank give
completely the same set of nodes on DBLP-attr but slightly
differ in order. AURORA-N put VLDB in the first place
and KDD in the second place in spite that the query node
Christos Faloutsos has more publications in the latter.
It is consistent with the results on DBLP-non and can be
explained similarly. Our method recognizes VLDB as the
most important attribute to the ranking result of the query
node. Given that the auditing results are all embedded
node-attribute-nodes, we conclude that this is due to the
particular network distribution of the embedded attributed
graph. In fact, we can also look for the most influential
author nodes and collaboration edges in the attributed
network by selecting the influential graph elements from
the nodes or edge-nodes subset in the augmented graph.

5.3.2 Case Studies on Airport Dataset
Another compelling use case of our AURORA algorithms is
to find influential edges and nodes in a given graph. To
demonstrate that our algorithms are indeed able to provide
intuitive information, we test our algorithms on the Airport
dataset. This dataset was manually created from commercial
airline traffic data in 2017, which is provided by the United
States Department of Transportation. More detailed descrip-
tion and statistics of this dataset can be found in Section 5.1.
We perform AURORA-E and AURORA-N to reveal the most
influential airlines (edges in the graph) and airports (nodes
in the graph) across the United States with k = 7.

Edges selected by AURORA-E are ATL-LAX, LAX-ATL,
ATL-ORD, ORD-ATL, ATL-DEN, DEN-ATL and LAX-ORD. In
contrast, PageRank selects ATL-LAS instead of DEN-ATL
and ATL-DFW instead of LAX-ORD. DEN-ATL plays a more
important role in determining the centrality (e.g., PageRank)
of other airports. This is because DEN serves as one of the
busiest hub airports that connects West coast and East coast;
while ATL-LAS is less important in that regard, consider-
ing the existence of ATL-LAX and ATL-PHX. Comparing
LAX-ORD and ATL-DFW, LAX-ORD directly connects Los
Angeles and Chicago, both of them are largest cities in the
United States.

12

Fig. 11: running time vs.
the number of edges on
Pokec dataset

Fig. 12: running time vs.
number of k on Pokec
dataset

In the scenario of node-auditing, AURORA-N selects ATL,
LAX, ORD, DFW, DEN, LAS and CLT. In contrast, PageRank
selects SFO instead of CLT. CLT seems to be a more reason-
able choice because it serves as a major hub airport, the 6th

busiest airport by FAA statistics, to connect many regional
airports around States like North Carolina, South Carolina,
Virginia, West Virginia, etc. Compared with CLT, SFO is less
influential in that regard, mainly due to the following two
reasons: (1) it ranks after CLT (7th vs. 6th) in the list of busiest
airports by FAA statistics; (2) due to the location proximity
of SFO to LAX and SJC, even if this node is perturbed
(i.e., absent), many surrounding airports (especially regional
airports in California) could still be connected via LAX and
SJC.

5.3.3 Case Studies on NBA Dataset
In a collaboration network, a subgraph can be naturally
viewed as a team (e.g. sports team). From this perspective,
AURORA-S has the potential to find teammates of a player.
We set the query node as Tracy McGrady. Since there
are average 14 players for each team in NBA, we set the
budget k = 14. Comparing the results by AURORA-N and
PageRank, 13 of them are the same. However, AURORA-
N selects Rafer Alston instead of Steven Hunter. As
Tracy’s teammate, we believe Rafer Alston is a more
important collaborator and teammate mainly because of
the following two reasons: (1) Rafer Alston played more
seasons with Tracy McGrady than Steven Hunter (4
seasons, 191 games vs. 3 seasons, 129 games); and (2) he
played more games in the starting lineups with Tracy
McGrady than Steven Hunter (187 games vs. 47 games).

5.4 Efficiency Results
We show the running time vs. number of edges m and
budget size k on Pokec dataset in Figure 11 and Figure 12. We
can see that the proposed AURORA algorithms scale linearly
w.r.t. m and k, respectively. This is consistent with our
complexity analysis that the family of AURORA algorithms
are linear with respect to the number of edges and the
budget.

5.5 Visualization
To better understand the auditing results, we developed a
prototype system with D3.js to represent the influence of
graph elements visually. In the system, we use the strength
of line to represent the gradient of an edge and use the
size and color for the gradient of nodes. An example of
visualizing hand-crafted toy graph is shown in Figure 13.
As shown in the figure, Node 5 is the most influential node
selected by AURORA-N, and edges around Node 5 are more
influential than other edges according to AURORA-E, both
of which are consistent with our intuition.

Fig. 13: Visualization of toy graph on the visualization
system. Best viewed in color.

6 RELATED WORK

In this section, we briefly review the related work, from the
following two perspectives, including (1) graph ranking and
(2) applications of graph ranking auditing.
Graph ranking. Regarding graph ranking, PageRank [1]
and HITS [28] are probably the most well-known and
widely used algorithms. PageRank measures the impor-
tance of nodes as a stationary distribution of random walks.
HITS assumes that each node has two scores: hub and
authority. A node has a high hub score if it links to many
nodes with high authority scores, and a node has a high
authority score if it links to many nodes with high hub
scores. Many variants of PageRank and HITS have been de-
veloped in the literature. To name a few, in [29], the authors
study the stability of PageRank and HITS, based on which
they propose two new algorithms (Randomized HITS and
Subspace HITS). Ding et al. [30] provide a unified ranking
method for HITS and PageRank. In [9], Haveliwala et al.
propose the well known personalized PageRank by replacing
the uniform teleportation vector with a biased personalized
topic-specific vector; while random walk with restart [10]
concentrates all teleportation probabilities to a single node.
Other random walk based graph ranking methods include
[31] and many more.
Applications of Graph Auditing. The idea of graph au-
diting is first introduced in the field of sensitivity analysis
on graph data in order to measure the robustness of graph
statistics with respect to noise and perturbation. [32]–[34]
and [35] use various vertex removal strategies to study
the behavior of social networks, web graphs and generated
graph data with respect to centrality measures, stochastic
quantifiers, and shortest path distribution.

How to enhance interpretability and robustness of graph
mining models attracts many research interests in recent
years. Dai et al. [36] propose reinforcement learning based
attack methods targeting a family of Graph Neural Network
models for node representation learning. Wang et al. [37]

13

propose a greedy attack approach to Graph Convolutional
Network models. Zügner et al. [38] study both the structure
attacks and the feature attacks for several node classifi-
cation models targeting node classification on attributed
graphs under the framework of unnoticeable perturbation.
Poisoning attack on DeepWalk and LINE models for node
embedding is first investigated by Sun et al. [39]. Chen [40]
and Zhou [41] develop two novel methods for attacking link
prediction on graphs.

In terms of the interpretability of graph ranking, Scott
et al. [42] present a web-based prototype for an explainable
ranking algorithm in multi-layered networks. Varadarajan
et al. [43] propose a way to explain the ranking results
of ObjectRank by computing a subgraph that reflects the
authority flows in the graph regarding the query. However,
our paper considers the problem in a more general scenario
from the perspective of derivatives.

7 CONCLUSION

In this paper, we study the problem of auditing the ranking
on graphs, where we aim to find the most influential graph
elements (e.g., edges, nodes, subgraphs) w.r.t. graph ranking
results. We formally define the Graph Ranking Auditing
Problem by measuring the influence of each graph element
as the rate of change in certain loss functions defined over
the ranking vector and formulate it as an optimization
problem. We extend the problem to more general scenarios
where different types of network structures and ranking
algorithms can be audited by our proposed algorithms.
We propose a family of fast approximation algorithms,
named AURORA, with (1 − 1/e) approximation ratio and
a linear complexity in both time and space. The extensive
experimental evaluations on more than ten datasets across
three network structures demonstrate that the proposed
AURORA algorithms are able to identify influential graph
elements and scale linearly on large graphs. The algorithms
outperform baseline methods in all the cases on plain graphs
and are able to compete with baseline methods on Network
of Networks and attributed networks. In our case studies,
the algorithms are able to provide sense-making results in
different scenarios.

ACKNOWLEDGEMENT

The faculty and students were supported by NSF (1947135,
1715385, and 1939725).

REFERENCES

[1] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: Bringing order to the web.” Stanford InfoLab,
Technical Report 1999-66, November 1999.

[2] M. Gori and A. Pucci, “Itemrank: A random-walk based scoring
algorithm for recommender engines,” in Proceedings of the 20th
International Joint Conference on Artifical Intelligence. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007, pp. 2766–2771.

[3] J. Weng, E.-P. Lim, J. Jiang, and Q. He, “Twitterrank: Finding topic-
sensitive influential twitterers,” in Proceedings of the Third ACM
International Conference on Web Search and Data Mining. New York,
NY, USA: ACM, 2010, pp. 261–270.

[4] R. Singh, J. Xu, and B. Berger, “Pairwise global alignment of
protein interaction networks by matching neighborhood topol-
ogy,” in Annual International Conference on Research in Computational
Molecular Biology. Springer, 2007, pp. 16–31.

[5] J. J. Crofts and D. J. Higham, “Googling the brain: Discovering
hierarchical and asymmetric network structures, with applications
in neuroscience,” Internet Mathematics, vol. 7, no. 4, pp. 233–254,
2011.

[6] F. Radicchi, “Who is the best player ever? a complex network
analysis of the history of professional tennis,” PloS one, vol. 6,
no. 2, p. e17249, 2011.

[7] A. D. Sarma, A. R. Molla, G. Pandurangan, and E. Upfal, “Fast dis-
tributed pagerank computation,” arXiv preprint arXiv:1208.3071,
2012.

[8] C. Borgs, M. Brautbar, J. Chayes, and S.-H. Teng, “A sublinear time
algorithm for pagerank computations,” in International Workshop
on Algorithms and Models for the Web-Graph. Springer, 2012, pp.
41–53.

[9] T. H. Haveliwala, “Topic-sensitive pagerank,” in Proceedings of the
11th international conference on World Wide Web. ACM, 2002, pp.
517–526.

[10] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with
restart and its applications,” in Sixth International Conference on
Data Mining (ICDM’06). IEEE, 2006, pp. 613–622.

[11] L. Li, Y. Yao, J. Tang, W. Fan, and H. Tong, “Quint: On query-
specific optimal networks,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2016, pp. 985–994.

[12] P. W. Koh and P. Liang, “Understanding black-box predictions
via influence functions,” in Proceedings of the 34th International
Conference on Machine Learning - Volume 70. JMLR.org, 2017, pp.
1885–1894.

[13] J. Ni, H. Tong, W. Fan, and X. Zhang, “Inside the atoms: ranking
on a network of networks,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 1356–1365.

[14] R. Pienta, A. Tamersoy, H. Tong, and D. H. Chau, “Mage: Matching
approximate patterns in richly-attributed graphs,” in 2014 IEEE
International Conference on Big Data (Big Data). IEEE, 2014, pp.
585–590.

[15] H. Whitney, “Congruent graphs and the connectivity of graphs,”
American Journal of Mathematics, vol. 54, no. 1, pp. 150–168, 1932.

[16] W. W. Zachary, “An information flow model for conflict and fission
in small groups,” Journal of anthropological research, vol. 33, no. 4,
pp. 452–473, 1977.

[17] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and
S. M. Dawson, “The bottlenose dolphin community of doubtful
sound features a large proportion of long-lasting associations,”
Behavioral Ecology and Sociobiology, vol. 54, no. 4, pp. 396–405, 2003.

[18] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks
in social media,” in Proceedings of the SIGCHI conference on human
factors in computing systems. ACM, 2010, pp. 1361–1370.

[19] L. Takac and M. Zabovsky, “Data analysis in public social net-
works,” in International Scientific Conference and International Work-
shop Present Day Trends of Innovations, vol. 1, no. 6, 2012.

[20] L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin, and N. Buchler,
“Replacing the irreplaceable: Fast algorithms for team member
recommendation,” in Proceedings of the 24th International Conference
on World Wide Web. International World Wide Web Conferences
Steering Committee, 2015, pp. 636–646.

[21] M. Ley, “The dblp computer science bibliography: Evolution,
research issues, perspectives,” in International symposium on string
processing and information retrieval. Springer, 2002, pp. 1–10.

[22] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explana-
tions,” in Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining. ACM, 2005, pp.
177–187.

[23] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” in Proceedings
of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2008, pp. 990–998.

[24] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive
model for graph mining,” in Proceedings of the 2004 SIAM Interna-
tional Conference on Data Mining. SIAM, 2004, pp. 442–446.

[25] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automat-
ing the construction of internet portals with machine learning,”
Information Retrieval, vol. 3, no. 2, pp. 127–163, 2000.

[26] D. E. Knuth, The Stanford GraphBase: a platform for combinatorial
computing. New York, NY, USA: ACM, 1993, vol. 56.

[27] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,” ACM Transactions on Knowl-
edge Discovery from Data (TKDD), vol. 1, no. 1, p. 2, 2007.

[28] J. M. Kleinberg, “Authoritative sources in a hyperlinked environ-
ment,” Journal of the ACM (JACM), vol. 46, no. 5, pp. 604–632, 1999.

14

[29] A. Y. Ng, A. X. Zheng, and M. I. Jordan, “Stable algorithms for
link analysis,” in Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in information retrieval.
ACM, 2001, pp. 258–266.

[30] C. Ding, X. He, P. Husbands, H. Zha, and H. Simon, “Pagerank,
hits and a unified framework for link analysis,” in Proceedings of
the 2003 SIAM International Conference on Data Mining. SIAM,
2003, pp. 249–253.

[31] G. Jeh and J. Widom, “Simrank: a measure of structural-context
similarity,” in Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2002, pp.
538–543.

[32] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance
of complex networks,” nature, vol. 406, no. 6794, p. 378, 2000.

[33] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, “Attack vulner-
ability of complex networks,” Physical review E, vol. 65, no. 5, p.
056109, 2002.

[34] P. Boldi, M. Rosa, and S. Vigna, “Robustness of social and web
graphs to node removal,” Social Network Analysis and Mining,
vol. 3, no. 4, pp. 829–842, 2013.

[35] C. Martin and P. Niemeyer, “Comparing the sensitivity of social
networks, web graphs, and random graphs with respect to vertex
removal,” in 2015 11th International Conference on Signal-Image
Technology & Internet-Based Systems (SITIS). IEEE, 2015, pp. 460–
467.

[36] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song,
“Adversarial attack on graph structured data,” in International
Conference on Machine Learning, 2018, pp. 1123–1132.

[37] X. Wang, J. Eaton, C.-J. Hsieh, and F. Wu, “Attack graph
convolutional networks by adding fake nodes,” arXiv preprint
arXiv:1810.10751, 2018.

[38] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial at-
tacks on neural networks for graph data,” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. ACM, 2018, pp. 2847–2856.

[39] M. Sun, J. Tang, H. Li, B. Li, C. Xiao, Y. Chen, and D. Song,
“Data poisoning attack against unsupervised node embedding
methods,” arXiv preprint arXiv:1810.12881, 2018.

[40] J. Chen, Z. Shi, Y. Wu, X. Xu, and H. Zheng, “Link prediction
adversarial attack,” arXiv preprint arXiv:1810.01110, 2018.

[41] K. Zhou, T. P. Michalak, T. Rahwan, M. Waniek, and Y. Vorob-
eychik, “Adversarial link prediction in social networks,” arXiv
preprint arXiv:1809.08368, 2018.

[42] J. Kang, S. Freitas, H. Yu, Y. Xia, N. Cao, and H. Tong, “X-
rank: Explainable ranking in complex multi-layered networks,” in
Proceedings of the 27th ACM International Conference on Information
and Knowledge Management. ACM, 2018, pp. 1959–1962.

[43] R. Varadarajan, V. Hristidis, and L. Raschid, “Explaining and refor-
mulating authority flow queries,” in 2008 IEEE 24th International
Conference on Data Engineering. IEEE, 2008, pp. 883–892.

Meijia Wang is currently working toward Ph.D.
degree in Statistics in the School of Mathemati-
cal and Statistical Sciences, Arizona State Uni-
versity. She received her M.S. degree in Statis-
tics from Arizona State University and B.S. de-
gree in Economics, majored in Financial Math-
ematics from Southern University of Science
and Technology, China. Her research interests
include machine learning, graph mining and
Bayesian statistics.

Jian Kang is currently working toward the Ph.D.
degree in Computer Science in Department
of Computer Science, University of Illinois at
Urbana-Champaign. He received his Master’s
degree in Computer Science from University of
Virginia and his B.Eng. degree in Communi-
cations Engineering from Beijing University of
Posts and Telecommunications. His current re-
search interests include large-scale data mining
and machine learning, especially graph mining.

Nan Cao is a professor at TongJi University in
China, with the joint appointment at both College
of Design and Innovation and College of Soft-
ware Engineering. He is the founding director
of Tongji Intelligent Big Data Visualisation Lab
(iDVx Lab). Dr. Cao is also an adjunct professor
at NYU ShangHai and NYU Tandon. Before join-
ing Tongji and NYU Shanghai, he was a research
staff member at IBM T.J. Watson Research Cen-
ter and he has worked for IBM for 10 years dur-
ing 2005-2015. Dr. Nan Cao received his Ph.D.

degree from the Hong Kong University of Science and Technology.

Yinglong Xia is an applied research scientist
at Facebook AI, working on various AI plat-
form techniques and its applications, especially
those focus on graph-based data processing and
learning. He was a Chief Architect in Futurewei
Technologies, USA, leading a global team of sci-
entists and engineers to build Big Data Analytics
Platforms. Before that, he was a Technical Lead
of Graph Database and Reasoning Frameworks
and Research Staff Member in the IBM T.J. Wat-
son Research Center. He received the Ph.D. in

Computer Science from the University of Southern California in 2010,
M.S. in Machine Learning from Tsinghua University in 2006, and B.S.
from University of Electronic Sciences and Technology of China in 2003.

Wei Fan received his Ph.D. degree in Com-
puter Science from Columbia University in 2001.
He is currently the executive director of Tecent
Medical AI Lab in Sunnyvale, CA. His main re-
search interests and experiences are in various
areas of data mining and database systems,
such as deep learning, stream computing, high
performance computing, extremely skewed dis-
tribution, cost-sensitive learning, risk analysis,
ensemble methods, easy-to-use nonparametric
methods, graph mining, predictive feature dis-

covery, feature selection, sample selection bias, transfer learning, time
series analysis, bioinformatics, social network analysis, novel applica-
tions, and commercial data mining systems.

Hanghang Tong is currently an associate pro-
fessor at Department of Computer Science at
University of Illinois at Urbana-Champaign. Be-
fore that he was an associate professor at
School of Computing, Informatics, and Decision
Systems Engineering (CIDSE), Arizona State
University. He received his M.Sc. and Ph.D. de-
grees from Carnegie Mellon University in 2008
and 2009, both in Machine Learning. His re-
search interest is in large scale data mining for
graphs and multimedia. He has received several

awards, including SDM/IBM Early Career Data Mining Research award
(2018), NSF CAREER award (2017), ICDM 10-Year Highest Impact Pa-
per award (2015), four best paper awards (TUP’14, CIKM’12, SDM’08,
ICDM’06), seven ’bests of conference’, 1 best demo, honorable mention
(SIGMOD’17), and 1 best demo candidate, second place (CIKM’17).
He has published over 100 refereed articles. He is the Editor-in-Chief
of SIGKDD Explorations (ACM), an action editor of Data Mining and
Knowledge Discovery (Springer), and an associate editor of Knowledge
and Information Systems (Springer) and Neurocomputing Journal (El-
sevier); and has served as a program committee member in multiple
data mining, database and artificial intelligence venues (e.g., SIGKDD,
SIGMOD, AAAI, WWW, CIKM, etc.).

